A categorical model of the Fusion Calculus

Marino Miculan
University of Udine
IoC
Tallinn, 11 February 2010

Adding the missing notion of state to behaviour functors obtained from nice labelled transition systems, in order to get a working categorical semantics

Marino Miculan
University of Udine
IoC
Tallinn, 11 February 2010

How to uglify your semantics but only a bit, and for good reasons

Marino Miculan
 University of Udine

IoC
Tallinn, 11 February 2010

- Distributed programming often involve negotiations, handshakes...
- "Connect port 127.0.0.1:26451 to port 163.10.72.61:25" (TCP)
- "let us choose a cypher supported by both" (SSL, IPSec)
- "we will use the following encoding"
- Basic concept: communication via unification
- Quite different from usual one-way communication (like CCS and π-calculus)
- In this talk: a categorical model for the Fusion calculus
- Methodology is more general

Communication via unification

- Symmetric: unification affects both agents (not only one side)
- P and Q keep using x and y for the same "wire" (i.e., substitution is not (always) performed)
- Action is locally performed by two agents

Communication via unification

- Symmetric: unification affects both agents (not only one side)
- P and Q keep using x and y for the same "wire" (i.e., substitution is not (always) performed)
- Action is locally performed by two agents, but has global effect

The Fusion Calculus (Parrow and Victor, 1998)

- Syntax (up-to alpha-equivalence):

$$
P, Q::=\mathbf{0}|z x . P| \bar{z} x . P|P| Q \mid(x) P
$$

- Semantics: labelled transitions of the form

$$
\alpha::=x y|\bar{x} y| x(z)|\bar{x}(z)| \mathbf{1} \mid x=y
$$

- transitions do not keep track of equivalences between names: fusions caused by communications are exposed to the environment as labels; e.g.

$$
\operatorname{Com} \frac{P \stackrel{u x}{\longrightarrow} P^{\prime}, Q \stackrel{\bar{u} y}{\longrightarrow} Q^{\prime}}{P\left|Q \xrightarrow{\{x=y\}} P^{\prime}\right| Q^{\prime}}
$$

The Fusion Calculus - Labelled transition system

$$
\operatorname{Pref} \frac{-}{\alpha . P \xrightarrow{\alpha} P} \quad \operatorname{Com} \frac{P \xrightarrow{u x} P^{\prime}, Q \xrightarrow{\bar{u} y} Q^{\prime}}{P\left|Q \xrightarrow{\{x=y\}} P^{\prime}\right| Q^{\prime}} \quad \operatorname{Par} \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q}
$$

Open $\xrightarrow[{(x) P \xrightarrow{P \xrightarrow{u x} P^{\prime}, u \notin\{x, \bar{x}\}} P^{\prime}}]{\text { Pass } \xrightarrow[\rightarrow]{P \xrightarrow{\alpha} P^{\prime}, x \notin n(\alpha)}} \quad$ Scope $\frac{P \xrightarrow{\{x=y\}} P^{\prime}}{(x) P \xrightarrow{\alpha}(x) P^{\prime}} P^{\prime}\{y / x\}$ Congr $\left.\frac{P \equiv P^{\prime} P^{\prime} \xrightarrow{\alpha} Q^{\prime} Q^{\prime} \equiv Q}{P \xrightarrow{\alpha} Q} \quad(P \mid Q)|R \equiv P|(Q \mid R) \quad P|Q \equiv Q| P \quad P \right\rvert\, \mathbf{0} \equiv P$ $(x) \mathbf{0} \equiv \mathbf{0} \quad(x)(y) P \equiv(y)(x) P \quad P \mid(x) P \equiv(x)(P \mid Q)$ if $x \notin f n(P)$

[^0]
The Fusion Calculus - Bisimulation

A fusion bisimulation is a symmetric relation \mathcal{S} between processes such that whenever $(P, Q) \in \mathcal{S}$, if $P \xrightarrow{\alpha} P^{\prime}$ with $b n(\alpha) \cap f n(Q)=\emptyset$, then $Q \xrightarrow{\alpha} Q^{\prime}$ and

- if α is a communication action: $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{S}$;
- if α is a fusion: $\left(P^{\prime} \sigma, Q^{\prime} \sigma\right) \in \mathcal{S}$, for some σ agreeing with α.
P and Q are fusion bisimilar if $(P, Q) \in \mathcal{S}$ for some fusion bisimulation \mathcal{S}.
A hyperbisimulation is a substitution-closed fusion bisimulation, i.e., an \mathcal{S} such that $(P, Q) \in \mathcal{S}$ implies $(P \sigma, Q \sigma) \in \mathcal{S}$ for any substitution $\sigma . P$ and Q are hyperequivalent, written $P \sim Q$, if they are related by a hyperbisimulation.
- Ad hoc treatment for fusions: substitution must be performed at each step.

Does not fall in the usual "categorical" bisimilarity definition

- Bisimilarity is not a congruence; closure under substitutions is needed

A categorical presentation of Fusion

- We want to give a categorical presentation of Fusion calculus:
- Find a category C with two endofunctors $\Sigma, B: C \rightarrow C$ such that
- object of processes (up-to alpha) is the initial Σ-algebra Proc
- transition relations of processes are B -coalgebras
- B has final coalgebra $\nu \mathrm{B}$ (and is weak pullback preserving)
- We obtain:
- alternative (more explicit) labelled operational semantics
- characterization of hyperequivalence as (categorical) B-bisimulation
- the unique map $\mathbb{\rrbracket} \mathbb{I}:$ Proc $\rightarrow \nu \mathrm{B}$ is a fully abstract semantics (by [TP97])
- Also: a methodology for making explicit in the categorical semantics the "hidden states" of operational semantics

"Home is where the syntax lives"

- Fusion processes have "lambda"-like binders => standard approach in category of presheaves [FPT99]:
- $S e t^{\mathbb{F}}=$ category of presheaves over \mathbb{F}, (skeleton) category of finite sets and functions

$$
\begin{aligned}
\Sigma_{F} & : S e t^{\mathbb{F}} \rightarrow S e t^{\mathbb{F}} \\
\Sigma_{F}(A) & =1+N \times N \times A+N \times N \times A+A \times A+\delta A
\end{aligned}
$$

$$
\left(\Sigma_{F}(A)\right)_{n}=\overbrace{1}^{0}+\overbrace{n \times n \times A_{n}}^{x y . a}+\overbrace{n \times n \times A_{n}}^{\bar{x} y . a}+\overbrace{A_{n} \times A_{n}}^{a \mid b}+\overbrace{A_{n+1}}^{(x) a}
$$

- Proc is the initial Σ_{F}-algebra, that is $\operatorname{Proc}_{m}=\{P \mid f n(P) \subseteq m\}$
- Thus we use $S e t^{\mathbb{F}}$ as ambient category

What about structural congruence?

- The presheaf approach allows only for free algebras (with binders), and does not deal with equations (like e.g. structural congruences)
- (But neither the theory of universal semantics à la Plotkin-Turi does)
- "Solution": define a different but equivalent presentation of the semantics, without congruence
- Does not work always - we need a more general theory for universal semantics, covering also equations and coequations - future work...

The Fusion Calculus - Labelled transition system without congruence rule

$$
\begin{aligned}
& \text { Pref } \frac{-}{\alpha . P \xrightarrow{\alpha} P} \\
& \operatorname{Com} \frac{P \xrightarrow{\text { ux }} P^{\prime}, Q \xrightarrow{\bar{u} y} Q^{\prime}}{P\left|Q \xrightarrow{\{x=y\}} P^{\prime}\right| Q^{\prime}} \quad \operatorname{Par}_{l} \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \quad \operatorname{Par}_{r} \frac{P \xrightarrow{\alpha} P^{\prime}}{Q|P \xrightarrow{\alpha} Q| P^{\prime}} \\
& \text { Open } \xrightarrow[{(x) P \xrightarrow{P \xrightarrow{u x} P^{\prime}, u \notin\{x, \bar{x}\}} P^{\prime}}]{\text { (xix }} \quad \text { Pass } \xrightarrow{P \xrightarrow{\alpha} P^{\prime}, x \notin n(\alpha)}(x) P \xrightarrow{\alpha}(x) P^{\prime} \quad \text { Scope } \frac{P \xrightarrow{\{x=y\}} P^{\prime}}{(x) P \xrightarrow{\mathbf{1}} P^{\prime}\{y / x\}} \\
& \text { Close }_{l} \xrightarrow{P \xrightarrow{P^{u(x)}} P^{\prime}, Q \xrightarrow{\bar{u} y} Q^{\prime}} \quad \text { Close }_{r} \xrightarrow{P \xrightarrow{P} P^{\prime}\{y / x\} \mid Q^{\prime}} P^{\prime}, Q \xrightarrow{\text { 島 }(y)} P^{\prime} \mid Q^{\prime}\{x / y\} \\
& \text { Close } \frac{P \xrightarrow{\text { u(x) }} P^{\prime}, Q \xrightarrow{\bar{u}(x)} Q^{\prime}}{P \mid Q \xrightarrow{\mathbf{1}}(x)\left(P^{\prime} \mid Q^{\prime}\right)}
\end{aligned}
$$

The new Close rules allow to get rid of structural equivalence

Behaviour functor

- Usually, of the form $B X=\wp_{f}(A c t \times X)$ where Act is fixed
- B-coalgebras correspond to LTSs: given (A, $\alpha: A \rightarrow B(A))$

$$
P \xrightarrow{a} Q \Longleftrightarrow(a, Q) \in \alpha(P)
$$

- Each B induces coalgebraic B-bisimulation: two coalgebras A_{1}, A_{2} are B bisimilar if there exist R and f_{1}, f_{2} jointly monic such that

First attempt

- In our case we could define
$L X \triangleq \overbrace{N \times N \times X}^{x y}+\overbrace{N \times N \times X}^{\bar{x} y}+\overbrace{N \times \delta X}^{x(y)}+\overbrace{N \times \delta X}^{\bar{x}(y)}+\overbrace{X}^{1}+\overbrace{N \times N \times X}^{x=y}$
$B X \triangleq \tilde{K}(L X)$
where \tilde{K} is Freyd's "finite powerobject" endofunctor (preserves weak pullbacks, needed for universal semantics construction - usual pointwise finite powerset does not preserve weak pullbacks)
- Does not work: B-bisimilarity \neq hyperequivalence
- Problem is: B-bisimilarity says nothing about substitutions after fusions.
- We have to "correct" B.

The approach - in a nutshell

- When a local action has a global effect, a global state is hidden somewhere
- semantics (intentionally) does not mention state => simpler rules, labels
- at the price of a more complex bisimulation
- labels do not induce right behavior functor
- Solution:

1. define the object of states
2.build it into the naive behaviour functor, using the state monad
2. unravel the coalgebras into "stateful" LTS, to get a simple notion of bisimulation
4.(same happens for categorical rules)

1. Finding the State

- In Fusion: state = equivalence between names
- Presheaf of states is E

$$
E_{n} \triangleq\{\operatorname{coeq}(f, g) \mid k \in \mathbb{F}, f, g: k \rightrightarrows n\}
$$

- $E_{\mathrm{n}} \ni \mathrm{e}=\left\{\mathrm{x}_{1}=\mathrm{y}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}=\mathrm{y}_{\mathrm{k}}\right\}$
- But also: (class of) surjective substitution \quad : $n \rightarrow m$
- Has nice properties (e.g. finitary), and operations (e.g. union is pushout, restriction is composition)

2. Adding state to behaviour functor

- In general, state can be added by lifting along the (global) state monad
- In our case:

$$
\begin{aligned}
L X & \triangleq \overbrace{N \times N \times X}^{x y}+\overbrace{N \times N \times X}^{x y}+\overbrace{N \times \delta X}^{x(y)}+\overbrace{N \times \delta X}^{\bar{x}(y)}+\overbrace{X}^{1}+\overbrace{N \times N \times X}^{x=y} \\
D X & \triangleq \tilde{K}(L X) \\
B_{F} X & =(\tilde{K}(L(X \times E)))^{E}
\end{aligned}
$$

- B_{F} seems cumbersome (exponents in presheaf categories)...

3. Simplifying coalgebras

- Proposition: B_{F}-coalgebras ($\mathrm{A}, \alpha: A \rightarrow B_{F}(\mathrm{~A})$) correspond to $(\mathrm{A}, \beta: \mathrm{A} \times \mathrm{E} \rightarrow D(\mathrm{~A} \times \mathrm{E}))$ such that β is a D-coalgebra structure

$$
\frac{A \longrightarrow B_{F}(A)=D(A \times E)^{E}}{A \times E \longrightarrow D(A \times E)}
$$

- A "coalgebra" ($\mathrm{A}, \beta: \mathrm{A} \times \mathrm{E} \rightarrow D(\mathrm{~A} \times \mathrm{E})$) correspond to "indexed LTS" $(\mathrm{A}, \rightarrow)$ where
- nodes: elements of $\int A \times E=\left\{(n, P, e) \mid(P, e) \in A_{n} \times E_{n}\right\}$
- labels: elements of $\int A c t=\left\{(\mathrm{n}, \mathrm{a}) \mid \mathrm{a} \in \mathrm{Act}_{n}\right\}$
- subject to some conditions (e.g. closure under substitutions)
- We can denote transitions as

$$
(P, e) \xrightarrow{\alpha}_{n}(Q, d)
$$

a "stateful" LTS

From original LTS to indexed LTS

- Original LTS does not mention state $=>$ it is not an indexed LTS
- Define $\mathcal{L}_{\mathrm{F}}=($ Proc, $\rightarrow)$ as

$$
\text { for } \alpha=x y, \bar{x} y, 1: \quad(P, e) \xrightarrow{\alpha}_{n}(Q, e) \Longleftrightarrow P[e] \xrightarrow{\alpha[e]} Q[e]
$$

$$
\text { for } \alpha=x, \bar{x}: \quad(P, e) \xrightarrow{\alpha} n(Q, e+1) \Longleftrightarrow P[e] \xrightarrow{\alpha[e](z)} Q[e+1] ;
$$

$$
(P, e) \xrightarrow{x=y} n(Q, e \cup x=y) \Longleftrightarrow P[e] \xrightarrow{(x=y)[e]} Q[e]
$$

state is

updated

- Proposition: \mathcal{L}_{F} is an indexed LTS and

$$
P \xrightarrow{\alpha} Q \Longleftrightarrow(P, \emptyset) \xrightarrow{\alpha}_{n}(Q, e)
$$

3 bis. Indexed bisimulation

- A B_{F}-bisimulation can be presented as a family of symmetric relations

$$
\left\{R_{n} \subseteq\left(A_{n} \times E_{n}\right) \times\left(A_{n} \times E_{n}\right)\right\}_{n \in N}
$$

such that, if $(P, e) R_{n}(Q, d)$ then
$(P, e) \xrightarrow[\rightarrow]{a}_{n}\left(P^{\prime}, e^{\prime}\right) \Rightarrow \exists\left(Q^{\prime}, d^{\prime}\right) \in A_{n^{\prime}} \times E_{n^{\prime}}$ s.t. $(Q, d) \xrightarrow{\alpha}_{n}\left(Q^{\prime}, d^{\prime}\right)$ and $\left(P^{\prime}, e^{\prime}\right) R_{n^{\prime}}\left(Q^{\prime}, d^{\prime}\right)$ and vice versa, and closed under substitution:

$$
\text { for all } \sigma: n \rightarrow m:(P[\sigma], e[\sigma]) R_{m}(Q[\sigma], d[\sigma])
$$

- Theorem: $\mathrm{P}, \mathrm{Q} \in \operatorname{Proc}_{\mathrm{n}}$ are hyperequivalent iff $(\mathrm{P}, \varnothing)$ and $(\mathrm{Q}, \varnothing)$ are BF_{F}-bisimilar Proof hint: substitution-closed bisimulations correspond to indexed families of relations above.

4. Categorical rules for stateful behaviour functors

- Following [TP97,FT01], we have to define

$$
\mathcal{S}_{X}: \Sigma(X \times B X) \longrightarrow B T X \quad \text { in } S e t^{\mathbb{F}}
$$

(where T is the monad of free Σ-algebras).

- Unfolding B and by adjunction, this is equivalent to:

Categorical rules for the Fusion calculus

- expanding Σ, this is the product of the interpretation of each constructor

$$
\begin{array}{rr}
\mathcal{S}_{X}^{0}: & E \longrightarrow D(T X \times E) \\
\mathcal{S}_{X}^{\text {in }}: & N \times N \times X \times B X \times E \longrightarrow D(T X \times E) \\
\mathcal{S}_{X}^{\text {out }}: & N \times N \times X \times B X \times E \longrightarrow D(T X \times E) \\
\mathcal{S}_{X}^{\text {par }}: X \times B X \times X \times B X \times E \longrightarrow D(T X \times E) \\
\mathcal{S}_{X}^{\text {res }}: & N \times \delta X \times \delta B X \times E \longrightarrow D(T X \times E)
\end{array}
$$

each defined by collecting relevant rules, taking care of the state; e.g. for |
$\rho^{\text {Par }}, \rho^{\text {Com }}, \rho^{\text {Close }_{l}}, \rho^{\text {Close }_{r}}, \rho^{\text {Close }}: X \times B X \times X \times B X \times E \longrightarrow \tilde{K}($ Act $\times T X \times E)$
$\rho_{n}^{C o m}(P, \beta, Q, \gamma, e)=\left\{\left(x=y, P^{\prime} \mid Q^{\prime}, e_{1} \cup e_{2} \cup\{x=y\}\right) \mid\right.$ for some $z, w \in n, e(z)=e(w):$
$\left(\left(z x, P^{\prime}, e_{1}\right) \in \beta_{n}\left(i d_{n}, e\right) \wedge\left(\bar{w} y, Q^{\prime}, e_{2}\right) \in \gamma_{n}\left(i d_{n}, e\right)\right) \vee$ $\left.\left(\left(\bar{z} x, P^{\prime}, e_{1}\right) \in \beta_{n}\left(i d_{n}, e\right) \wedge\left(w y, Q^{\prime}, e_{2}\right) \in \gamma_{n}\left(i d_{n}, e\right)\right)\right\}$

Categorical rules - in rule format

- Categorical rules can be written as "stateful LTS"

$$
\frac{(P, e) \xrightarrow{u x}_{n}\left(P^{\prime}, e_{1}\right) \quad(Q, e) \xrightarrow{\bar{w} y}_{n}\left(Q^{\prime}, e_{2}\right)}{(P \mid Q, e) \xrightarrow{x=y}_{n}\left(P^{\prime} \mid Q^{\prime}, e_{1} \cup e_{2} \cup\{x=y\}\right)} e \vdash u=w
$$

- (actually $e_{1}=e_{2}=e$)
- Theorem: there exists a (necessarily unique)

$$
\llbracket \rrbracket: P r o c \rightarrow \nu B_{F}
$$

which is both compositional and fully abstract, that is, for all $P, Q \in \operatorname{Proc}_{n}$
$\llbracket \mathrm{P} \rrbracket_{n}=\llbracket \mathrm{Q} \rrbracket$ iff P and Q are B_{F}-bisimilar (iff are hyperequivalent)

Proof sketch: follows from general results [TP97], by proving that Proc can be given a B_{F}-coalgebra structure, νB_{F} a \sum-algebra structure, and that B_{F} is finitary and preserves weak pullbacks.

Conclusions

- Often calculi for distributed systems hide some notion of global state
- omitted in the LTSs ("stateless": simpler relation, actions, rules)
- comes out in bisimulation, and yields unsatisfactory behaviour functor
- State can be added systematically using the state monad
- Resulting "stateful" coalgebras (LTSs) can be quite simplified
- For Fusion: state = equivalence of names; yields correct behaviour functor
- To Do:
- other examples (Explicit Fusion, Mobile Ambients, in particular)
- fit into some theory of modular mathematical operational semantics

Thanks!

[^0]: Notice the Congruence rule - terms are taken up to congruence

