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Handshakes, negotiations

• Distributed programming often involve negotiations, handshakes…

• “Connect port 127.0.0.1:26451 to port 163.10.72.61:25”   (TCP)

• “let us choose a cypher supported by both” (SSL, IPSec)

• “we will use the following encoding”

• Basic concept: communication via unification

• Quite different from usual one-way communication (like CCS and π-calculus)

• In this talk: a categorical model for the Fusion calculus

• Methodology is more general

Communication via unification

• Symmetric: unification affects both agents (not only one side)

• P and Q keep using x and y for the same “wire” (i.e., substitution is not 
(always) performed)

• Action is locally performed by two agents
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• P and Q keep using x and y for the same “wire” (i.e., substitution is not 
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, but has global effect
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• Syntax (up-to alpha-equivalence):

• Semantics: labelled transitions of the form

• transitions do not keep track of equivalences between names: fusions 
caused by communications are exposed to the environment as labels; e.g.

The Fusion Calculus (Parrow and Victor, 1998)

x is bound

fusion: “from 
now on, consider x 

and y equal”
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underlying the “state monad” GX = (X × E)E , for E a suitable object of states.
Thus, the resulting “stateful” behavior functor is B(X) = (D(X × E))E . This
approach is general and can be applied with any notions of global state. In the case
of the Fusion calculus, the presheaf of states at n is the set of all possible equivalences
of n names, that is, the set of coequalizers over n (Section 3.2). Moreover, in
Section 4.3 we will present a concrete presentations of coalgebras of this endofunctor
as stateful indexed labelled transition system, i.e., transition systems whose nodes are
triples (n, P, e) where n is a set of names, P ∈ Pn is a process and e ∈ En is a state.
Also coalgebraic bisimulations over the behaviour functor B can be given a concrete
definition as a indexed family of relations. Using this characterization, in Section 4.4
we will show that coalgebraic bisimilarity coincides with hyperequivalence.

Finally, in Section 5 we complete our development by providing the “mathemat-
ical operational semantics” for the Fusion calculus. We translate the new labelled
transition system introduced in Section 2 into an “abstract categorical rule”, that is,
a natural transformation between two endofunctors on SetF, using the syntactic and
behaviour functors defined in Section 4. This presentation yields a fully-abstract
(bialgebraic) semantics, that is, two processes have the same semantics iff they are
BF -bisimilar and hence hyperequivalent.

Final remarks and directions for future work are in Section 6.

2 The Fusion Calculus

In this section we give the syntax, semantics and bisimulations of the Fusion calculus
[20]. For our aims, a monadic version of the calculus without replication will suffice;
the results we present can be generalized routinely to the polyadic version.

The processes are defined by the following grammar: 1

P,Q ::= 0 | zx.P | z̄x.P | P |Q | (x)P

where x is bound in (x)P . Processes are taken up to α-equivalence.
The semantics of Fusion is defined by a labelled transition relation of the form

P
α−→ Q, whose labels are

α ::= xy | x̄y | x(z) | x̄(z) | 1 | x=y

The input xy, output x̄y, the empty fusion 1 and the fusion x=y are called free
actions; the others are called bound actions, because z is bound. 2

In Figure 1 we report (a monadic variant of) the labelled transition system given
in [20]. In the conclusion of the rule Open, x is bound in the label and in the target
P � (like in the “open” rule of the π-calculus). We use u as a wildcard for z and z̄.

This system uses a structural congruence ≡ to identify syntactically different
presentations of the same agent. At the moment, the theory of mathematical op-
erational semantics cannot be applied to semantics using structural congruences;
therefore, in Figure 2 we present a new, congruence-free semantics of Fusion. The
difference with the previous one is that, in place of the congruence rule, there is

1 Sum and fusion prefix can be easily encoded in this fragment.
2 In the polyadic version, objects of communications are lists of names and fusions are lists of equivalences.
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α.P
α−→ P

Com
P

ux−→ P
�, Q

ūy−→ Q
�

P |Q {x=y}−−−−→ P
�|Q�

Par
P

α−→ P
�

P |Q α−→ P
�|Q

Open
P

ux−→ P
�, u /∈ {x, x̄}

(x)P
u(x)−−→ P

�
Pass

P
α−→ P

�, x /∈ n(α)
(x)P α−→ (x)P � Scope

P
{x=y}−−−−→ P

�

(x)P 1−→ P
�{y/x}

Congr
P ≡ P

�
P

� α−→ Q
�
Q

� ≡ Q

P
α−→ Q

(P |Q)|R ≡ P |(Q|R) P |Q ≡ Q|P P |0 ≡ P

(x)0 ≡ 0 (x)(y)P ≡ (y)(x)P P |(x)P ≡ (x)(P |Q) if x �∈ fn(P )

Fig. 1. Labelled transition system with structural congruence for the Fusion calculus.
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P |Q 1−→ (x)(P �|Q�)

Fig. 2. Labelled transition system without structural congruence for the Fusion calculus.

a symmetric rule for |, and three new rules Closel, Closer, Close, allowing for
π-calculus-like input, bound output and “scope extrusions”.

This semantics corresponds to that in Figure 1, in the sense that they derive the
same transitions, up-to structural congruence, as state by the following result.

Theorem 2.1 (i) If P
α−→ Q in the system of Figure 1, then there exist P �, Q�

such that P � ≡ P , Q� ≡ Q, and P � α−→ Q� in the system of Figure 2.
(ii) If P

α−→ Q in the system of Figure 2, then P
α−→ Q in the system of Figure 1.

Proof. (i) By induction on the derivation of P
α−→ Q with the system in Figure 1.

The only interesting case is when this derivation ends with an application of the
(Congr) rule. Let P ≡ P1, Q ≡ Q1 and P1

α−→ Q1 with the system in Figure 1. By
inductive hypothesis, there exist P �

1 ≡ P1 and Q�
1 ≡ Q1 such that P �

1
α−→ Q�

1 with
the system in Figure 2. Then, by transitivity of ≡, it is P ≡ P �

1 and Q ≡ Q�
1.

(ii) (Parr) is clearly derivable from (Par) and (Congr). It suffices to prove
that (Close), (Closel), (Closer), are admissible in the system of Figure 1. We will
examine the case of (Close), the others being similar (and simpler).
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The Fusion Calculus – Labelled transition system

Notice the Congruence rule - terms are taken up to congruence
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ūy−→ Q
�

P |Q {x=y}−−−−→ P
�|Q�

Parl
P

α−→ P
�

P |Q α−→ P
�|Q

Parr
P

α−→ P
�

Q|P α−→ Q|P �

Open
P

ux−→ P
�, u /∈ {x, x̄}

(x)P
u(x)−−→ P

�
Pass

P
α−→ P

�, x /∈ n(α)
(x)P α−→ (x)P � Scope

P
{x=y}−−−−→ P

�

(x)P 1−→ P
�{y/x}

Closel
P

u(x)−−→ P
�, Q
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The Fusion Calculus – Bisimulation

• Ad hoc treatment for fusions: substitution must be performed at each step. 
Does not fall in the usual “categorical” bisimilarity definition

• Bisimilarity is not a congruence; closure under substitutions is needed
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Let P |Q 1−→ (x)(P �|Q�) be a derivation ending with the (Close) rule; this means

that there are two derivations of P
u(x)−−→ P � and Q

ū(x)−−→ Q�, where by α-equivalence

we can suppose that x �∈ fn(u). Now, bound transitions can be introduced only

using the (Open) rule (possibly followed by some applications of (Parl), (Parr),

(Pass)); hence, without loss of generality, we can suppose that P = (x)P1 and

Q = (x)Q1, for some P1, Q1, such that there are two derivations P1
ux−→ P � and

Q1
ūx−→ Q�. Now we prove that P |Q 1−→ (x)(P �|Q�) is derivable without using (Close),

but using the congruence rule.

Let y be a fresh name; then Q1{y/x} ūy−→ Q�{y/x}, and, by applying (Com),

we have P1|Q1{y/x} x=y−−→ P �|Q�{y/x}. Using (Scope), we get (y)(P1|Q1{y/x}) 1−→
(P �|Q�{y/x}){x/y}. Since y is fresh, the source of this transition is equivalent to

P1|(y)Q1{y/x} = P1|(x)Q1, and the target is exactly P �{x/y}|Q�{y/x}{x/y} =

P �|Q�. By applying the (Pass) rule we obtain (x)(P1|(x)Q1)
1−→ (x)(P �|Q�). Since

x �∈ fn((x)Q1), it is (x)(P1|(x)Q1) ≡ (x)P1|(x)Q1 = P |Q, and hence by an applica-

tion of (Congr) we are done. ✷

Finally, we recall the notions of bisimilarity and hyperequivalence from [20].

Definition 2.2 We say that a name substitution σ (i.e., a function σ : N → N )
agrees with a fusion ϕ iff ∀x, y : xϕy ⇐⇒ σ(x) = σ(y).

A fusion bisimulation is a symmetric relation S between processes such that
whenever (P,Q) ∈ S, if P

α−→ P � with bn(α) ∩ fn(Q) = ∅, then Q
α−→ Q� and

• if α is a communication action: (P �, Q�) ∈ S;
• if α is a fusion: (P �σ, Q�σ) ∈ S, for some σ agreeing with α.

P and Q are fusion bisimilar if (P,Q) ∈ S for some fusion bisimulation S.
A hyperbisimulation is a substitution-closed fusion bisimulation, i.e., an S such

that (P,Q) ∈ S implies (Pσ, Qσ) ∈ S for any substitution σ. P and Q are hyper-

equivalent, written P ∼ Q, if they are related by a hyperbisimulation.

Notice that only hyperequivalence is a congruence, while bisimilarity is not [20].

3 Categorical framework

3.1 Finite sets

We denote by F the (skeleton) category of finite sets and functions. We will use n, m

to range over objects of F, and σ, ρ over morphisms of F. Objects of F represent sets

of allocated names (or variables), and maps describe how name sets may evolve (e.g.,

new names can be added and existing names can coalesce, etc.); thus σ : n → m is a

substitution of names in n with names in m. F has products and coproducts, defined

as usual in Set . In particular, let us denote by δ : F → F the functor δn = n + 1;

the two injection maps are old : n → n + 1 and new : 1 → n + 1, which extend to

natural transformations old : IdF → δ, new : K1 → δ (where KS is the constant

presheaf (KS)n = S). δ is a monad on F: its unit is old, and the multiplication is

contrn : n + 1 + 1 → n + 1, mapping the two added elements in the domain to the

same element added in the codomain.
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In this talk:
A categorical presentation of Fusion

• We want to give a categorical presentation of Fusion calculus:

• Find a category C with two endofunctors  Σ,B : C → C such that

• object of processes (up-to alpha) is the initial Σ-algebra  Proc

• transition relations of processes are B-coalgebras

• B has final coalgebra νB   (and is weak pullback preserving)

• We obtain:

• alternative (more explicit) labelled operational semantics

• characterization of hyperequivalence as (categorical) B-bisimulation

• the unique map ⟦ ⟧ : Proc →νB is a fully abstract semantics (by [TP97])

• Also: a methodology for making explicit in the categorical semantics the 
“hidden states” of operational semantics

“Home is where the syntax lives”

• Fusion processes have “lambda”-like binders => standard approach in 
category of presheaves [FPT99]:

•           = category of presheaves over      ,  (skeleton) category of finite sets 
and functions

• Proc is the initial ΣF-algebra, that is 

• Thus we use            as ambient category

FSet
F

ΣF : Set
F
→ Set

F

ΣF (A) = 1 + N × N × A + N × N × A + A × A + δA

(ΣF (A))n =

0
︷︸︸︷

1 +

xy.a
︷ ︸︸ ︷

n × n × An +

x̄y.a
︷ ︸︸ ︷

n × n × An +

a|b
︷ ︸︸ ︷

An × An +

(x)a
︷ ︸︸ ︷

An+1

Set
F

Procm = {P | fn(P ) ⊆ m}

What about structural congruence?

• The presheaf approach allows only for free algebras (with binders), 
and does not deal with equations (like e.g. structural congruences)

• (But neither the theory of universal semantics à la Plotkin-Turi does)

• “Solution”: define a different but equivalent presentation of the 
semantics, without congruence

• Does not work always – we need a more general theory for universal 
semantics, covering also equations and coequations - future work…
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The Fusion Calculus – Labelled transition system 
without congruence rule

The new Close rules allow to get rid of structural equivalence
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a symmetric rule for |, and three new rules Closel, Closer, Close, allowing for
π-calculus-like input, bound output and “scope extrusions”.

This semantics corresponds to that in Figure 1, in the sense that they derive the
same transitions, up-to structural congruence, as state by the following result.

Theorem 2.1 (i) If P
α−→ Q in the system of Figure 1, then there exist P �, Q�

such that P � ≡ P , Q� ≡ Q, and P � α−→ Q� in the system of Figure 2.
(ii) If P

α−→ Q in the system of Figure 2, then P
α−→ Q in the system of Figure 1.

Proof. (i) By induction on the derivation of P
α−→ Q with the system in Figure 1.

The only interesting case is when this derivation ends with an application of the
(Congr) rule. Let P ≡ P1, Q ≡ Q1 and P1

α−→ Q1 with the system in Figure 1. By
inductive hypothesis, there exist P �

1 ≡ P1 and Q�
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the system in Figure 2. Then, by transitivity of ≡, it is P ≡ P �
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1.

(ii) (Parr) is clearly derivable from (Par) and (Congr). It suffices to prove
that (Close), (Closel), (Closer), are admissible in the system of Figure 1. We will
examine the case of (Close), the others being similar (and simpler).
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Behaviour functor

• Usually, of the form                                        where Act is fixed

• B-coalgebras correspond to LTSs: given (A, α:A→B(A))

• Each B induces coalgebraic B-bisimulation: two coalgebras A1, A2 are B-
bisimilar if there exist R and f1,f2 jointly monic such that

P
a−→ Q ⇐⇒ (a, Q) ∈ α(P )

BX = ℘f (Act×X)

Miculan

It is worthwhile noticing what is a map of the form φ : A → K̃(B). Since K̃(B)
contains also the “undefined value” (given by the subobject of A with no elements),
φ is a “finite object-valued partial map”. In other words, φ is equivalent to a finite
family of partial maps (φi : A �B )i∈I , i.e. a finite family of spans (A � φi → B)i∈I

whose left arm is mono 3 .

3.4 Algebras and coalgebras in SetF

In order to use SetF as an ambient category for giving algebraic and coalgebraic
presentations of syntax and semantics of calculi with fusions, we need to use endo-
functors on SetF having initial algebras and final coalgebras.

It is well-known that any polynomial functor over Set (i.e., defined only by
constant functors and finite products/coproducts) has an initial algebra. This result
has been generalized to SetF [7,14] in order to deal with syntax with bound variables
and up-to α-equivalence; in this case, polynomials can also use N and the constructor
δ. For our purposes, we need to allow also the use of E, and of the type constructor
( )E . We say that a functor T : SetF −→ SetF is polynomial 4 if it can be defined by
using only N, E, constant functors, finite products/coproducts, the K̃-finite power
object K̃, dynamic allocation δ and the ( )E .

Proposition 3.5 Let T : SetF −→ SetF be a polynomial endofunctor. Then T has
an initial algebra and a final coalgebra.

Proof. E is finitary, and K̃ is accessible [15,18]. It remains to prove that ( )E is
accessible. This is easy to see, because (AE)n is the set of natural transformations
φ : y(n)× E → A; notice that for all m, the domain F(n, m)× Em is finite. ✷

It is interesting to see what is a coalgebra of endofunctors of the form K̃F . Since
K̃(A) is the free join sub-semilattice of P (A) generated by the partial map classifier,
a natural transformation α : A → K̃(F (A)) is equivalent to a finite family of spans
(A � αi → F (A))i∈I .

Finally, we recall the notion of coalgebraic bisimulation, as in [2].

Definition 3.6 For an endofunctor B on SetF, a B-bisimulation between two B-
coalgebras (A1, α1) and (A2, α2) is a triple (R, f1 : R → A1, f2 : R → A2) such that

�f1, f2� : R → A1 × A2 is a strong monomorphism and
there exists a B-coalgebra structure γ : R → BR such
that f1 and f2 are B-coalgebra homomorphism, that is
the diagram aside in SetF commutes.

A1

α1

��

R
f1��

γ∃
��

f2 �� A2

α2

��
BA1 BR�� �� BA2

4 Modelling syntax and semantics of Fusion calculus

In this section we give a categorical representation of the syntax and semantics of
the Fusion calculus, in the category SetF defined in the previous section.

3 This characterization has been communicated to the author by Sam Staton.
4 We keep using this name, in spite of the fact that not all constructors are properly polynomial.
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First attempt

• In our case we could define

where       is Freyd’s “finite powerobject” endofunctor (preserves weak pullbacks, 
needed for universal semantics construction – usual pointwise finite powerset does not 
preserve weak pullbacks)

• Does not work: B-bisimilarity ≠ hyperequivalence

• Problem is: B-bisimilarity says nothing about substitutions after fusions.

• We have to “correct” B.

LX �
xy� �� �

N×N×X +

x̄y� �� �
N×N×X +

x(y)
� �� �
N× δX +

x̄(y)
� �� �
N× δX +

1����
X +

x=y� �� �
N×N×X

BX � K̃(LX)

K̃

13
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The approach – in a nutshell

• When a local action has a global effect, a global state is hidden somewhere

• semantics (intentionally) does not mention state => simpler rules, labels

• at the price of a more complex bisimulation

• labels do not induce right behavior functor

• Solution:

1.define the object of states

2.build it into the naive behaviour functor, using the state monad

3.unravel the coalgebras into “stateful” LTS, to get a simple notion of 
bisimulation

4.(same happens for categorical rules)

1. Finding the State

• In Fusion: state = equivalence between names

• Presheaf of states is E

• En ∋ e = {x1=y1,…, xk=yk}  

• But also: (class of) surjective substitution   e: n↠m

• Has nice properties (e.g. finitary), and operations (e.g. union is pushout, 
restriction is composition)

En � {coeq(f, g) | k ∈ F, f, g : k ⇒ n}

2. Adding state to behaviour functor

• In general, state can be added by lifting along the (global) state monad

• In our case:

• BF seems cumbersome (exponents in presheaf categories)…

statelessstateful

Miculan

one could define this functor as

LX �
output� �� �

N×N×X +

input� �� �
N×N×X +

bound output� �� �
N× δX +

bound input� �� �
N× δX +

1����
X +

fusions� �� �
N×N×X (6)

DX � K̃(LX) (7)

Each component of functor L corresponds to a possible evolution of a presheaf X,

viewed as a stratified set of processes. The various possible transitions are a label

and a continuation; in particular,

• free transitions (input, output or fusion) have a pair of names as label, and a

process in the same stage as continuation;

• empty fusions have no label, and a process in the same stage as continuation;

• bound transitions (bound input or output) have a single name as label, but the

continuation process can use a fresh, local name (as denoted by the δ operator).

However, this semantics does not suffice for representing faithfully the Fusion

calculus. The issue is that a fusion performed by a process can be not local, since it

applies to any process running in parallel. As said in [20], a fusion “can be thought

of as an update of a (not explicitly represented) shared state”.

Hence, our model has to keep track of this global, shared state, which is an

equivalence on the names currently defined, i.e., an element of En. A “stateful”

behaviour of a process takes a given state e ∈ En, and produces a set of possible

transitions, each of which yields a new state e� ∈ En� alongside the continuation.

Thus we have to convert the “stateless” behaviour functor D (7) into a stateful

one. We accomplish this by combining D with the “global state monad” [19]:

G : SetF → SetF, GX = (X × E)
E

D and G can be merged by decomposing the monad G in the corresponding ad-

junction ×E � ( )
E
, then, we define BF as the lifting of D along this adjunction:

BF X � (D(X × E))
E SetF

×E ��
BF �� SetF

( )E

⊥�� D�� (8)

By definition of exponents in SetF
, for n object of F we can write this explicitly as

(BF X)n = SetF
(y(n) × E,D(X × E)). Thus, an element of (BF X)n is a natural

transformation φ : y(n)× E → K̃L(X × E), that is, a family of partial maps

(φi
: y(n)× E � L(X × E))i∈I

According to Eq. 3, the behaviour of a process with n names, under the substitution

σ : n → m and the equivalence e on m, is the union of all φi
m(σ, e) which are defined:

φm(σ, e) = {φi
m(σ, e) | φi

m(σ, e) defined, i ∈ I} (9)

Each φi
m(σ, e), if defined, is a single stateful transition, i.e. a tuple containing the

label, the continuation process (the element from X) and the new equivalence (over

m names, if the transition is free, m+1 if it is bound). Naturality of φi
ensures that

10

LX �
xy� �� �

N×N×X +

x̄y� �� �
N×N×X +

x(y)
� �� �
N× δX +

x̄(y)
� �� �
N× δX +

1����
X +

x=y� �� �
N×N×X

DX � K̃(LX)
BF X = (K̃(L(X × E)))E
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3. Simplifying coalgebras

• Proposition: BF-coalgebras (A, α:A→BF(A)) correspond to (A, β:A×E→D(A×E)) 
such that β is a D-coalgebra structure

• A “coalgebra” (A, β:A×E→D(A×E))  correspond to “indexed LTS” (A,⟶) where

• nodes: elements of ∫A×E = {(n,P,e) | (P,e) ∈ An×En}

• labels: elements of ∫Act = {(n,a) | a ∈ Actn}

• subject to some conditions (e.g. closure under substitutions)

• We can denote transitions as

a “stateful” LTS

A −→ BF (A) = D(A× E)E

A× E −→ D(A× E)

(P, e) α−→n (Q, d)

From original LTS to indexed LTS

• Original LTS does not mention state =>  it is not an indexed LTS

• Define  LF = (Proc, ⟶)  as

• Proposition: LF is an indexed LTS and 

for α = xy, x̄y, 1 : (P, e) α−→n (Q, e) ⇐⇒ P [e]
α[e]−−→ Q[e]

for α = x, x̄ : (P, e) α−→n (Q, e + 1) ⇐⇒ P [e]
α[e](z)−−−−→ Q[e + 1];

(P, e) x=y−−−→n (Q, e ∪ x=y) ⇐⇒ P [e]
(x=y)[e]−−−−−→ Q[e]

state is 
updated

P
α−→ Q ⇐⇒ (P, ∅) α−→n (Q, e)

3 bis. Indexed bisimulation

• A BF-bisimulation can be presented as a family of symmetric relations

such that, if                        then

and vice versa, and closed under substitution: 

• Theorem:  P, Q ∈ Procn are hyperequivalent iff  (P,∅) and (Q,∅) are BF-bisimilar

Proof hint: substitution-closed bisimulations correspond to indexed families 
of relations above.

{Rn ⊆ (An × En)× (An × En)}n∈N

(P, e)Rn(Q, d)

(P, e) α−→n (P �, e�)⇒ ∃(Q�, d�) ∈ An� × En�s.t. (Q, d) α−→n (Q�, d�) and (P �, e�)Rn�(Q�, d�)

for all σ : n→ m : (P [σ], e[σ])Rm(Q[σ], d[σ])
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4. Categorical rules for stateful behaviour functors

• Following [TP97,FT01], we have to define

(where T is the monad of free Σ-algebras).

• Unfolding B and by adjunction, this is equivalent to:

SX : Σ(X ×BX) −→ BTX in SetF

result: labelled 
transitions with 

new state

current 
state

constructor’s 
arguments

their 
stateful 

behaviour

SX : Σ(X ×BX)× E −→ D(TX × E)

Categorical rules for the Fusion calculus

• expanding Σ, this is the product of the interpretation of each constructor

each defined by collecting relevant rules, taking care of the state;  e.g. for |

S0
X : E −→ D(TX × E)

S in
X : N×N×X ×BX × E −→ D(TX × E)

Sout
X : N×N×X ×BX × E −→ D(TX × E)
Spar

X :X ×BX ×X ×BX × E −→ D(TX × E)
Sres

X : N× δX × δBX × E −→ D(TX × E)

ρPar, ρCom, ρClosel , ρCloser , ρClose : X ×BX ×X ×BX × E −→ K̃(Act× TX × E)

ρCom
n (P,β, Q, γ, e) = {(x=y, P �|Q�, e1 ∪ e2 ∪ {x=y}) | for some z, w ∈ n, e(z) = e(w) :

((zx, P �, e1) ∈ βn(idn, e) ∧ (w̄y,Q�, e2) ∈ γn(idn, e)) ∨
((z̄x, P �, e1) ∈ βn(idn, e) ∧ (wy,Q�, e2) ∈ γn(idn, e))}

Categorical rules – in rule format

• Categorical rules can be written as “stateful LTS”

• (actually e1 = e2 = e)

(P, e) ux−−→n (P �, e1) (Q, e) w̄y−−→n (Q�, e2)
(P |Q, e) x=y−−−→n (P �|Q�, e1 ∪ e2 ∪ {x = y})

e � u = w
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Categorical rules for the Fusion calculus

• Theorem: there exists a (necessarily unique)

⟦ ⟧ : Proc →νBF

which is both compositional and fully abstract, that is, for all P,Q ∈ Procn

⟦P⟧n = ⟦Q⟧  iff  P and Q are BF-bisimilar (iff are hyperequivalent)

Proof sketch: follows from general results [TP97], by proving that Proc can be 
given a BF-coalgebra structure, νBF a Σ-algebra structure, and that BF is 

finitary and preserves weak pullbacks.

Conclusions

• Often calculi for distributed systems hide some notion of global state

• omitted in the LTSs (“stateless”: simpler relation, actions, rules)

• comes out in bisimulation, and yields unsatisfactory behaviour functor

• State can be added systematically using the state monad

• Resulting “stateful” coalgebras (LTSs) can be quite simplified

• For Fusion: state = equivalence of names; yields correct behaviour functor

• To Do:

• other examples (Explicit Fusion, Mobile Ambients, in particular)

• fit into some theory of modular mathematical operational semantics

Thanks!
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