
Universes

Universes for Data

Peter Morris

University of Nottingham

November 12, 2009

Universes

Introduction

Outline

1 Introduction
What is DTP?
Data Types in DTP
Schemas for Inductive Families
Universes

2 Universes of Data
Inductive Types
Inductive Families
A Closed Type Theory

3 Generic Programming
Another motivation
Universes again

Universes

Introduction

Roadmap

1 Introduction
What is DTP?
Data Types in DTP
Schemas for Inductive Families
Universes

2 Universes of Data
Inductive Types
Inductive Families
A Closed Type Theory

3 Generic Programming
Another motivation
Universes again

Universes

Introduction

What is DTP?

Curry-Howard and Dependently Typed Programming

Dependently Typed Programming is based on the idea that
Types are Propositions, and Programs are Proofs. This is the
Curry-Howard Isomorphism.

First we identify the type of propositions with Set.

The implication A =⇒ B is a function A→ B

The conjunction A ∧B is a Cartesian-product A×B
The disjunction A ∨B is a disjoint union A+B

So we can interpret Propositional Logic as a simply typed
lambda calculus.

But what about Predicate logic?

Universes

Introduction

What is DTP?

Curry-Howard and Predicate Logic

A predicate on A is a function P : A→ Set

How do we interpret the proposition ∀a : A.P a?
As a dependent function space (a : A)→ P a.

The type of the output of such a function, varies depending on
the input.

What the proposition ∃a : A.Pa?
We'll come back to that...

Universes

Introduction

Data Types in DTP

Indexed Families

The datatypes of dependently typed languages can also depend on
data:

Natural Numbers

data Nat : Set where
zero : Nat
succ : (n : Nat)→ Nat

Lists

data List (A : Set) : Set where
ε : List A
:: : (a : A) (as : List A)→ List A

Universes

Introduction

Data Types in DTP

Finer Program Control

We can use these indicies to prevent programs from going
wrong

Safe hd

hd : ∀ {n} {A} → Vec A (succ n)→ A
hd (a :: as) = a

Compare with the version for lists:

Maybe hd

maybehd : ∀ {A} → List A→ Maybe A
maybehd ε = no
maybehd (a :: as) = yes a

Universes

Introduction

Data Types in DTP

Finite Sets

We can de�ne a set Fin n which has exactly n elements:

Finite Sets

data Fin : Nat→ Set where
zero : ∀ {n} → Fin (succ n)
succ : ∀ {n} → Fin n→ Fin (succ n)

Which can help de�ne a type of well scoped lambda terms:

Scoped Lambda-Terms

data Lam : Nat→ Set where
var : ∀ {n} → Fin n → Lam n
app : ∀ {n} → Lam n→ Lam n→ Lam n
abs : ∀ {n} → Lam (succ n) → Lam n

Universes

Introduction

Data Types in DTP

Existential quanti�cation and equality

Using these indexed families, we can return to the question of
interpreting existentials - as Sigma-types:

Sigma Types

data Σ (A : Set) (P : A→ Set) : Set where
, : (x : A) (y : P x)→ Σ A P

so ∃a : A.P a is interpreted as Σ A \a→ P a

We can also de�ne predicates and relations inductively, for
instance equality:

Sigma Types

data _≡_ {A : Set} (a : A) : A→ Set where
re� : a ≡ a

Universes

Introduction

Schemas for Inductive Families

Schemas

What is the status of these Datatypes with respect to the
Type Theory of the programming language?

We have to be careful of what de�nitions we allow...

With languages like Agda, and Epigram an external piece of
code, a schema checker, looks to see if each de�nition is OK
with a syntactic check.

If it is the TT is extended with the introduction, computation
and equality rules for the data type.

This approach, however, brings about problems for reasoning
about the language, we need an external framework to prove
the schema checker correct.

It also precludes any attempt to interpret the language in
itself, Agda in Adga.

Universes

Introduction

Universes

Universes

Informally universe is a collection of types (sets).

Russell's solution to the paradoxes of Set-theory was to
introduce a predicative hierarchy of universes:

Russell's Universe Hierarchy

Set0 : Set1 : Set2 : . . . : Seti : Seti+1 :

Or alternatively:

Tarski's Universe Hierarchy

Ui : Set
Eli : Ui → Set
ui : Ui+1

s.t. Eli+1 ui ≡ Ui

Universes

Introduction

Universes

Universes for Data

We can use Tarski style universes to capture other interesting
collections of types, in general we'll need:

Tarski's Universes

U : Set
El : U→ Set

If we can capture a universe of inductive families in our
language, then we can do without external schemas.

With such a universe, creating a datatype would no longer
extend the logic, making it easier to reason about the system
itself.

Universes

Universes of Data

Roadmap

1 Introduction
What is DTP?
Data Types in DTP
Schemas for Inductive Families
Universes

2 Universes of Data
Inductive Types
Inductive Families
A Closed Type Theory

3 Generic Programming
Another motivation
Universes again

Universes

Universes of Data

Inductive Types

The Syntax of Inductive Types

Lets start by simply encoding the syntax of data de�nitions:

A syntax

data Desc : Set where
done : Desc
arg : (A : Set)→ (φ : A→ Desc)→ Desc
ind : (H : Set)→ (φ : Desc)→ Desc

Every data description gives rise to a functor:

Interpreting the syntax

J_K : Desc→ Set→ Set
J done K D = 1
J arg A φ K D = Σ A \a→ J φ a K D
J ind H φ K D = Σ (H→ D) \h→ J φ K D

Universes

Universes of Data

Inductive Types

The Syntax of Inductive Types (2)

The initial algebras of these functors are our data types:

Initial Algebras

data µ (φ : Desc) : Set where
intro : J φ K (µ φ)→ µ φ

By adding this as a rule to our theory we encode introduction
rules for all inductive types in one go.

Universes

Universes of Data

Inductive Types

The Syntax of Inductive Types (3)

Example

Lists
ListC : Set→ Desc
ListC A = arg [cnil ccons] \x→ case x of
cnil→ done
ccons→ arg A _→ ind 1 done

nil : {A : Set} → µ (ListC A)
nil : intro (cnil,)

cons : {A : Set} → A→ µ (ListC A)→ µ (ListC A)
cons a as = intro (ccons, (a, as,))

Universes

Universes of Data

Inductive Types

Elimination

Induction

� : (φ : Desc) (D : Set) (P : D→ Set) (v : J φ K D)→ Set
� done D P v = 1
� (arg A φ) D P (a, b) = � (φ a) D P b
� (ind H φ) D P (a, b) = Σ ((h : H)→ P (a h)) _→ � φ D P b

map� : (φ : Desc) (D : Set) (P : D→ Set) (p : (d : D)→ P d)
(v : J φ K D)→ � φ D P v

map� done D P p v =
map� (arg A φ) D P p (a, b) = map� (φ a) D P p b
map� (ind H φ) D P p (a, b) = (\h→ p (a h)),map� φ D P p b

elim : (φ : Desc) (P : µ φ→ Set)
(p : (x : J φ K (µ φ))→ � φ (µ φ) P x→ P (intro x))

(v : µ φ)→ P v
elim φ P p (intro v) = p v (map� φ (µ φ) P (elim φ P p) v)

Universes

Universes of Data

Inductive Families

The Syntax of Inductive Families

We can extend our syntax to include the necessary indexing
information:

A syntax

data Desc (I : Set) : Set where
done : I→ Desc I
arg : (A : Set)→ (φ : A→ Desc I)→ Desc I
ind : (H : Set)→ (is : H→ I)→ (φ : Desc I)→ Desc I

Every description gives rise to an I-indexed functor:

Interpreting the syntax

J_K : { I : Set} → Desc I→ (I→ Set)→ (I→ Set)
J done j K D i = i ≡ j
J arg A φ K D i = Σ A \a→ J φ a K D i
J ind H is φ K D i = Σ ((h : H)→ D (is h)) \h→ J φ K D i

Universes

Universes of Data

Inductive Families

The Syntax of Inductive Families (2)

The initial algebras of these functors are our data types:

Initial Algebras

data µ { I : Set} (φ : Desc I) : I→ Set where
intro : { i : I} → J φ K (µ φ) i→ µ φ i

By adding this as a rule to our TT we encode introduction
rules for all inductive families in one go.

Universes

Universes of Data

Inductive Families

The Syntax of Inductive Families (3)

Example

Vectors
VecC : Set→ Desc Nat
VecC A = arg [cnil ccons] \x→ case x of
cnil → done zero
ccons→ arg Nat \n→

arg A _→
ind 1 (_→ n)
done (succ n)

nil : {A : Set} → µ (VecC A) zero
nil : intro (cnil, re�)

cons : ∀ {n A} → A→ µ (VecC A) n→ µ (VecC A) (succ n)
cons {n} a as = intro (ccons, (n, a, as, re�))

Universes

Universes of Data

Inductive Families

Elimination

Induction
� : {I : Set} (φ : Desc I) (D : I→ Set) (P : { i : I} → D i→ Set)

{ i : I} → (v : J φ K D i) → Set
� (done i) D P re� = 1
� (arg A φ) D P (a, b) = � (φ a) D P b
� (ind H is φ) D P (a, b) = Σ ((h : H) → P (a h)) _→ � φ D P b

map� : {I : Set} (φ : Desc I) (D : I→ Set) (P : { i : I} → D i→ Set)
(p : { i : I} (d : D i) → P d)
{ i : I} (v : J φ K D i) → � φ D P v

map� (done i) D P p re� =
map� (arg A φ) D P p (a, b) = map� (φ a) D P p b
map� (ind H is φ) D P p (a, b) = (\h→ p (a h)),map� φ D P p b

elim : {I : Set} (φ : Desc I) (P : { i : I} → µ φ i→ Set)
(p : { i : I} (x : J φ K (µ φ) i) → � φ (µ φ) P x→ P (intro x))
{ i : I} (v : µ φ i) → P v

elim φ P p (intro v) = p v (map� φ (µ φ) P (elim φ P p) v)

Universes

Universes of Data

A Closed Type Theory

What does this buy us?

Given a Type Theory with �nite types and sigma types we can
add datatypes by adding the rules for the universe described
above.

This new type theory is closed under the de�nition of new
data-types, in some sense they are already present in the
theory.

In fact, we can go further, since the data types Desc and µ are
themselves inductive families, we should be able to de�ne
them as codes in the Desc universe.

But that's a bit circular, so we need a hierarchy of data
universes Desci : Desci+1.

In this way we only have to add rules to our TT for J_K and
elim.

Universes

Generic Programming

Roadmap

1 Introduction
What is DTP?
Data Types in DTP
Schemas for Inductive Families
Universes

2 Universes of Data
Inductive Types
Inductive Families
A Closed Type Theory

3 Generic Programming
Another motivation
Universes again

Universes

Generic Programming

Another motivation

Type Proliferation

The properties and invariants we might want to specify are
endless:

From Lists..
.. to Vectors ..
.. to Bounded Length Lists
.. to Sorted Lists ..
.. to Sorted Vectors ..
.. to Sorted, Bounded Lists
.. to Fresh Lists
....
.. Pro�t?

And each incarnation may need to be equipped with some
notion of

Map
Concatenation
Fold
Filter

Universes

Generic Programming

Another motivation

Generics

Functional languages like Haskell already su�er from this
problem (lite).

There is a large research community pursuing a solution called
generic or polytypic programming.

A generic program is one that works on any of class of types,
specialising its operation on the structure of type.

Generic programming systems tend to be written as
preprocessors, or make heavy use of experimental language
systems.

It turns out, what they really need is universes..

Universes

Generic Programming

Universes again

Universes for Generics

Given a universe of data, a generic function is one that has
this shape:

The shape of a generic function

foo : {u : U} → (x : El u)→ T u x

Such a function will work for any type in the universe U,
specialising its operation on the structure of the code u.

In fact the function elim for the Desc universe we saw above,
is a generic function.

Universes

Generic Programming

Universes again

Carving out useful universes

We don't win just yet though, since the Desc universe is
relatively large it supports very few generic programs.

..in fact only elim

We don't need just one universe for generics, but rather many
small universes, each supporting a di�erent class of generic
functions.

Typically the functions we want to write determine the class of
types the universe should capture.

Looking at it in this way, we can see that Desc supports elim
because it captures exactly those families which have a sound
induction principle.

	Introduction
	What is DTP?
	Data Types in DTP
	Schemas for Inductive Families
	Universes

	Universes of Data
	Inductive Types
	Inductive Families
	A Closed Type Theory

	Generic Programming
	Another motivation
	Universes again

