Lazy Modules

Keiko Nakata Institute of Cybernetics at Tallinn University of Technology

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Constrained lazy initialization for modules Plan of my talk

- Lazy initialization in practice
- Constrained laziness

Or, hybrid strategies between call-by-value and call-by-need

- · Models for several strategies with varying laziness
 - Compilation scheme from the source syntax to the target languages
 - Target languages, variations of Ariola and Felleisen's cyclic call-by-need calculi with state in the style of Hieb and Felleisen.

Lazy initialization

Traditionally ML modules are initialized in call-by-value.

- Predictable initialization order is good for having arbitrary side-effects.
- Theoretically all modules, including libraries, are initialized at startup time.

Practice has shown lazy initialization may be interesting.

- Dynamically linked shared libraries, plugins
- Lazy file initialization in F#
- Lazy class initialization in Java and F#
- Alice ML
- OSGi, NetBeans (through bundles)
- Eclipse

Why not lazy initialization for recursive modules?

But how much laziness we want?

All these available implementations combine call-by-value and laziness in the presence of side-effects.

Syme proposed *initialization graphs*, by introducing lazy initialization in a controlled way, to allow for more recursive initialization patterns in a ML-like language.

let rec
$$x_0 = a_0 \dots x_n = a_n$$
 in a
 \Rightarrow
let $(x_0, \dots, x_n) =$
let rec $x_0 = lazy a'_0 \dots x_n = lazy a'_n$
in (force $x_0; \dots;$ force x_n)
in a

Support for relaxed recursive initialization patterns is important for interfacing with external OO libraries, e.g., GUI APIs.

Picklers API

```
type Channel (* e.g. file stream *)
type \alpha Mrshl
val marshal: \alpha Mrshl \rightarrow \alpha * Channel \rightarrow unit
val unmarshal: \alpha Mrshl \rightarrow Channel \rightarrow \alpha
val optionMarsh: \alpha Mrshl \rightarrow(option \alpha) Mrshl
val pairMrshl: \alpha Mrshl * \beta Mrshl \rightarrow (\alpha * \beta) Mrshl
val listMrshl: \alpha Mrshl \rightarrow (\alpha list) Mrshl
val innerMrshl: (\alpha \rightarrow \beta) * (\beta \rightarrow \alpha) \rightarrow \alpha Mrshl \rightarrow \beta Mrshl
val intMrshl : int Mrshl
val stringMrshl: string Mrshl
val delayMrshl: (unit \rightarrow \alpha Mrshl) \rightarrow \alpha Mrshl
```

```
// let delayMrshl p =
```

- // { marshal = ($\lambda x \rightarrow$ (p ()).marshal x);
- // unmarshal = (λ y \rightarrow (p ()).unmarshal y)}

Pickler for binary trees

```
type t = option (t * int * t)
let mrshl =
    optionMrshl (pairMrshl mrshl (pairMrshl intMrshl marshl))
Cannot evaluate in call-by-value.
```

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pickler for binary trees with initialization graphs

```
type t = option (t * int * t)
let mrshl =
    optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl marshl0))
and mrshl0 = delayMrshl(\lambda().mrshl)
```

```
implemented as
let (mrshl, mrshl0) =
    let rec mrshl =
        lazy (optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl marshl0)))
        and mrshl0 = lazy (delayMrshl(λ().mrshl))
    in (force mrshl, force marsh0)
```

うしつ 山 マイボットボット モーシック

where the library provides

```
val delay<br/>Mrshl: (unit \rightarrow \alpha Mrshl) \rightarrow \alpha Mrshl
```

```
let delayMrshl p =
{ marshal = (\lambda x \rightarrow (p ()).marshal x);
unmarshal = (\lambda y \rightarrow (p ()).unmarshal y)}
```

MakeSet functor with picklers

```
module Set =
functor (Ord: sig
 type t val compare: t \rightarrow t \rightarrow bool val mrshl : t Mrshl end) \rightarrow
struct
 type elt = Ord.t
 type t = option (t * elt * t)
 ...
 |et mrsh| =
  optionMrshl (pairMrshl mrshl0 (pairMrshl Ord.mrshl marshl0))
 and mrshl0 = delayMrshl (\lambda().mrshl)
end
```

Picklers for Folder and Folders

```
module Folder =
struct
 type file = int * string
 let fileMrshl = pairMrshl (intMrshl, stringMrshl)
 let filesMrshl = listMrshl filMrshl
 type t = { files: file list; subfldrs: Folders.t }
 let mkFldr x y = { files = x; subfldrs = y }
 let destFldr f = (f.files, f.subfldrs)
 let fldrInnerMrshl(f, g) =
  innerMrshl (mkFldr, destFldr) (pairMrshl(f,g))
 |et mrsh| =
  fldrInnerMrshl(filesMrshl, delayMrshl(\lambda(). Folders.mrshl))
 let initFldr = unmarshal mrshl "/home/template/initfldr.txt"
```

end

```
and Folders = Set(Folder)
```

Can we find a happy compromise between call-by-value and call-by-need?

• interesting recursive initialization patterns, i.e., expressivity

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- predictable initialization order
 - when side effects are produced
 - in which order side effects are produced
- simple implementation
- stability of success of the initialization (ongoing work towards formal results)

Model

Model for investigating the design space.

target languages,

variations of the cyclic call-by-need calculus equipped with array primitives

• compilation scheme

from the source syntax into target languages

Five strategies with different degrees of laziness are examined, inspired by strategies of existing languages (Moscow ML, F#, Java).

Inclusion between strategies in a pure setting.

Call-by-need strategy à la F#

- Evaluation of a module is delayed until the module is accessed for the first time. In particular, a functor argument is evaluated lazily when the argument is used.
- 2. All the members of a structure, excluding those of substructures, are evaluated at once from-top-to-bottom order on the first access to the structure
- 3. A member of a structure is only accessible after all the core field of the structure have been evaluated.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples Call-by-need strategy à la F#

{
$$F = \Lambda X$$
.{ $c = print "bye"$; };
 $M = F(\{ c = print "hello"; \});$
 $c = M.c;$ }

prints "bye".

{
$$F = \Lambda X.\{ c_1 = X.c; c_2 = print "bye"; \};$$

 $M = F(\{ c = print "hello"; \});$
 $c = M.c_2; \}$

prints "hello bye".

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Expr.	а	::= 	$x \mid \lambda x.a \mid a_1 \mid a_2 \mid (a,) \mid a.n$ let rec d in a $ \{r,\} \mid a!n \mid \langle x \rangle$
References	r	::=	$x \mid \lambda$ x
Dereferences	‡x	::=	$\boldsymbol{x} \mid \langle \boldsymbol{x} \rangle ! \boldsymbol{n}$
Values	V	::=	$\lambda x.a \mid (v, \ldots) \mid \langle x \rangle \mid \{r, \ldots\}$
Definitions	d	::=	x = a and
Configurations	С	::=	$d \vdash a$
Lift contexts	L	::=	[] a (, v, [], a,) [].n []!n
Nested lift cnxt.	Ν	::=	[] <i>L</i> [<i>N</i>]
Lazy evalu. cnxt	Κ	::=	$d \vdash N$
			$x' = N$ and $d^*[x, x']$ and $d \vdash N'[\sharp x]$
Dependencies	d[x, x']	::=	$x = N[\sharp x']$
			$d[x, x'']$ and $x'' = N[\sharp x']$

Reduction rules for λ_{need}

990

Example of λ_{need} reductions

$$\begin{array}{l} \vdash \text{let rec } x = (\lambda y.y) \ (\lambda y.y) \text{ in } x \\ \xrightarrow[need]{} \text{need} \quad x = (\lambda y.y) \ (\lambda y.y) \vdash x \qquad \text{by alloc} \\ \xrightarrow[need]{} \stackrel{\rightarrow}{} \text{box} \quad x = (\text{let rec } y = \lambda y.y \text{ in } y) \vdash x \qquad \text{by } \beta_{need} \\ \xrightarrow[need]{} \stackrel{\rightarrow}{} \text{box} \quad y = \lambda y.y \text{ and } x = y \vdash x \qquad \text{by alloc-env} \\ \xrightarrow[need]{} \stackrel{\rightarrow}{} \text{box} \quad y = \lambda y.y \text{ and } x = \lambda y'.y' \vdash x \qquad \text{by deref} \\ \xrightarrow[need]{} \stackrel{\rightarrow}{} \text{box} \quad y = \lambda y.y \text{ and } x = \lambda y'.y' \vdash \lambda y''.y'' \qquad \text{by deref} \end{array}$$

Example of λ_{need} reductions

	$\vdash let rec x = (\lambda y.\lambda y'.y) x in x (\lambda x'.x')$	
⊢>	$\boldsymbol{x} = (\lambda \boldsymbol{y}.\lambda \boldsymbol{y}'.\boldsymbol{y}) \boldsymbol{x} \vdash \boldsymbol{x} \ (\lambda \boldsymbol{x}'.\boldsymbol{x}')$	by <i>alloc</i>
⊢ →	$x = (\text{let rec } y = x \text{ in } \lambda y'.y) \vdash x (\lambda x'.x')$	by $\beta_{\textit{need}}$
⊢ →	$y = x$ and $x = \lambda y'.y \vdash x (\lambda x'.x')$	by <i>alloc-env</i>
heed →	$y = x$ and $x = \lambda y'.y \vdash (\lambda y_1.y) (\lambda x'.x')$	by <i>deref</i>
need	$y = x$ and $x = \lambda y'.y \vdash$ let rec $y_1 = \lambda x'.x'$ in y	by $\beta_{\textit{need}}$
⊢ →	$y = x$ and $x = \lambda y'.y$ and $y_1 = \lambda x'.x' \vdash y$	by <i>alloc</i>
	$y = \lambda y_2.y$ and $x = \lambda y'.y$ and $y_1 = \lambda x'.x' \vdash y$	by <i>deref</i>
⊢ →	$y = \lambda y_2.y$ and $x = \lambda y'.y$ and $y_1 = \lambda x'.x' \vdash \lambda y_3.y$	by <i>deref</i>
1000		

Expr.	а	::= 	$x \mid \lambda x.a \mid a_1 \mid a_2 \mid (a, \ldots) \mid a.n$ let rec d in a {r,} a!n $\langle x \rangle$
References	r	::=	x λx
Dereferences	‡x	::=	$x \mid \langle x \rangle! n$
Values	V	::=	$\lambda x.a \mid (v,\ldots) \mid \langle x \rangle \mid \{r,\ldots\}$
Definitions	d	::=	x = a and
Lift contexts	L	::=	[] <i>a</i> (, <i>v</i> ,[], <i>a</i> ,) []. <i>n</i> []! <i>n</i>
Nested lift cnxt.	Ν	::=	[] <i>L</i> [<i>N</i>]
Lazy evalu. cnxt	Κ	::=	$d \vdash N$
			$x' = N$ and $d^*[x, x']$ and $d \vdash N'[\sharp x]$
Dependencies	d[x, x']	::=	$x = \mathcal{N}[\sharp x']$
			$d[x, x'']$ and $x'' = N[\sharp x']$

Reduction rules for λ_{need}

990

Reduction rules for λ_{need}

let get (a : ('a Lazy.t) array) n =
for i = 0 to Array.length a - 1 do Lazy.force a.(i) done;
Lazy.force a.(n)

```
let rec x = \langle x' \rangle
and x' =
let rec m =
let rec x_1 = \langle x'_1 \rangle and x'_1 = (let rec c'_1 = print "bye" in \{c'_1\}) in \langle x'_1 \rangle in
let rec c_1 = print "hello" in
let rec c_2 = m!1 in
\{\lambda_..m, c_1, c_2\} in
x!3
```

On white board...?

λ_{need} with state

Expr.	а	::=	$x \mid \lambda x.a \mid a_1 \mid a_2 \mid (a, \ldots) \mid a.n$
			let rec d in $a \mid \{r, \ldots\} \mid a!n \mid \langle x \rangle$
		Í	set! x a
References	r	::=	$\boldsymbol{x} \mid \boldsymbol{\lambda}\\boldsymbol{x}$
Dereferences	‡X	::=	$x \mid \langle x \rangle! n$
Values	V	::=	$\lambda x.a \mid (v,\ldots) \mid \langle x \rangle \mid \{r,\ldots\}$
Definitions	d	::=	x = a and
Lift contexts	L	::=	[] a (, v, [], a,) [].n []!n
			set! x []
Nested lift cnxt.	Ν	::=	$[] \mid L[N]$
Lazy evalu. cnxt	Κ	::=	$d \vdash N$
			$x' = N$ and $d^*[x, x']$ and $d \vdash N'[\sharp x]$
Dependencies	d[x, x']	::=	$x = N[\sharp x']$
			$d[x, x'']$ and $x'' = N[\sharp x']$

・ロト・西ト・ヨト・ヨー シック

Reduction rules for set! in λ_{need}

set:
$$x = a \text{ and } d \vdash N[\text{set! } x v] \xrightarrow[need]{} x = v \text{ and } d \vdash N[v]$$

set-env: $x'' = a \text{ and } x' = N[\text{set! } x'' v] \text{ and } d^*[x, x'] \text{ and } d \vdash N'[\sharp x]$
 $\underset{need}{\longrightarrow} x'' = v \text{ and } x' = N[v] \text{ and } d^*[x, x'] \text{ and } d \vdash N'[\sharp x]$

<ロト < 団 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 > < 臣 < つ < ぐ</p>

Syntax for Osan

Module expressions	Е	::=	$\{(X) f\} p \land X.E E_1(E_2)$
Definitions	f	::=	$\epsilon \mid M = E; f \mid c = e; f$
Module paths	р	::=	$X \mid M \mid p.n$
Core expressions	е	::=	c p.n

Example Syntax for Osan

Translation from *Osan* to λ_{need}

str : $Tr_N(\{(X) f\})_o$ let rec $x = \langle x' \rangle$ and $x' = TrFld_N(f : \epsilon)_{\rho[X \mapsto x]}$ in $\langle x' \rangle$ mfld : $TrFld_{N}(M = E; f : r, ...)_{o} =$ let rec $x = Tr_N(E)_{\rho}$ in $TrFld_N(f : r, \dots, \lambda_k)_{\rho[M \mapsto x]}$ cfld : $TrFld_N(c = e; f : r, ...)_a =$ let rec $x = TrC_N(e)_\rho$ in $TrFld_N(f : r, \ldots, x)_{\rho[c \mapsto x]}$ strbody : $TrFld_N(\epsilon : r, \ldots)_o$ $= \{r, ...\}$ vpath: $TrC_N(p.n)_o$ $= Tr_N(p)_o!n$ mpath : $Tr_N(p.n)_{a}$ $= (Tr_N(p)_o!n) I$ $Tr_N(X)_o$ $= \rho(X)$ mvar : $= \lambda x. Tr_N(E)_{\rho[X \mapsto x]}$ funct : $Tr_N(\Lambda X.E)_o$ app: $Tr_N(E_1(E_2))_o$ = $Tr_N(E_1)_{\rho}$ $Tr_N(E_2)_{\rho}$ mname : $Tr_N(M)_o$ $= \rho(M)$ $Tr_N(c)_o$ $= \rho(\mathbf{C})$ cname :

Example of compilation

```
\{ M = \{ c_1 = print "good"; c_2 = print "bye"; \}; \}
                c_1 = print "hello":
                C_2 = M.C_1; \}
let rec x = \langle x' \rangle
and x' =
 let rec m =
   let rec x_1 = \langle x'_1 \rangle
   and x'_1 =
    let rec c'_1 = print "good" in let rec c'_2 = print "bye" in \{c'_1, c'_2\} in
   \langle x'_1 \rangle in
 let rec c_1 = print "hello" in
 let rec c_2 = m!1 in
 \{\lambda : m, c_1, c_2\} in
x!3
```

Assessment

Call-by-need

- △ interesting recursive initialization patterns, i.e., expressivity
- ✓ predictable initialization order
- \checkmark simple implementation
- ✓ stability of success of the initialization (in a pure setting)

Assessment cont.

Call-by-need

- One may take fixpoints of functors.

{
$$F = \Lambda Y$$
.{ $g = fun \ if \ i = 0$ then true else $i = 1$ then false
else Y.g $(i - 1)$; };
 $M = \{(X) \ M' = F(X.M'); \}; \}$

- Self variables are strict.

{ $F = \Lambda Y.\{ g = fun \ if \ i = 0 \ then \ true \ else \ i = 1 \ then \ false \ else \ Y.g \ (i - 1);$ $c = g \ 2 \ ;$ $M = \{(X) \ M' = F(X.M'); \ \};$ $c = M.M'.c; \ \}$

Lazy-field strategy à la Java Variations

We may allow a member of a structure to be accessed when it has been evaluated, but before evaluation of all the members of the structure is completed.

Target language λ_{lazy} for lazy-filed modules

Expr.	а	::=	$x \mid \lambda x.a \mid a_1 \mid a_2 \mid (a,) \mid a.n$
			let rec d in a
		Ì	$\{r,\ldots\} \mid \{\!\!\{r,\ldots\}\!\!\} \mid a!n \mid \langle x \rangle$
References	r	::=	$\boldsymbol{x} \mid \boldsymbol{\lambda}\\boldsymbol{x}$
Dereferences	‡x	::=	$x \mid \langle x \rangle! n$
Values	V	::=	$\lambda x.a \mid (v,\ldots) \mid \langle x \rangle \mid \{r,\ldots\}$
			{{ <i>r</i> ,} }
Definitions	d	::=	x = a and
Lift contexts	L	::=	[] a (, v, [], a,) [].n []!n
Nested lift cnxt.	Ν	::=	[] <i>L</i> [<i>N</i>]
Lazy evalu. cnxt	Κ	::=	$d \vdash N$
			$x' = N$ and $d^*[x, x']$ and $d \vdash N'[\sharp x]$
Dependencies	d[x, x']	::=	$x = N[\sharp x']$
	_		$d[x, x'']$ and $x'' = N[\sharp x']$

Reduction rules for λ_{lazy}

Assessment Lazy-field

 \checkmark interesting recursive initialization patterns, i.e., expressivity

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

- $\checkmark\,$ predictable initialization order
- \checkmark simple implementation
 - stability of success of the initialization

Assessment cont.

Modest-field

{(X)

$$M = \{ c_1 = 1; c_2 = X.N.c_2 \};$$

 $N = \{ c_1 = M.c_1; c_2 = 2; \}; \}$

If M is forced first then the evaluation is successful, but if N is forced first then the evaluation fails due to unsound initialization.

Modest-field strategy Variations

We may initialize members as much as necessary, or initialize members from the top to the member accessed.

$$\begin{array}{rcl} \textit{arr}_{\textit{modest}}: & \textit{K}[\langle x \rangle!n] & \underset{\textit{modest}}{\longmapsto} & \textit{K}[(\textit{r}_1,\ldots,\textit{r}_n).n] \\ & \textit{if} \ x = \{\textit{r}_1,\ldots,\textit{r}_n,\textit{r}_{n+1},\ldots\} \in \textit{K} \end{array}$$

Assessment

Modest-field

- \checkmark interesting recursive initialization patterns, i.e., expressivity
 - predictable initialization order
- \checkmark simple implementation
- \checkmark stability of success of the initialization in a pure setting

Assessment cont.

Modest-field

{
$$M = \{(X) \ c_1 = print \ 1; \ M_1 = \{ c_1 = print \ 2; \ c_2 = X.M_2.c; \ c_3 = print \ 3; \ \}; \ c_2 = print \ 4; \ M_2 = \{ c = print \ 5; \ \}; \ c_3 = print \ 6; \ \}; \ c = M.M_1.c_3; \ \}$$

"1 4 6 2 5 3" is printed in the call-by-need and lazy-field strategies.

"1 2 4 5 3" is printed in the modest-field strategy.

Some technical results

Proposition

(Call-by-value \subseteq) Call-by-need \subseteq Lazy-field \subseteq Modest-field (\subseteq Fully-lazy)

Proof.

By going through natural semantics.

Ongoing work

• Introduction of bundles.

I.e., initialize bundles by call-by-need, but modules by modest-field.

- A framework, some technical results on λ_{need} with state, to talk about stability of success of the initialization.
 - I am now working on a preliminary technical result on cyclic call-by-need calculus which distinguish divergence and black holes.