Lazy Modules

Keiko Nakata
Institute of Cybernetics at Tallinn University of Technology



Constrained lazy initialization for modules
Plan of my talk

e Lazy initialization in practice
¢ Constrained laziness

Or, hybrid strategies between call-by-value and call-by-need
¢ Models for several strategies with varying laziness

- Compilation scheme from the source syntax to the target
languages

- Target languages, variations of Ariola and Felleisen’s cyclic
call-by-need calculi with state in the style of Hieb and
Felleisen.



Lazy initialization

Traditionally ML modules are initialized in call-by-value.

¢ Predictable initialization order is good for having arbitrary
side-effects.

¢ Theoretically all modules, including libraries, are initialized
at startup time.

Practice has shown lazy initialization may be interesting.

e Dynamically linked shared libraries, plugins

Lazy file initialization in F#

Lazy class initialization in Java and F#
Alice ML

OSGi, NetBeans (through bundles)
Eclipse



Why not lazy initialization for recursive modules?
But how much laziness we want?

All these available implementations combine call-by-value and
laziness in the presence of side-effects.



Controlled uses of lazy initialization for recursion

Syme proposed initialization graphs, by introducing lazy
initialization in a controlled way, to allow for more recursive
initialization patterns in a ML-like language.

letrecxy=ag ... Xn=anina

=

let (xg, .., Xn) =
let rec xo = lazy a; ... xn = lazy a,
in (force Xy; ...; force xp)

ina

Support for relaxed recursive initialization patterns is important
for interfacing with external OO libraries, e.g., GUI APls.



Picklers API

type Channel (* e.g. file stream *)

type a Mrshl

val marshal: a Mrshl — « « Channel — unit

val unmarshal: o Mrshl — Channel —«

val optionMarsh: « Mrshl —(option «) Mrshl

val pairMrshl: a Mrshl « 8 Mrshl — (« = ) Mrshl
val listMrshl: o Mrshl — (« list) Mrshl

val innerMrshl: (a« — () * (8 — a) — a Mrshl — 3 Mrshl
val intMrshl : int Mrshl

val stringMrshl: string Mrshl

val delayMrshl: (unit — a Mrshl) — o Mrshl

/" let delayMrshl p =
/I { marshal = (A x — (p ()).marshal x);
/I unmarshal = (A y — (p ()).unmarshal y)}



Pickler for binary trees

type t = option (t * int x t)
let mrshl =
optionMrshl (pairMrshl mrshl (pairMrshl intMrshl marshl))

Cannot evaluate in call-by-value.



Pickler for binary trees with initialization graphs

type t = option (t * int * 1)
let mrshl =

optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl marshlQ))
and mrshl0 = delayMrshl(\().mrshl)

implemented as
let (mrshl, mrshl0) =
let rec mrshl =

lazy (optionMrshl (pairMrshl mrshlO (pairMrshl intMrshl marshl0)))
and mrshl0 = lazy (delayMrshl(\().mrshl))
in (force mrshl, force marsh0)

where the library provides

val delayMrshl: (unit — a Mrshl) — o Mrshl

let delayMrshl p =
{ marshal = (A x — (p ()).marshal x);
unmarshal = (A y — (p ()).unmarshal y)}



MakeSet functor with picklers

module Set =
functor (Ord: sig

type t val compare: t — t — bool val mrshl : t Mrshl end) —
struct

type elt = Ord.t

type t = option (t * elt x t)

let mrshl =
optionMrshl (pairMrshl mrshl0 (pairMrshl Ord.mrshl marshl0))
and mrshl0 = delayMrshl (A().mrshl)
end



Picklers for Folder and Folders

module Folder =
struct
type file = int * string
let fileMrshl = pairMrshl (intMrshl, stringMrshl)
let filesMrshl = listMrshl filMrshl
type t = { files: file list; subfldrs: Folders.t }
let mkFIdr x y = { files = x; subfldrs =y }
let destFIdr f = (f.files, f.subfldrs)
let fldrinnerMrshl(f, g) =
innerMrshl (mkFIdr, destFldr) (pairMrshl(f,g))
let mrshl =
fldrinnerMrshl(filesMrshl, delayMrshl(\(). Folders.mrshl))
let initFldr = unmarshal mrshl “/home/template/initfldr.txt”
end

and Folders = Set(Folder)



Expressivity, predictability, simplicity, stability

Can we find a happy compromise between call-by-value and
call-by-need?
¢ interesting recursive initialization patterns, i.e., expressivity
e predictable initialization order

- when side effects are produced
- in which order side effects are produced

e simple implementation

o stability of success of the initialization
(ongoing work towards formal results )



Model

Model for investigating the design space.

¢ target languages,
variations of the cyclic call-by-need calculus equipped with
array primitives

e compilation scheme
from the source syntax into target languages

Five strategies with different degrees of laziness are examined,
inspired by strategies of existing languages (Moscow ML, F#,
Java).

Inclusion between strategies in a pure setting.



Call-by-need strategy a la F#

1. Evaluation of a module is delayed until the module is
accessed for the first time. In particular, a functor argument
is evaluated lazily when the argument is used.

2. All the members of a structure, excluding those of

substructures, are evaluated at once from-top-to-bottom
order on the first access to the structure

3. A member of a structure is only accessible after all the
core field of the structure have been evaluated.



Examples
Call-by-need strategy a la F#

{ F =AX.{ c= print “bye”; },
M = F({ ¢ = print “hello”; });
c=M.c; }

prints “bye”.
{F=AXA{c =X.c; c=print “bye”; },

M = F({ ¢ = print “hello”; });

prints “hello bye”.



Target language \eeq for call-by-need modules

Expr.

Dereferences
Values
Definitions
Configurations

Lift contexts
Nested lift cnxt.
Lazy evalu. cnxt

Dependencies

x| x.alaya|(a...)]an
letrecdin a

X
ax.al(v,...)
X=aand ...
dta

Nal(..,v,[,a-..)|[]-n

[ L[N

dEN

x" = Nand d*[x,x’] and d - N'[1x]
x = N[gx']

d[x,x"] and x” = N[gx']



Reduction rules for Apeeq

Bneed : (\x.a) & = letrec x =4 ina
prj (..., Vn,...).n ez

lift - L[letrec din g - letrec d in L[4]
cxt : Kla] — Kla] if a— a
deref : K[x] — Klv] ifx=veK
alloc - dtletrecd'ina —— dandd'F a

need
alloc-env : x' = (letrec din a) and d*[x, x'] and d' - N[fx]
— dand x’ = aand d*[x, x’] and d’' - N[tx]

need

acc: x=a € d-Nifx=aed
acc-env: x=a € x'=Nandd*[x,x']and dF N'[tx]
ifx=aed



Example of \eeqreductions

Fletrec x = (A\y.y) (Ay.y)inx
x=(Ayy)(Ayy)Fx
x=(letrecy=Ay.yiny)F x
y=Ayyandx=ykFx
y=Ayyandx =\y.y'Fx
y=Ay.yandx =Ny .y =Xy .y’

by alloc
by Bneed
by alloc-env
by deref
by deref



Example of \eeqreductions

Fletrec x = (A\y.Ay'.y) x in x (Ax’.x")

X = Ay Ayy) xEx (Ax'.x)

x=(letrecy =xin\y'.y) b x (Ax’.x")
y=xand x =\y'.y - x (Ax'.x)

y=xand x = \y .y F (A\y1.y) (Ax’.x")
y=xandx =)y .ykletrecy; = x'.x"iny
y=xandx =)y .yandy; = XX X'y
y=XMpyandx =Xy .yandy; =\ X'ty
y=Apyand x =\y.yand y; = X' X' F \yz.y

by alloc
by Bneed
by alloc-env
by deref
by Bneed
by alloc
by deref
by deref



Target language \eeq for call-by-need modules (cont.)

Expr.

References
Dereferences
Values
Definitions

Lift contexts
Nested lift cnxt.
Lazy evalu. cnxt

Dependencies

x| x.alaya|(a...)]an
letrecdinal{r,...}|aln| (x)
X | A_x

x| (x)!'n

ax.al(v,..) | )| {r...}
x=aand ...
Dal(...v.0.a..) 0.0l
01 L[N

dEN

x" = Nand d*[x, x| and d - N'[¢x]
x = N[tx]

d[x,x"] and x”" = N[tx']



Breed :
prj :

lift

cxt :
deref :
arrneed :

alloc :

alloc-env

acce :
acc-env .

Reduction rules for Apeeq

letrecx =4 ina

(Ax.a) & =
(..., Vn,...).n ez
L[letrec din g - let rec din L[4]
Kla] — Kla] if a— a
K[x] — Klv] if x=veK
K[(x)!n] — K]|(r,...).n]

Q

T tx={r,..yeK
drletrecd ina — dandd' - a

need
x" = (letrec din a) and d*[x, x'] and d’ - N[#x]
— dand x’ = aand d*[x, x’] and d’' - N[tx]

need

x=a € d-Nifx=aed
x=a € x'=Nandd*[x,x'] and d - N'[¢x]
ifx=aed



Reduction rules for Apeeq

Bneed : (\x.a) & - letrec x =4 ina
prj - (...yVny...).n —

lift : L[letrec din g - let rec din L[g]
cxt : Kla] — Kld] if a— a
deref : Klx] — Klv] if x=veK
armneed : K[(x)!n] —  K|(r,...).n]

need
ifx={r,..} eK
let get (a: ('a Lazy.t) array) n=
for i = 0 to Array.length a — 1 do Lazy.force a.(i) done;
Lazy.force a.(n)



Example of \eeqreductions

let rec x = (x')
and x’ =
letrec m =
let rec x; = (x7) and x{ = (let rec ¢} = print “bye” in {c}}) in (x]) in
let rec ¢ = print “hello” in
letrec co = m'1in
{A_m,cq,c}in
x!3

On white board...?



Expr. a t= X|Xx.ala al(a...)|an
| letrecdinal{r,...}|aln]| (x)
| setlxa
References r D= X | ALX
Dereferences ix = x| (x)!n
Values v = xal|(v,...)| (x)| {r,...}
Definitions d = x=aand ...
Lift contexts L = [lal(..,v.[l,a-.-)|0n|['n
|  setl x[]
Nested lift cnxt. N = [] | L[N]
Lazy evalu. cnxt K = dEFN
| x’=Nandd*[x,x'] and d - N'[#x]
Dependencies  d[x, x| == x = N[ix']
|

d[x,x"] and x” = N[#x']



Reduction rules for set! in \peeq

set : x—aanddFN[setixv] x—vanddFN[v]

set-env : =aand x' = N[setI x" v] and d*[x, x'] and d + N'[#x]
— X" =vand x’ = N[v] and d*[x, x'] and d - N'[#x]

need



Syntax for Osan

Module expressions
Definitions

Module paths

Core expressions

E
f

p
e

{(X) fH P AX.E | E(E2)
e|lM=Ef|lc=e¢ef
X|M]|p.n

clpn|...



Example

Syntax for Osan

{(X)
Tree = { (X})
add = X t. match t with (i, f) => i + X.Forest.add f; };
Forest = { (X¢)
add = A f. match fwith [[=>0 |t :: f' => Tree.add t + X¢.add f'; };}



str :

mfld -

cfld :

strbody :

vpath :
mpath :
mvar :
funct :

app -

mname :
cname :

Translation from Osan to \neeq

Tn({(X) 1), =
let rec x = (x') and x' = TrFldN(f €) p[Xi—x] IN (X)

TrFldy(M =E;f: r,...), =

letrec x = TrN(E) |n TrFIdN(f Iy ALX) p[M—x]
TrFldn(c = e; f - )y =

letrec x = TrCp(e ) in TrFldN(f Iyees X) plemx]
TrFldn(e: r,...), = {r...}
TrCn(p-n), = Trn(p),!n
Trn(p.n), = (Trn(p),'n) 1

TI‘N( ) = p(X)

Trn(AX.E), = MCTrN(E) pxix
-ﬁ’N(E1(E2)) = nN(E1),0 TrN(EZ)P
Trn(M), = p(M)

Trn(c), = p(c)



Example of compilation

{ M={ ¢y = print “good’; ¢, = print “bye”; },
¢y = print “hello”;
= M.cy; }

let rec x = (x’)
and x’ =
letrec m =
let rec x4 = (x{)
and xj =
let rec ¢} = print “good” in let rec ¢, = print “bye” in {c}, c,} in
(x{)in
let rec ¢ = print “hello” in
letrec co = m'1in
{A_m,cq,c}in
x!3



Assessment
Call-by-need

/\ interesting recursive initialization patterns, i.e., expressivity
v predictable initialization order

v simple implementation

v’ stability of success of the initialization (in a pure setting)



Assessment cont.
Call-by-need

- One may take fixpoints of functors.

{F=AY{g="funifi=0 then true else i = 1 then false
elseY.g(i—1) };
M={(X) M= F(X.M); }; }

- Self variables are strict.

{F=AY{g="funifi=0 then true else i = 1 then false
elseY.g(i—1);
c=g2};
M={(X) M =FXM), },
c=MM.c }



Lazy-field strategy a la Java

Variations

We may allow a member of a structure to be accessed when it
has been evaluated, but before evaluation of all the members of
the structure is completed.



Target language )4, for lazy-filed modules

Expr.

References
Dereferences
Values

Definitions

Lift contexts
Nested lift cnxt.
Lazy evalu. cnxt

Dependencies

-~

<

Xzr-a

d[x, x']

x| Ax.alaa|(a...)]an
letrec din a

{r,... 31 {r,...} | an|(x)

X | A_.x

x| (x)!'n

ax.al(v,..) [ x) | {r,...}
£r,...}

x=aand ...
Dal(...v.0la...)[0.n|0n
[ LIN]

d-N

x' = N and d*[x,x'] and d - N'[#x]
x = N[px']

d[x,x"] and x” = N[#x']



Reduction rules for Ajsz,

init : x =aand dF N[(x)!n] o X = aandd*t N[(r,...).n
where a= {r,...}andd ={r,...}

init-env : x” = aand x’ = N[(x”)!n] and d*[x, x'] and d - N'[fx]
o x"=4d and x’ = N[(r,...).n] and d[x, x'] and d - N'[{x]
where a= {r,...}andd = {r,...}

arriazy : K[(x)!n| g~ K[(r,...,rm).n

ifx={r,....mMm1...} €K



Assessment
Lazy-field

v’ interesting recursive initialization patterns, i.e., expressivity
v’ predictable initialization order
v simple implementation

- stability of success of the initialization



Assessment cont.
Modest-field

{(X)
M:{C1:1; CQZX.N.CQ};
N={ci=Mcy; = 2;};}

If M is forced first then the evaluation is successful, but if N is
forced first then the evaluation fails due to unsound initialization.



Modest-field strategy

Variations

We may initialize members as much as necessary,
or initialize members from the top to the member accessed.

arrmogest : K[(x)!n] —  K[(r1,...,r).N]

modest

ifx=A{r,....Mm,Mme1,...} €K



Assessment
Modest-field

v’ interesting recursive initialization patterns, i.e., expressivity
- predictable initialization order

v’ simple implementation

v’ stability of success of the initialization in a pure setting



Assessment cont.

Modest-field
{ M ={(X)

¢y = print 1;
My ={ci =print2;, co=X.Mo.c; c3=print3; }
C> = print 4,
M, ={ c = print5; },
c3 = print 6; };

c = M.M;.cs; }

“1 4625 3”is printed in the call-by-need and lazy-field
strategies.

“1 245 3”is printed in the modest-field strategy.



Some technical results

Proposition

(Call-by-value C) Call-by-need C Lazy-field C Modest-field (C
Fully-lazy)

Proof.
By going through natural semantics.



Ongoing work

¢ Introduction of bundles.

l.e., initialize bundles by call-by-need, but modules by
modest-field.

o A framework, some technical results on Anpeeq With state, to
talk about stability of success of the initialization.
- I am now working on a preliminary technical result on cyclic

call-by-need calculus which distinguish divergence and
black holes.



