
Lazy Modules

Keiko Nakata
Institute of Cybernetics at Tallinn University of Technology

Constrained lazy initialization for modules
Plan of my talk

• Lazy initialization in practice
• Constrained laziness

Or, hybrid strategies between call-by-value and call-by-need

• Models for several strategies with varying laziness

- Compilation scheme from the source syntax to the target
languages

- Target languages, variations of Ariola and Felleisen’s cyclic
call-by-need calculi with state in the style of Hieb and
Felleisen.

Lazy initialization

Traditionally ML modules are initialized in call-by-value.

• Predictable initialization order is good for having arbitrary
side-effects.

• Theoretically all modules, including libraries, are initialized
at startup time.

Practice has shown lazy initialization may be interesting.

• Dynamically linked shared libraries, plugins
• Lazy file initialization in F#
• Lazy class initialization in Java and F#
• Alice ML
• OSGi, NetBeans (through bundles)
• Eclipse

Why not lazy initialization for recursive modules?

But how much laziness we want?

All these available implementations combine call-by-value and
laziness in the presence of side-effects.

Controlled uses of lazy initialization for recursion

Syme proposed initialization graphs, by introducing lazy
initialization in a controlled way, to allow for more recursive
initialization patterns in a ML-like language.

let rec x0 = a0 . . . xn = an in a
⇒
let (x0, .., xn) =

let rec x0 = lazy a′0 . . . xn = lazy a′n
in (force x0; ...; force xn)

in a

Support for relaxed recursive initialization patterns is important
for interfacing with external OO libraries, e.g., GUI APIs.

Picklers API

type Channel (* e.g. file stream *)
type α Mrshl
val marshal: α Mrshl→ α ∗ Channel→ unit
val unmarshal: α Mrshl→ Channel→α
val optionMarsh: α Mrshl→(option α) Mrshl
val pairMrshl: α Mrshl ∗ β Mrshl→ (α ∗ β) Mrshl
val listMrshl: α Mrshl→ (α list) Mrshl
val innerMrshl: (α→ β) ∗ (β → α)→ α Mrshl→ β Mrshl
val intMrshl : int Mrshl
val stringMrshl: string Mrshl
val delayMrshl: (unit→ α Mrshl)→ α Mrshl

// let delayMrshl p =
// { marshal = (λ x→ (p ()).marshal x);
// unmarshal = (λ y→ (p ()).unmarshal y)}

Pickler for binary trees

type t = option (t ∗ int ∗ t)
let mrshl =
optionMrshl (pairMrshl mrshl (pairMrshl intMrshl marshl))

Cannot evaluate in call-by-value.

Pickler for binary trees with initialization graphs

type t = option (t ∗ int ∗ t)
let mrshl =
optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl marshl0))

and mrshl0 = delayMrshl(λ().mrshl)

implemented as
let (mrshl, mrshl0) =
let rec mrshl =

lazy (optionMrshl (pairMrshl mrshl0 (pairMrshl intMrshl marshl0)))
and mrshl0 = lazy (delayMrshl(λ().mrshl))

in (force mrshl, force marsh0)

where the library provides

val delayMrshl: (unit→ α Mrshl)→ α Mrshl

let delayMrshl p =
{ marshal = (λ x→ (p ()).marshal x);

unmarshal = (λ y→ (p ()).unmarshal y)}

MakeSet functor with picklers

module Set =
functor (Ord: sig
type t val compare: t→ t→ bool val mrshl : t Mrshl end)→

struct
type elt = Ord.t
type t = option (t ∗ elt ∗ t)
...
let mrshl =
optionMrshl (pairMrshl mrshl0 (pairMrshl Ord.mrshl marshl0))

and mrshl0 = delayMrshl (λ().mrshl)
end

Picklers for Folder and Folders

module Folder =
struct
type file = int ∗ string
let fileMrshl = pairMrshl (intMrshl, stringMrshl)
let filesMrshl = listMrshl filMrshl
type t = { files: file list; subfldrs: Folders.t }
let mkFldr x y = { files = x; subfldrs = y }
let destFldr f = (f.files, f.subfldrs)
let fldrInnerMrshl(f, g) =

innerMrshl (mkFldr, destFldr) (pairMrshl(f,g))
let mrshl =

fldrInnerMrshl(filesMrshl, delayMrshl(λ(). Folders.mrshl))
let initFldr = unmarshal mrshl “/home/template/initfldr.txt”

end

and Folders = Set(Folder)

Expressivity, predictability, simplicity, stability

Can we find a happy compromise between call-by-value and
call-by-need?

• interesting recursive initialization patterns, i.e., expressivity
• predictable initialization order

- when side effects are produced
- in which order side effects are produced

• simple implementation
• stability of success of the initialization

(ongoing work towards formal results)

Model

Model for investigating the design space.

• target languages,
variations of the cyclic call-by-need calculus equipped with
array primitives

• compilation scheme
from the source syntax into target languages

Five strategies with different degrees of laziness are examined,
inspired by strategies of existing languages (Moscow ML, F#,
Java).

Inclusion between strategies in a pure setting.

Call-by-need strategy à la F#

1. Evaluation of a module is delayed until the module is
accessed for the first time. In particular, a functor argument
is evaluated lazily when the argument is used.

2. All the members of a structure, excluding those of
substructures, are evaluated at once from-top-to-bottom
order on the first access to the structure

3. A member of a structure is only accessible after all the
core field of the structure have been evaluated.

Examples
Call-by-need strategy à la F#

{ F = ΛX .{ c = print “bye”; };
M = F ({ c = print “hello”; });
c = M.c; }

prints “bye”.

{ F = ΛX .{ c1 = X .c; c2 = print “bye”; };
M = F ({ c = print “hello”; });
c = M.c2; }

prints “hello bye”.

Target language λneed for call-by-need modules

Expr . a ::= x | λx .a | a1 a2 | (a, . . .) | a.n
| let rec d in a |{r , . . .} | a!n | 〈x〉

References r ::= x | λ_.x
Dereferences]x ::= x | 〈x〉!n
Values v ::= λx .a | (v , . . .) | 〈x〉 | {r , . . .}
Definitions d ::= x = a and . . .
Configurations c ::= d ` a

Lift contexts L ::= [] a | (. . . , v , [],a, . . .) | [].n | []!n
Nested lift cnxt . N ::= [] | L[N]
Lazy evalu. cnxt K ::= d ` N

| x ′ = N and d∗[x , x ′] and d ` N ′[]x]
Dependencies d [x , x ′] ::= x = N[]x ′]

| d [x , x ′′] and x ′′ = N[]x ′]

Reduction rules for λneed

βneed : (λx .a) a′ →
need

let rec x = a′ in a

prj : (. . . , vn, . . .).n →
need

vn

lift : L[let rec d in a] →
need

let rec d in L[a]

cxt : K [a] 7−→
need

K [a′] if a→
need

a′

deref : K [x] 7−→
need

K [v] if x = v ∈ K

arrneed : K [〈x〉!n] 7−→
need

K [(r , . . .).n]

if x = {r , . . .} ∈ K
alloc : d ` let rec d ′ in a 7−→

need
d and d ′ ` a

alloc-env : x ′ = (let rec d in a) and d∗[x , x ′] and d ′ ` N[]x]
7−→
need

d and x ′ = a and d∗[x , x ′] and d ′ ` N[]x]

acc : x = a ∈ d ` N if x = a ∈ d
acc-env : x = a ∈ x ′ = N and d∗[x , x ′] and d ` N ′[]x]

if x = a ∈ d

Example of λneed reductions

` let rec x = (λy .y) (λy .y) in x
7−→
need

x = (λy .y) (λy .y) ` x by alloc

7−→
need

x = (let rec y = λy .y in y) ` x by βneed

7−→
need

y = λy .y and x = y ` x by alloc-env

7−→
need

y = λy .y and x = λy ′.y ′ ` x by deref

7−→
need

y = λy .y and x = λy ′.y ′ ` λy ′′.y ′′ by deref

Example of λneed reductions

` let rec x = (λy .λy ′.y) x in x (λx ′.x ′)
7−→
need

x = (λy .λy ′.y) x ` x (λx ′.x ′) by alloc

7−→
need

x = (let rec y = x in λy ′.y) ` x (λx ′.x ′) by βneed

7−→
need

y = x and x = λy ′.y ` x (λx ′.x ′) by alloc-env

7−→
need

y = x and x = λy ′.y ` (λy1.y) (λx ′.x ′) by deref

7−→
need

y = x and x = λy ′.y ` let rec y1 = λx ′.x ′ in y by βneed

7−→
need

y = x and x = λy ′.y and y1 = λx ′.x ′ ` y by alloc

7−→
need

y = λy2.y and x = λy ′.y and y1 = λx ′.x ′ ` y by deref

7−→
need

y = λy2.y and x = λy ′.y and y1 = λx ′.x ′ ` λy3.y by deref

Target language λneed for call-by-need modules (cont.)

Expr . a ::= x | λx .a | a1 a2 | (a, . . .) | a.n
| let rec d in a | {r , . . .} | a!n | 〈x〉

References r ::= x | λ_.x
Dereferences]x ::= x | 〈x〉!n
Values v ::= λx .a | (v , . . .) | 〈x〉 | {r , . . .}
Definitions d ::= x = a and . . .
Lift contexts L ::= [] a | (. . . , v , [],a, . . .) | [].n | []!n
Nested lift cnxt . N ::= [] | L[N]
Lazy evalu. cnxt K ::= d ` N

| x ′ = N and d∗[x , x ′] and d ` N ′[]x]
Dependencies d [x , x ′] ::= x = N[]x ′]

| d [x , x ′′] and x ′′ = N[]x ′]

Reduction rules for λneed

βneed : (λx .a) a′ →
need

let rec x = a′ in a

prj : (. . . , vn, . . .).n →
need

vn

lift : L[let rec d in a] →
need

let rec d in L[a]

cxt : K [a] 7−→
need

K [a′] if a→
need

a′

deref : K [x] 7−→
need

K [v] if x = v ∈ K

arrneed : K [〈x〉!n] 7−→
need

K [(r , . . .).n]

if x = {r , . . .} ∈ K
alloc : d ` let rec d ′ in a 7−→

need
d and d ′ ` a

alloc-env : x ′ = (let rec d in a) and d∗[x , x ′] and d ′ ` N[]x]
7−→
need

d and x ′ = a and d∗[x , x ′] and d ′ ` N[]x]

acc : x = a ∈ d ` N if x = a ∈ d
acc-env : x = a ∈ x ′ = N and d∗[x , x ′] and d ` N ′[]x]

if x = a ∈ d

Reduction rules for λneed

βneed : (λx .a) a′ →
need

let rec x = a′ in a

prj : (. . . , vn, . . .).n →
need

vn

lift : L[let rec d in a] →
need

let rec d in L[a]

cxt : K [a] 7−→
need

K [a′] if a→
need

a′

deref : K [x] 7−→
need

K [v] if x = v ∈ K

arrneed : K [〈x〉!n] 7−→
need

K [(r , . . .).n]

if x = {r , . . .} ∈ K
let get (a : (′a Lazy .t) array) n =

for i = 0 to Array .length a− 1 do Lazy .force a.(i) done;
Lazy .force a.(n)

Example of λneed reductions

let rec x = 〈x ′〉
and x ′ =

let rec m =
let rec x1 = 〈x ′1〉 and x ′1 = (let rec c′1 = print “bye” in {c′1}) in 〈x ′1〉 in

let rec c1 = print “hello” in
let rec c2 = m!1 in
{λ_.m, c1, c2} in

x!3

On white board...?

λneed with state

Expr . a ::= x | λx .a | a1 a2 | (a, . . .) | a.n
| let rec d in a | {r , . . .} | a!n | 〈x〉
| set! x a

References r ::= x | λ_.x
Dereferences]x ::= x | 〈x〉!n
Values v ::= λx .a | (v , . . .) | 〈x〉 | {r , . . .}
Definitions d ::= x = a and . . .
Lift contexts L ::= [] a | (. . . , v , [],a, . . .) | [].n | []!n

| set! x []
Nested lift cnxt . N ::= [] | L[N]
Lazy evalu. cnxt K ::= d ` N

| x ′ = N and d∗[x , x ′] and d ` N ′[]x]
Dependencies d [x , x ′] ::= x = N[]x ′]

| d [x , x ′′] and x ′′ = N[]x ′]

Reduction rules for set! in λneed

set : x = a and d ` N[set! x v] 7−→
need

x = v and d ` N[v]

set-env : x ′′ = a and x ′ = N[set! x ′′ v] and d∗[x , x ′] and d ` N ′[]x]
7−→
need

x ′′ = v and x ′ = N[v] and d∗[x , x ′] and d ` N ′[]x]

Syntax for Osan

Module expressions E ::= {(X) f} | p | ΛX .E | E1(E2)
Definitions f ::= ε | M = E ; f | c = e; f
Module paths p ::= X | M | p.n
Core expressions e ::= c | p.n | . . .

Example
Syntax for Osan

{ (X)
Tree = { (Xt)
add = λ t. match t with (i, f) => i + X.Forest.add f; };

Forest = { (Xf)
add = λ f. match f with [] => 0 | t :: f’ => Tree.add t + Xf.add f’; };}

Translation from Osan to λneed

str : TrN({(X) f})ρ =
let rec x = 〈x ′〉 and x ′ = TrFldN(f : ε)ρ[X 7→x] in 〈x ′〉

mfld : TrFldN(M = E ; f : r , . . .)ρ =
let rec x = TrN(E)ρ in TrFldN(f : r , . . . , λ_.x)ρ[M 7→x]

cfld : TrFldN(c = e; f : r , . . .)ρ =
let rec x = TrCN(e)ρ in TrFldN(f : r , . . . , x)ρ[c 7→x]

strbody : TrFldN(ε : r , . . .)ρ = {r , . . .}
vpath : TrCN(p.n)ρ = TrN(p)ρ!n
mpath : TrN(p.n)ρ = (TrN(p)ρ!n) I
mvar : TrN(X)ρ = ρ(X)
funct : TrN(ΛX .E)ρ = λx .TrN(E)ρ[X 7→x]

app : TrN(E1(E2))ρ = TrN(E1)ρ TrN(E2)ρ

mname : TrN(M)ρ = ρ(M)
cname : TrN(c)ρ = ρ(c)

Example of compilation

{ M = { c1 = print “good”; c2 = print “bye”; };
c1 = print “hello”;
c2 = M.c1; }

let rec x = 〈x ′〉
and x ′ =

let rec m =
let rec x1 = 〈x ′1〉
and x ′1 =

let rec c′1 = print “good” in let rec c′2 = print “bye” in {c′1, c′2} in
〈x ′1〉 in

let rec c1 = print “hello” in
let rec c2 = m!1 in
{λ_.m, c1, c2} in

x!3

Assessment
Call-by-need

a
interesting recursive initialization patterns, i.e., expressivity

X predictable initialization order
X simple implementation
X stability of success of the initialization (in a pure setting)

Assessment cont.
Call-by-need

- One may take fixpoints of functors.

{ F = ΛY .{ g = fun if i = 0 then true else i = 1 then false
else Y .g (i − 1); };

M = {(X) M ′ = F (X .M ′); }; }

- Self variables are strict.

{ F = ΛY .{ g = fun if i = 0 then true else i = 1 then false
else Y .g (i − 1);

c = g 2 };
M = {(X) M ′ = F (X .M ′); };
c = M.M ′.c; }

Lazy-field strategy à la Java
Variations

We may allow a member of a structure to be accessed when it
has been evaluated, but before evaluation of all the members of
the structure is completed.

Target language λlazy for lazy-filed modules

Expr . a ::= x | λx .a | a1 a2 | (a, . . .) | a.n
| let rec d in a
| {r , . . .} | {{r , . . .}} | a!n | 〈x〉

References r ::= x | λ_.x
Dereferences]x ::= x | 〈x〉!n
Values v ::= λx .a | (v , . . .) | 〈x〉 | {r , . . .}

| {{r , . . .}}
Definitions d ::= x = a and . . .
Lift contexts L ::= [] a | (. . . , v , [],a, . . .) | [].n | []!n
Nested lift cnxt . N ::= [] | L[N]
Lazy evalu. cnxt K ::= d ` N

| x ′ = N and d∗[x , x ′] and d ` N ′[]x]
Dependencies d [x , x ′] ::= x = N[]x ′]

| d [x , x ′′] and x ′′ = N[]x ′]

Reduction rules for λlazy

init : x = a and d ` N[〈x〉!n] 7−→
lazy

x = a′ and d ` N[(r , . . .).n]

where a = {{r , . . .}} and a′ = {r , . . .}
init-env : x ′′ = a and x ′ = N[〈x ′′〉!n] and d∗[x , x ′] and d ` N ′[]x]

7−→
lazy

x ′′ = a′ and x ′ = N[(r , . . .).n] and d [x , x ′] and d ` N ′[]x]

where a = {{r , . . .}} and a′ = {r , . . .}
arr lazy : K [〈x〉!n] 7−→

lazy
K [(r1, . . . , rn).n]

if x = {r1, . . . , rn, rn+1 . . .} ∈ K

Assessment
Lazy-field

X interesting recursive initialization patterns, i.e., expressivity
X predictable initialization order
X simple implementation
- stability of success of the initialization

Assessment cont.
Modest-field

{(X)
M = { c1 = 1; c2 = X .N.c2 };
N = { c1 = M.c1; c2 = 2; }; }

If M is forced first then the evaluation is successful, but if N is
forced first then the evaluation fails due to unsound initialization.

Modest-field strategy
Variations

We may initialize members as much as necessary,
or initialize members from the top to the member accessed.

arrmodest : K [〈x〉!n] 7−→
modest

K [(r1, . . . , rn).n]

if x = {r1, . . . , rn, rn+1, . . .} ∈ K

Assessment
Modest-field

X interesting recursive initialization patterns, i.e., expressivity
- predictable initialization order

X simple implementation
X stability of success of the initialization in a pure setting

Assessment cont.
Modest-field

{ M = {(X)
c1 = print 1;
M1 = { c1 = print 2; c2 = X .M2.c; c3 = print 3; };
c2 = print 4;
M2 = { c = print 5; };
c3 = print 6; };

c = M.M1.c3; }

“1 4 6 2 5 3” is printed in the call-by-need and lazy-field
strategies.

“1 2 4 5 3” is printed in the modest-field strategy.

Some technical results

Proposition

(Call-by-value ⊆) Call-by-need ⊆ Lazy-field ⊆ Modest-field (⊆
Fully-lazy)

Proof.
By going through natural semantics.

Ongoing work

• Introduction of bundles.

I.e., initialize bundles by call-by-need, but modules by
modest-field.

• A framework, some technical results on λneed with state, to
talk about stability of success of the initialization.

- I am now working on a preliminary technical result on cyclic
call-by-need calculus which distinguish divergence and
black holes.

