Proof search and counter-model construction for bi-intuitionistic propositional logic

Luís Pinto ${ }^{1}$
Univ. Minho
Braga, Portugal

Theory Seminar at Inst. of Cybernetics
Tallinn, Estonia

9 April 2010

1 Joint work with Tarmo Uustalu

Generalities on sequent calculus

- Formalism whose assertions are sequents $\Gamma \vdash \Delta(\Gamma, \Delta$ "composed" of formulas A, B, \ldots).
- Typical interpretation of $\Gamma \vdash \Delta$: the formula $\wedge\ulcorner\supset \bigvee \Delta$ is valid.
- Each connective has rules for introducing it at the right or at the left of \vdash, e.g. (in classical logic):

$$
\frac{\Gamma, B \vdash A, \Delta}{\Gamma \vdash B \supset A, \Delta} \supset R \quad \frac{\Gamma \vdash B, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma, B \supset A \vdash \Delta} \supset L
$$

- Axioms and cut:

$$
\frac{\Gamma, A \vdash A, \Delta}{\Gamma,} \text { id } \quad \frac{\Gamma \vdash \Delta, A \quad A, \Gamma \vdash \Delta}{\Gamma \vdash \Delta} c u t
$$

- Structural rules:

$$
\frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} \text { weak-L } \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \text { contract-L }
$$

Generalities on sequent calculus (cont.)

- Derivation of a sequent $\Gamma \vdash \Delta$:
- a tree of sequents whose root is $\Gamma \vdash \Delta$, built up using the available axioms and rules.
- Cut-elimination:
- a sequent calculus has the cut-elimination property if any derivable sequent can be derived without using the cut-rule;
- typical consequences: subformula property, consistency.
- Basis of a proof-search method:
- decompose sequents successively (applying rules bottom-up), until all sequents become axioms or else some sequent cannot be further decomposed neither it is an axiom.
- Usual problems: which rule to apply when there are alternatives; non-termination.

Bi-intuitionistic logic

- Extends intuitionistic logic with a connective "-" dual to implication, called subtraction (or co-implication, exclusion ...)
- $A-B$ roughly means: A and not B
- Proposed by Cecilia Rauszer in the 70 's:
- semantics via Kripke structures and Heyting-Brouwer algebras;
- formal systems à la Hilbert and sequent calculus.
- Recent interest for its proof theory motivated by proof-search, but also from the computational interpretations viewpoint (Curry-Howard).

Propositional bi-intuitionistic logic (Bilnt)

- Formulas: $A, B:=p|\top| \perp|A \wedge B| A \vee B|A \supset B| A-B$
- Two defined negations: $\neg A:=A \supset \perp$ (strong negation)
$\backsim A:=\top-A$ (weak negation)
- Some properties:
- conservatively extends propositional intuitionistic logic;
- $A \wedge \backsim A$ is not contradictory (just as $A \vee \neg A$ is not intuitionistically válid), $A \vee \sim A$ is valid (just as $A \wedge \neg A$ is intuitionistically contradictory).
- strict implications:

$$
\neg \backsim A \supset \backsim \backsim A \supset A \supset \neg \neg A \supset \backsim \neg A
$$

Kripke sematics for Bilnt

Def.: $K=(W, \leq, I)$ is a Kripke structure if:

- (W, \leq) is a non-empty poset (\leq called accessibility relation)
- I is monotone map associating a set of prop. vars. to each element (world) of $W\left(\forall w^{\prime} \geq w, I(w) \subseteq I\left(w^{\prime}\right)\right)$.

Def.: \models_{κ}, the validity relation (between worlds and formulas) is s.t.:

- $w=_{k} p$ iff $p \in I(w) ; w \not \models_{K} \perp_{;} w \models_{k} T$;
- $w \models_{\kappa} A \wedge B$ iff $w \models_{\kappa} A$ and $w \models_{\kappa} B$;
- $w \models_{\kappa} A \vee B$ iff $w \models_{\kappa} A$ or $w \models_{k} B$;
- $w \models_{\kappa} A \supset B$ iff for all $w^{\prime} \geq w, w^{\prime} \models_{\kappa} A$ implies $w^{\prime} \models_{\kappa} B$;
- $w \not \models_{k} A-B$ iff there exists $w^{\prime} \leq w$ s.t. $w^{\prime} \models_{k} A$ and $w^{\prime} \not \models_{K} B$.

Def.: A formula A is Kripke valid if $w=_{K} A$ for all K, w.

Heyting-Brouwer semantics for Bilnt

Def.: $H=(X, \wedge, \vee, \supset,-, \perp, \top)$ is a Heyting-Brouwer algebra if:

- (X, \wedge, \vee) is a lattice with smallest elem. \perp and largest elem. T;
- \supset and - are binary operations on X (relative pseudo-complement and pseudo-difference resp.) s.t.:
- $a \supset b$ is the largest $x \in X$ s.t. $a \wedge x \leq b$.
- $b-a$ is the smallest $x \in X$ s.t. $a \vee x \geq b$.

Def.: Let $H=(X, \wedge, \vee, \supset,-, \perp, \top)$ be an Heyting-Brouwer algebra.

- v map from prop. var. to X is H-valuation, when: $v(\perp)=\perp$, $v(\top)=\top$ and $v(A \square B)=v(A) \square v(B)$, for all $\square \in\{\wedge, \vee, \supset,-\}$.

Def.: A formula A is Heyting-Brouwer valid if $v(A)=H \top$ for all H, v.

Sequent calculus for Bilnt

- Sequents: pairs $\Gamma \vdash \Delta$ of multisets of formulas (in Rauszer: Γ and Δ cannot simultaneously have more than one formula)
- Rules:
axioms and cuts:

$$
\frac{\Gamma, A \vdash A, \Delta}{\Gamma, A d} \quad \frac{\Gamma \vdash A, \Delta \quad \Gamma, A \vdash \Delta}{\Gamma \vdash \Delta} c u t
$$

logical rules:

$$
\begin{array}{cc}
\frac{\Gamma \vdash \Delta}{\Gamma, \top \vdash \Delta} \top L & \frac{\Gamma \vdash T, \Delta}{} \top R \\
\frac{\Gamma \vdash \perp \vdash \Delta}{\Gamma, \perp} & \frac{\Gamma \vdash \Delta}{\Gamma \vdash \perp, \Delta} \perp R \\
\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge L & \frac{\Gamma \vdash A, \Delta \Gamma \vdash B, \Delta}{\Gamma \vdash A \wedge B, \Delta} \wedge R \\
\frac{\Gamma, A \vdash \Delta \wedge, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee L & \frac{\Gamma \vdash A, B, \Delta}{\Gamma \vdash A \vee B, \Delta} \vee R
\end{array}
$$

Sequent calculus for Bilnt (cont.)

Logical rules for \supset and - :

$$
\begin{array}{cc}
\frac{\Gamma, B \supset A \vdash B, \Delta}{\Gamma, B \supset A \vdash \Delta} & \Gamma, A \vdash \Delta \\
\frac{A \vdash B, \Delta}{\Gamma, A-B \vdash \Delta}-L & \frac{\Gamma \vdash B \vdash A}{\Gamma \vdash B \supset A, \Delta} \supset R \\
\Gamma \vdash A-B, \Delta &
\end{array}
$$

Thm. (Soundness and Completeness): $\vdash A$ is derivable iff A is Kripke valid (iff A is Heyting-Brouwer valid).

Impossibility of cut-elimination

- Without the cut rule we cannot derive $p \vdash q, r \supset((p-q) \wedge r)$:

$$
\frac{p, r \vdash(p-q) \wedge r}{p \vdash q, r \supset((p-q) \wedge r)} \supset R
$$

(the premiss is already invalid).

- With the cut rule:

L: a labelled sequent calculus

- Inspired in a method of Sara Negri to devise cut-free labelled sequent calculi for modal logics.
- Labels: x, y, z, \ldots (see as: worlds of Kripke structures).
- Labelled formulas: pairs x: A (see as: A valid in x).
- Sequents: triples $\Gamma \vdash_{G} \Delta$, where
- Γ, Δ finite multisets of labelled formulas;
- G (a graph) finite binary relation on labels (see as: accessibility relation).

Rules of \mathbf{L}
pre-order rules:

$$
\frac{\Gamma \vdash_{G \cup\{(x, x)\}} \Delta}{\Gamma \vdash_{G} \Delta} \text { refl } \frac{x G y \quad y G z \Gamma \vdash_{G \cup\{(x, z)\}} \Delta}{\Gamma \vdash_{G} \Delta} \text { trans }
$$

axiom:

$$
\overline{\Gamma, x: A \vdash_{G} x: A, \Delta} i d
$$

monotonicity rules:

$$
\frac{x G y \quad \Gamma, x: A, y: A \vdash_{G} \Delta}{\Gamma, x: A \vdash_{G} \Delta} m o n L \quad \frac{y G x \quad \Gamma \vdash_{G} y: A, x: A, \Delta}{\Gamma \vdash_{G} x: A, \Delta} \operatorname{monR}
$$

Logical rules of \mathbf{L} for \supset and -

$$
\begin{gathered}
\frac{\Gamma \vdash_{G} y: B, \Delta \Gamma, y: A \vdash_{G} \Delta}{\Gamma, x: B \supset A \vdash_{G} \Delta} \supset L \quad x G y \\
\frac{\Gamma, y: B \vdash_{G \cup\{(x, y)\}} y: A, \Delta}{\Gamma \vdash_{G} x: B \supset A, \Delta} \supset R \quad y \notin G, \Gamma, \Delta \\
\frac{\Gamma, y: A \vdash_{G \cup\{(y, x)\}} y: B, \Delta}{\Gamma, x: A-B \vdash_{G} \Delta}-L \quad y \notin G, \Gamma, \Delta \\
\frac{\Gamma \vdash_{G} y: A, \Delta \Gamma, y: B \vdash_{G} \Delta}{\Gamma \vdash_{G} x: A-B, \Delta}-R \quad y G x
\end{gathered}
$$

The counter-example to cut-elimination done in \mathbf{L}

$$
\frac{{\overline{x: p \vdash_{(x, y)} \times x: p}}^{\text {id }} \overline{\overline{x: q} \vdash_{(x, y)} x: q} \text { id }}{\frac{x: p, y: r \vdash_{(x, y)} x: q, \overline{y: p-q}}{}-R \frac{y: r \vdash_{(x, y)} y: r}{}} \text { id }
$$

Note the propagation of information from y to x at the $-R$ inference.

Soundness of \mathbf{L}

Def.: A counter-model of $\Gamma \vdash_{G} \Delta$ is a pair (K, v), where $K=(W, \leq, I)$ is a Kripke structure and v a map from the set of labels to W, s.t.:

1. for all $x G y, v(x) \leq v(y)$;
2. for all $x: A \in \Gamma, v(x) \models A$;
3. for all $x: A \in \Delta, v(x) \notin A$.

Def.: A sequent is valid if it has no counter-models.
Thm.: The sequents derivable in \mathbf{L} are valid.

L*: an algorithmic variant of L

- There are no explicit pre-order or monotonicity rules.
- Uses a marking mechanism to guarantee monotonicity and loop-detection.
- Sequents are triples $\Gamma \vdash_{G} \Delta$, but labelled formulas in Γ, Δ, can have additionally one of marks:

$$
x: A^{*} \text { or } x: A^{\bullet} .
$$

Rules of L*
atomic rules:

$$
\begin{array}{cc}
\Gamma, x: p^{\bullet}, p^{+}, x: p^{*} \vdash_{G} \Delta \\
\Gamma, x: p \vdash_{G} \Delta & \text { atomL }
\end{array} \frac{\Gamma \vdash_{G} x: p^{\bullet}, p^{-}, x: p^{*}, \Delta}{\Gamma \vdash_{G} x: p, \Delta} \text { atomR }
$$

axiom:

$$
\overline{\Gamma, x: p^{\bullet} \vdash_{G} x: p^{\bullet}, \Delta} \text { id }
$$

logical rules:

$$
\begin{array}{cc}
\frac{\Gamma \vdash_{G} \Delta}{\Gamma, x: \top \vdash_{G} \Delta} \top L & \overline{\Gamma \vdash_{G} x: \top, \Delta} \top R \\
\frac{\Gamma, x: \perp \vdash_{G} \Delta}{\Gamma L} & \frac{\Gamma \vdash_{G} \Delta}{\Gamma \vdash_{G} x: \perp, \Delta} \perp R \\
\frac{\Gamma, x: A, x: B \vdash_{G} \Delta}{\Gamma, x: A \wedge B \vdash_{G} \Delta} \wedge L & \frac{\Gamma \vdash_{G} x: A, \Delta \Gamma \vdash_{G} x: B, \Delta}{\Gamma \vdash_{G} x: A \wedge B, \Delta} \wedge R \\
\frac{\Gamma, x: A \vdash_{G} \Delta \Gamma, x: B \vdash_{G} \Delta}{\Gamma, x: A \vee B \vdash_{G} \Delta} \vee L & \frac{\Gamma \vdash_{G} x: A, x: B, \Delta}{\Gamma \vdash_{G} x: A \vee B, \Delta} \vee R
\end{array}
$$

Rules of \mathbf{L}^{*} for \supset and -

$$
\begin{gathered}
\frac{\Gamma,(B \supset A)^{+}, x:(B \supset A)^{*} \vdash_{G} x: B, \Delta \quad \Gamma, x: A \vdash_{G} \Delta}{\Gamma, x: B \supset A \vdash_{G} \Delta} \supset L \\
(B \supset A)^{+}=\{y: B \supset A \mid x G y\} \\
\frac{x:(B \supset A)^{\bullet} \notin \Delta \quad y \notin G, \Gamma, \Delta, \Gamma, \Gamma^{y / x}, y: B \vdash_{G \cup\{(x, y)\}} y: A, x:(B \supset A)^{\bullet}, \Delta}{\Gamma \vdash_{G} x: B \supset A, \Delta} \supset R \\
\frac{\Gamma^{y / x}=\left\{y: C \mid x: C^{*} \in \Gamma\right\} \cup\{y: C \bullet \mid x: C \bullet \in \Gamma\} \cup\left\{y:(C-D)^{\bullet} \mid x: C-D \in \Gamma\right\}}{x:(A-B)^{\bullet} \notin \Gamma \quad y \notin G, \Gamma, \Delta \quad \Gamma, x:(A-B)^{\bullet}, y: A \vdash_{G \cup\{(y, x)\}} y: B, \Delta y / x, \Delta} \\
\Gamma, x: A-B \vdash_{G} \Delta \\
\Delta^{y / x}=\left\{y: C \mid x: C^{*} \in \Delta\right\} \cup\{y: C \bullet \mid x: C \bullet \in \Delta\} \cup\left\{y:(D \supset C)^{\bullet} \mid x: D \supset C \in \Delta\right\} \\
\frac{\Gamma \vdash_{G} x: A, \Delta \quad \Gamma, x: B \vdash_{G} x:(A-B)^{*},(A-B)^{-}, \Delta}{\Gamma \vdash_{G} x: A-B, \Delta}-R \\
(A-B)^{-}=\{y: A-B \mid y G x\}
\end{gathered}
$$

Search procedure for L*

1. Given an \mathbf{L}^{*}-sequent, while possible, apply rules that do not create new labels (saturation).
2. For the top sequent of each of the resulting branches:
2.1 check if it is an axiom and, if so, stop with success the branch;
2.2 check for loops and proceed according to the respective loop rule;
2.3 otherwise, apply $\supset R$ or $-L$ and restart at 1 , or, if not possible, stop the whole search with failure.

Loop-detection

At a top sequent resulting from saturation of the premiss of $\supset R$:

$$
\begin{gathered}
\Gamma \vdash_{G \cup\{(x, y)\}} \Delta \\
\vdots \\
\frac{y \notin G \quad \Gamma_{0}, \Gamma_{0}^{y / x}, y: A \vdash_{G \cup\{(x, y)\}} y: B, x:(A \supset B)^{\bullet}, \Delta_{0}}{\Gamma_{0} \vdash_{G} x: A \supset B, \Delta_{0}} \supset R
\end{gathered}
$$

check if the loop rule loopUp applies:

$$
\begin{gathered}
\frac{y \notin G \Gamma \backslash y \vdash_{G} \Delta[x / y]}{\Gamma \vdash_{G \cup\{(x, y)\}} \Delta} \text { loopUp, } \quad \text { if }: \Gamma[y] \subseteq \Gamma[x] \cup \Gamma^{\bullet}[x], \\
\Gamma^{*}[y] \subseteq \Gamma^{*}[x] \\
\text { with }: \Gamma[y]=\{A \mid y: A \in \Gamma\}, \Gamma^{*}[y]=\left\{A \mid y: A^{*} \in \Gamma\right\}, \text { etc. }
\end{gathered}
$$

Soundness of the search procedure

- The procedure builds partial derivations in \mathbf{L}^{*} augmented of the loop rules.

Prop.: If the search procedure, applied to an L-sequent, stops with success in all branches, the sequent is derivable in \mathbf{L}.

Termination of the search procedure

Thm.: The procedure applied to \mathbf{L}^{*}-sequents whose graph is acyclic terminates.

Proof ideas:

- An infinite branch corresponds to infinitely many uses of $\supset R /-L$.
- It is impossible to have an infinite branch corresponding to an infinite ascending chain:

- It is impossible to have an infinite branch corresponding to an infinite zigzag, as e.g.:

Counter-model construction and completeness

Thm. Let \mathcal{B} be a failed branch of a proof attempt, let $\Gamma \vdash{ }_{G} \Delta$ be the top sequent of \mathcal{B} and let

1. $K=(W, \leq, I)$, with W the set of labels in the sequent, $\leq=G^{*}$ and $I(x)=\left\{p \mid x: p^{\bullet} \in \Gamma\right\}$ (which is a Kripke structure);
2. $v=$ identity on labels.

Then, (K, v) is a counter-model of \mathcal{B} 's end sequent.
Corol.: Let $\Gamma \vdash_{G} \Delta$ be an L-sequent whose graph is acyclic. The following are equivalent:
i) $\Gamma \vdash_{G} \Delta$ is valid;
ii) the search procedure applied to $\Gamma \not{ }_{G} \Delta$ terminates with success;
iii) $\Gamma \vdash_{G} \Delta$ is derivable in \mathbf{L}.

Some counter-models

$$
\begin{array}{ll}
y \bullet p & \neg(p \wedge \sim p) \\
& \sim p \supset \neg p \\
x \bullet & \\
& p \supset \sim \sim p
\end{array}
$$

$$
(p \wedge \sim q) \supset(p-q)
$$

$$
\backsim \neg p \supset \neg \neg p
$$

Related and future work

Related work:

Goré, Postniece e Tiu proposed also decision procedures for Bilnt, based on extended sequent calculi (combination of derivations and refutations; nested sequents; display calculi).

Future work:

- Map L-derivations into label-free sequent calculus (and check for completeness of analytic cuts).
- Contraction-free sequent calculus for Bilnt (avoiding loop-detection).

