
Proof search and counter-model construction for
bi-intuitionistic propositional logic

Lúıs Pinto1

Univ. Minho
Braga, Portugal

Theory Seminar at Inst. of Cybernetics
Tallinn, Estonia

9 April 2010

1 Joint work with Tarmo Uustalu

Generalities on sequent calculus

I Formalism whose assertions are sequents Γ ` ∆ (Γ, ∆
“composed” of formulas A, B, ...).

I Typical interpretation of Γ ` ∆: the formula
∧

Γ⊃
∨

∆ is
valid.

I Each connective has rules for introducing it at the right or at
the left of `, e.g. (in classical logic):

Γ, B ` A, ∆

Γ ` B ⊃ A, ∆
⊃R

Γ ` B, ∆ Γ, A ` ∆

Γ, B ⊃ A ` ∆
⊃L

I Axioms and cut:

Γ, A ` A, ∆
id

Γ ` ∆, A A, Γ ` ∆

Γ ` ∆
cut

I Structural rules:

Γ ` ∆
Γ, A ` ∆

weak-L
Γ, A, A ` ∆

Γ, A ` ∆
contract-L

Generalities on sequent calculus (cont.)

I Derivation of a sequent Γ ` ∆:
I a tree of sequents whose root is Γ ` ∆, built up using the

available axioms and rules.

I Cut-elimination:
I a sequent calculus has the cut-elimination property if any

derivable sequent can be derived without using the cut-rule;
I typical consequences: subformula property, consistency.

I Basis of a proof-search method:
I decompose sequents successively (applying rules bottom-up),

until all sequents become axioms or else some sequent cannot
be further decomposed neither it is an axiom.

I Usual problems: which rule to apply when there are
alternatives; non-termination.

Bi-intuitionistic logic

I Extends intuitionistic logic with a connective “−” dual to
implication, called subtraction (or co-implication, exclusion ...)

I A− B roughly means: A and not B

I Proposed by Cecilia Rauszer in the 70’s:

I semantics via Kripke structures and Heyting-Brouwer algebras;
I formal systems à la Hilbert and sequent calculus.

I Recent interest for its proof theory motivated by proof-search, but
also from the computational interpretations viewpoint
(Curry-Howard).

Propositional bi-intuitionistic logic (BiInt)

I Formulas: A, B := p | > | ⊥ | A ∧ B | A ∨ B | A⊃ B | A− B

I Two defined negations: ¬A := A⊃⊥ (strong negation)
v A := >− A (weak negation)

I Some properties:

I conservatively extends propositional intuitionistic logic;
I A ∧v A is not contradictory (just as A ∨ ¬A is not

intuitionistically válid), A ∨v A is valid (just as A ∧ ¬A is
intuitionistically contradictory).

I strict implications:

¬v A⊃v v A⊃ A⊃ ¬¬A⊃v¬A

Kripke sematics for BiInt

Def.: K = (W ,≤, I) is a Kripke structure if:

I (W ,≤) is a non-empty poset (≤ called accessibility relation)

I I is monotone map associating a set of prop. vars. to each element
(world) of W (∀w ′ ≥ w , I (w) ⊆ I (w ′)).

Def.: |=K , the validity relation (between worlds and formulas) is s.t.:

I w |=K p iff p ∈ I (w); w 6|=K ⊥; w |=K >;

I w |=K A ∧ B iff w |=K A and w |=K B;

I w |=K A ∨ B iff w |=K A or w |=K B;

I w |=K A⊃ B iff for all w ′ ≥ w , w ′ |=K A implies w ′ |=K B;

I w |=K A− B iff there exists w ′ ≤ w s.t. w ′ |=K A and w ′ 6|=K B.

Def.: A formula A is Kripke valid if w |=K A for all K , w .

Heyting-Brouwer semantics for BiInt

Def.: H = (X ,∧,∨,⊃,−,⊥,>) is a Heyting-Brouwer algebra if:

I (X ,∧,∨) is a lattice with smallest elem. ⊥ and largest elem. >;

I ⊃ and − are binary operations on X (relative pseudo-complement
and pseudo-difference resp.) s.t.:

I a⊃ b is the largest x ∈ X s.t. a ∧ x ≤ b.
I b − a is the smallest x ∈ X s.t. a ∨ x ≥ b.

Def.: Let H = (X ,∧,∨,⊃,−,⊥,>) be an Heyting-Brouwer algebra.

I v map from prop. var. to X is H-valuation, when: v(⊥) = ⊥,
v(>) = > and v(A2B) = v(A)2v(B), for all 2 ∈ {∧,∨,⊃,−}.

Def.: A formula A is Heyting-Brouwer valid if v(A) =H > for all H,v .

Sequent calculus for BiInt

I Sequents: pairs Γ ` ∆ of multisets of formulas
(in Rauszer: Γ and ∆ cannot simultaneously have more than one formula)

I Rules:

axioms and cuts:

Γ, A ` A, ∆
id

Γ ` A, ∆ Γ, A ` ∆

Γ ` ∆
cut

logical rules:

Γ ` ∆

Γ,> ` ∆
>L

Γ ` >, ∆
>R

Γ,⊥ ` ∆
⊥L

Γ ` ∆

Γ ` ⊥, ∆
⊥R

Γ, A, B ` ∆

Γ, A ∧ B ` ∆
∧L

Γ ` A, ∆ Γ ` B, ∆

Γ ` A ∧ B, ∆
∧R

Γ, A ` ∆ Γ, B ` ∆

Γ, A ∨ B ` ∆
∨L

Γ ` A, B, ∆

Γ ` A ∨ B, ∆
∨R

Sequent calculus for BiInt (cont.)

Logical rules for ⊃ and −:

Γ, B ⊃ A ` B, ∆ Γ, A ` ∆

Γ, B ⊃ A ` ∆
⊃L

Γ, B ` A

Γ ` B ⊃ A, ∆
⊃R

A ` B, ∆

Γ, A− B ` ∆
−L

Γ ` A, ∆ Γ, B ` A− B, ∆

Γ ` A− B, ∆
−R

Thm. (Soundness and Completeness): ` A is derivable iff A is Kripke

valid (iff A is Heyting-Brouwer valid).

Impossibility of cut-elimination

I Without the cut rule we cannot derive p ` q, r ⊃ ((p − q) ∧ r):

?
p, r ` (p − q) ∧ r

p ` q, r ⊃ ((p − q) ∧ r)
⊃R

(the premiss is already invalid).

I With the cut rule:

p ` q, p, . . .
id

p, q ` q, p − q, . . .
id

p ` q, p − q , . . .
−R

p, p − q, r ` p − q
id

p, p − q, r ` r
id

p, p − q, r ` (p − q) ∧ r
∧R

p, p − q ` q, r ⊃ ((p − q) ∧ r)
⊃R

p ` q, r ⊃ ((p − q) ∧ r)
cut

L: a labelled sequent calculus

I Inspired in a method of Sara Negri to devise cut-free labelled
sequent calculi for modal logics.

I Labels: x , y , z , ... (see as: worlds of Kripke structures).

I Labelled formulas: pairs x : A (see as: A valid in x).

I Sequents: triples Γ `G ∆, where

I Γ, ∆ finite multisets of labelled formulas;
I G (a graph) finite binary relation on labels

(see as: accessibility relation).

Rules of L

pre-order rules:

Γ `G∪{(x,x)} ∆

Γ `G ∆
refl

xGy yGz Γ `G∪{(x,z)} ∆

Γ `G ∆
trans

axiom:

Γ, x : A `G x : A, ∆
id

monotonicity rules:

xGy Γ, x : A, y : A `G ∆

Γ, x : A `G ∆
monL

yGx Γ `G y : A, x : A, ∆

Γ `G x : A, ∆
monR

Logical rules of L for ⊃ and −

Γ `G y : B, ∆ Γ, y : A `G ∆

Γ, x : B ⊃ A `G ∆
⊃L xGy

Γ, y : B `G∪{(x,y)} y : A, ∆

Γ `G x : B ⊃ A, ∆
⊃R y /∈ G , Γ, ∆

Γ, y : A `G∪{(y,x)} y : B, ∆

Γ, x : A− B `G ∆
−L y /∈ G , Γ, ∆

Γ `G y : A, ∆ Γ, y : B `G ∆

Γ `G x : A− B, ∆
−R yGx

The counter-example to cut-elimination done in L

x : p `(x,y) x : p
id

x : q `(x,y) x : q
id

x : p, y : r `(x,y) x : q, y : p − q
−R

y : r `(x,y) y : r
id

x : p, y : r `(x,y) x : q, y : (p − q) ∧ r
∧R

x : p `∅ x : q, x : r ⊃ ((p − q) ∧ r)
⊃R

Note the propagation of information from y to x at the −R inference.

Soundness of L

Def.: A counter-model of Γ `G ∆ is a pair (K , v), where K = (W ,≤, I)
is a Kripke structure and v a map from the set of labels to W , s.t.:

1. for all xGy , v(x) ≤ v(y);

2. for all x : A ∈ Γ, v(x) |= A;

3. for all x : A ∈ ∆, v(x) 6|= A.

Def.: A sequent is valid if it has no counter-models.

Thm.: The sequents derivable in L are valid.

L∗: an algorithmic variant of L

I There are no explicit pre-order or monotonicity rules.

I Uses a marking mechanism to guarantee monotonicity and
loop-detection.

I Sequents are triples Γ `G ∆, but labelled formulas in Γ, ∆, can have
additionally one of marks:

x : A∗ or x : A•.

Rules of L∗

atomic rules:

Γ, x : p•, p+, x : p∗ `G ∆

Γ, x : p `G ∆
atomL

where p+ = {y : p | xGy}

Γ `G x : p•, p−, x : p∗, ∆

Γ `G x : p, ∆
atomR

where p− = {y : p | yGx}

axiom:

Γ, x : p• `G x : p•, ∆
id

logical rules:

Γ `G ∆

Γ, x : > `G ∆
>L

Γ `G x : >, ∆
>R

Γ, x : ⊥ `G ∆
⊥L

Γ `G ∆

Γ `G x : ⊥, ∆
⊥R

Γ, x : A, x : B `G ∆

Γ, x : A ∧ B `G ∆
∧L

Γ `G x : A, ∆ Γ `G x : B, ∆

Γ `G x : A ∧ B, ∆
∧R

Γ, x : A `G ∆ Γ, x : B `G ∆

Γ, x : A ∨ B `G ∆
∨L

Γ `G x : A, x : B, ∆

Γ `G x : A ∨ B, ∆
∨R

Rules of L∗ for ⊃ and −

Γ, (B ⊃ A)+, x : (B ⊃ A)∗ `G x : B, ∆ Γ, x : A `G ∆

Γ, x : B ⊃ A `G ∆
⊃L

(B ⊃ A)+ = {y : B ⊃ A | xGy}

x : (B ⊃ A)• /∈ ∆ y /∈ G , Γ, ∆, Γ, Γy/x , y : B `G∪{(x,y)} y : A, x : (B ⊃ A)•, ∆

Γ `G x : B ⊃ A, ∆
⊃R

Γy/x = {y : C | x : C∗ ∈ Γ} ∪ {y : C• | x : C• ∈ Γ} ∪ {y : (C − D)• | x : C − D ∈ Γ}

x : (A− B)• /∈ Γ y /∈ G , Γ, ∆ Γ, x : (A− B)•, y : A `G∪{(y,x)} y : B, ∆y/x , ∆

Γ, x : A− B `G ∆
−L

∆y/x = {y : C | x : C∗ ∈ ∆} ∪ {y : C• | x : C• ∈ ∆} ∪ {y : (D ⊃ C)• | x : D ⊃ C ∈ ∆}

Γ `G x : A, ∆ Γ, x : B `G x : (A− B)∗, (A− B)−, ∆

Γ `G x : A− B, ∆
−R

(A− B)− = {y : A− B | yGx}

Search procedure for L∗

1. Given an L∗-sequent, while possible, apply rules that do not create
new labels (saturation).

2. For the top sequent of each of the resulting branches:

2.1 check if it is an axiom and, if so, stop with success the branch;
2.2 check for loops and proceed according to the respective loop

rule;
2.3 otherwise, apply ⊃R or −L and restart at 1, or, if not possible,

stop the whole search with failure.

Loop-detection

At a top sequent resulting from saturation of the premiss of ⊃R:

y 6∈ G

Γ `G∪{(x,y)} ∆

...

Γ0, Γ
y/x
0 , y : A `G∪{(x,y)} y : B, x : (A⊃ B)•, ∆0

Γ0 `G x : A⊃ B, ∆0
⊃R

check if the loop rule loopUp applies:

y 6∈ G Γ \ y `G ∆[x/y]

Γ `G∪{(x,y)} ∆
loopUp, if : Γ[y] ⊆ Γ[x] ∪ Γ•[x],

Γ∗[y] ⊆ Γ∗[x],

with : Γ[y] = {A|y : A ∈ Γ}, Γ∗[y] = {A|y : A∗ ∈ Γ}, etc.

Soundness of the search procedure

I The procedure builds partial derivations in L∗ augmented of the
loop rules.

Prop.: If the search procedure, applied to an L-sequent, stops with
success in all branches, the sequent is derivable in L.

Termination of the search procedure

Thm.: The procedure applied to L∗-sequents whose graph is acyclic
terminates.

Proof ideas:

I An infinite branch corresponds to infinitely many uses of ⊃R/− L.

I It is impossible to have an infinite branch corresponding to an
infinite ascending chain:

x2

x1

77ooo

x0

77ooo

I It is impossible to have an infinite branch corresponding to an
infinite zigzag, as e.g.:

x1

$$JJJ x5

x0

::ttt
x2

$$JJJ x4

::ttt

x3

::ttt

Counter-model construction and completeness

Thm. Let B be a failed branch of a proof attempt, let Γ `G ∆ be the
top sequent of B and let

1. K = (W ,≤, I), with W the set of labels in the sequent, ≤= G∗ and
I (x) = {p | x : p• ∈ Γ} (which is a Kripke structure);

2. v=identity on labels.

Then, (K , v) is a counter-model of B’s end sequent.

Corol.: Let Γ `G ∆ be an L-sequent whose graph is acyclic. The
following are equivalent:

i) Γ `G ∆ is valid;

ii) the search procedure applied to Γ `G ∆ terminates with success;

iii) Γ `G ∆ is derivable in L.

Some counter-models

x •

y • p ¬(p ∧v p)
v p ⊃ ¬p
p ⊃v v p

x •

y • p, q

(p ∧v q)⊃ (p − q)

x •
@
@
@y •

z •p
�

�
�

v¬p ⊃ ¬¬p

Related and future work

Related work:

Goré, Postniece e Tiu proposed also decision procedures for BiInt, based
on extended sequent calculi (combination of derivations and refutations;
nested sequents; display calculi).

Future work:

I Map L-derivations into label-free sequent calculus (and check for
completeness of analytic cuts).

I Contraction-free sequent calculus for BiInt (avoiding
loop-detection).

