TALLINN UNIVERSITY OF TECHNOLOGY

Verifying simple imperative programs with the Coq proof assistant

Andres Toom

Institute of Cybernetics at TUT IRIT/ACADIE Université de Toulouse

Tallinn 06.05.2010

Outline

- About Coq
 - Curry-Howard isomorphism
 - Sorts
 - Propositions
 - Logic
- Inductive datatypes and programming in Coq
- The While language
 - Formalisation of While
 - Verifying While programs
- Examples of Coq in use
- Future work

References

 B. C. Pierce, C. Casinghino, M. Greenber. Software Foundations

(http://www.cis.upenn.edu/~bcpierce/sf/)

Coq Reference Manual

(www.lix.polytechnique.fr/coq/doc)

 H. R. Nielson, F. Nielson: Semantics with Applications: A Formal Introduction. Wiley, 1992

(http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.html)

 Y. Bertot, P. Castéran. Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions. An EATCS Series, 2004

Coq

- Coq is an interactive theorem prover developed at INRIA and some other research institutions in France within the TypiCal (ex-LogiCal) project.
- Provides a formal language for writing mathematical definitions, executable algorithms and theorems together with an environment for semi-interactive development of machine-checked proofs.
- Based on the theory of the calculus of inductive constructions a derivative of calculus of constructions initially developed by Thierry Coquand (1988).
- Implemented in Objective Caml.

Curry-Howard isomorphism

- Also known as
 - Curry–Howard correspondence
 - proofs-as-programs correspondence or
 - formulae-as-types correspondence
- Establishes a direct relationship between computer programs and proofs in constructive mathematics
- Observations by Curry (1934 and 1958) and Howard (1969) that
 - Proof systems and models of computation have same structure
- Examples of formal systems based on this
 - Per Martin-Löf's intuitionistic type theory
 - Thierry Coquand's Calculus of Constructions

Sorts in Coq

- In Coq all objects belong into following sorts:
 - Set, Prop, Type
- Set the universe of program types or specifications.
 Specifications are typing the programs.
- Prop the universe of logical propositions. Logical propositions are typing the proofs.
- Type the type of Set and Prop

Sorts in Coq (2)

- Sorts can be manipulated as ordinary terms
- Sorts need to have a type too ...
- Assuming Set has type Set leads to an inconsistent type theory
- Hence, there are in addition to Set and Prop a hierarchy of universes Type(i) for any integer i
- The set of sorts:

 $\mathcal{S} \equiv \{\mathsf{Prop}, \mathsf{Set}, \mathsf{Type}(i) | i \in \mathbb{N}\}$

Propositions in Coq

Coq demo ...

Logic in Coq

Coq demo ...

Inductive datatypes and programming in Coq

Coq demo …

The While language

While syntax

While expressions and statements

Nielsen & Nielsen. Semantics with Applications

Semantics of arithmetic expressions

$$\mathcal{A}\llbracket n \rrbracket s = \mathcal{N}\llbracket n \rrbracket$$
$$\mathcal{A}\llbracket n \rrbracket s = s x$$
$$\mathcal{A}\llbracket a_1 + a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s + \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 \star a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s \star \mathcal{A}\llbracket a_2 \rrbracket s$$
$$\mathcal{A}\llbracket a_1 - a_2 \rrbracket s = \mathcal{A}\llbracket a_1 \rrbracket s - \mathcal{A}\llbracket a_2 \rrbracket s$$

Nielsen & Nielsen. Semantics with Applications

Semantics of boolean expressions

$$\mathcal{B}\llbracket\operatorname{true}\rrbracket s = \operatorname{tt}$$

$$\mathcal{B}\llbracket\operatorname{false}\rrbracket s = \operatorname{ff}$$

$$\mathcal{B}\llbracket a_1 = a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s = \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket a_1 \le a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \neq \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \leq \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket a_1 \le a_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s \leq \mathcal{A}\llbracket a_2 \rrbracket s \\ & \operatorname{ff} & \operatorname{if} \mathcal{A}\llbracket a_1 \rrbracket s > \mathcal{A}\llbracket a_2 \rrbracket s \end{cases}$$

$$\mathcal{B}\llbracket b_1 \le b_2 \rrbracket s = \begin{cases} \operatorname{tt} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{tt} & \operatorname{and} \mathcal{B}\llbracket b_2 \rrbracket s = \operatorname{tt} \\ & \operatorname{ff} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{ff} & \operatorname{ff} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{ff} & \operatorname{ff} & \operatorname{if} \mathcal{B}\llbracket b_1 \rrbracket s = \operatorname{ff} \end{cases}$$

Nielsen & Nielsen. Semantics with Applications

Semantics of statements

$\left[\mathrm{ass}_{\mathrm{ns}}\right]$	$\langle x := a, s \rangle \to s[x \mapsto \mathcal{A}[\![a]\!]s]$
$\left[skip_{ns}\right]$	$\langle \texttt{skip}, s \rangle \to s$
$\left[\mathrm{comp_{ns}}\right]$	$\frac{\langle S_1, s \rangle \to s', \langle S_2, s' \rangle \to s''}{\langle S_1; S_2, s \rangle \to s''}$
$[\mathrm{if}^{\mathrm{tt}}_{\mathrm{ns}}]$	$\frac{\langle S_1, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \text{ if } \mathcal{B}[\![b]\!]s = \mathbf{t}\mathbf{t}$
$[\mathrm{if}^{\mathrm{ff}}_{\mathrm{ns}}]$	$\frac{\langle S_2, s \rangle \to s'}{\langle \text{if } b \text{ then } S_1 \text{ else } S_2, s \rangle \to s'} \text{ if } \mathcal{B}[\![b]\!]s = \mathbf{f} \mathbf{f}$
$[{\rm while}_{\rm ns}^{\rm tt}]$	$\frac{\langle S, s \rangle \to s', \langle \texttt{while} \ b \ \texttt{do} \ S, s' \rangle \to s''}{\langle \texttt{while} \ b \ \texttt{do} \ S, s \rangle \to s''} \ \text{if} \ \mathcal{B}[\![b]\!]s = \texttt{tt}$
$[{\rm while}_{\rm ns}^{\rm ff}]$	(while b do $S, s angle \to s$ if $\mathcal{B}[\![b]\!]s = \mathbf{f}\mathbf{f}$

Nielsen & Nielsen. Semantics with Applications

06.05.2010

Verifying While programs

Coq demo …

Examples of Coq in use

- CompCert Specifying and verifying a compiler from a significant subset of C language to PowerPC assembly (X. Leroy)
- Verifying the correctness of the Esterel Lustre compiler.
- Verifying the security properties of JavaCard.
- Formalisation of the Coq kernel (B. Barras, B. Bernardo) and Coq extractor (P. Letouzey, S. Glondu)

Future work

- Different semantic approaches
 - Denotational semantics (direct and continuation passing style), ...
- Using Coq within a specific pragmatic approach to specify and verify correctness of program transformations from MBD oriented domain specific languages.

Thank you!