Program repair
as sound optimization of broken programs

Tarmo Uustalu, loC

joint work with Ando Saabas, Skype,
Bernd Fischer, U. of Southampton

TSEM, 12 November 2009



Program repair: the dream

@ Program repair: fixing a broken program (a program that
may abort), by transforming it into a safe or safer
program (one that cannot evaluate abnormally or will do
so less often).

@ The transformation should be compile-time and automatic
(although subject to review by the programmer).

@ It should also be defendable, e.g., as embodying a
plausible method of reconstructing programmer intent.

@ Mathematically, it should be sound for a suitable notion
of validity.



Program repair: our approach

@ Two central ideas:

e fix the meaning of broken programs by a dedicated
error-compensating semantics,
~~+ the psychological issue of programmer intent is
isolated into the definition of this semantics,

e guide transformation by a program analysis, with
analysis results interpreted relationally,
~» program repair becomes similar to sound program
optimization

@ In fact we get a spectrum:
— program repair

— enforcement of coding conventions

— program optimization.



Error-compensating semantics

@ To fix the intended meaning of broken programs
(programs that may abort under the standard
error-admitting semantics), we assign the programming
language a special error-compensating semantics with no
or fewer abnormal evaluations.

@ On safe programs, the two semantics must agree.

@ The evaluations of a given program under the
error-compensating semantics should agree with those of
the repaired program under the error-admitting semantics.

o If the given program is already safe, the repair may only
optimize it.



Relationally interpreted types

@ Our repairs are based on program analyses, described as
type systems.

@ The types are interpreted as relations between states of
the error-compensating and error-admitting semantics.
e Validity of repair, i.e., the agreement between the

evaluations of the given and repaired program is defined
in terms of these relations.



Example: Repairing file access errors

@ Error-admitting semantics: Opening an open file, reading
or closing a closed file cause abortion.

@ Error-compensating semantics: Opening, reading, closing
are always possible. In essence, all files are always open.
Opening and closing reset the file pointer.

@ Rationale behind: Likely, the programmer may have
forgotten some opens and closes.
@ Repair:

e removes all closes and opens,

e inserts some, generally elsewhere, to render all reads safe
and belonging appropriately to the same or different
sessions, minimizing session lengths.

(Cf. partial redundancy elimination: expression
evaluations removed and reinserted.)



e Eg,

read(f, x); open(f); read(f, x);
read(f,y); read(f,y); close(f);
open(f); N
read(f, z); open(f); read(f, z); close(f);
w=x—z, wi=x—2z
close(f)
if b then if b then
read(f, x) open(f); read(f, x)
else —, else
x:=x+1; X =x4+1;
open(f);

read(f,y) read(f,y); close(f)



Error-admitting semantics

States: 0 € Var — Z, p € F — {c} + {o(n) | n € N}
(closed or open and at some line)

Evaluation rules:

plf) = c p(f) = o(n)

o, p »open(f)— o, p[f — o(0)] o, p >close(f)— o, p[f — c]

p(f) = o(n)
o, p >»read(f,x)— o[x +— ¢(f,n)], p[f — o(n+ 1)]

p(f):O(n) p(f):C p(f):C
o,p>open(f)=+ o, p>close(f)=1 o, p>read(f, x)




Safety type system
Types: d € F — {c, 0} (closed, open)
Typing rules:

d(f)=c d(f)=o

open(f):d — d[f — o] close(f):d — d[f — (]

d(f)y=o
read(f,x):d — d

no subsumption rule

Types as predicates on states:

Vf € F.p(f)
o(n)Fo clc (0,0) =

= d(f)
d



Soundness of the safety type system

If s: d — d’ in the safety type system, then
Q if (o,p) E=d and (o, p) >s— (o', p') in the
error-admitting semantics, then (¢/, p') = d’,

@ it cannot be that (o, p) |= d and (o, p) >s—t in the
error-admitting semantics.



Error-compensating semantics
States: c e Var — Z, p: F — N.

Evaluation rules:

o,p »open(f)— o, p[f — 0] o,p >close(f)— o, p[f — 0]

o, p >read(f,x)— o[x — &(f, p(f))], plf — p(f) + 1]

(no abnormal evaluations)



Repair type system

Types: d,e € F — {r,u} (possibly read/certainly unread
before, after)

Subtyping:

(u,r) < (r,r) ¢ open(f) (r,r) <(r,u) < close(f)

(m,m) < (m,m) —¢skip (u,m) < (m',u) —¢ skip

et ™~
(r, r) skip (u, u)
\ .
open(f) (U, r) skip

Vf e F. (d(f),e(f)) < (d'(f), € (f)) —r s(f)
(d,e) < (d',€e') = [s(f) | f € F]



Repair type system ctd.
Typing rules:

open(f) : (d, e[f +— u]) — (d[f > u], e) — skip

close(f) : (d, e[f — u]) — (d[f + u], e) < skip

d(f)y=e(f)=r
read(f,x) : (d,e) — (d, e) < read(f, x)
(d, e) < (do, e) s : (do, e0) — (dp, &) (do, &) < (d', €)
— Spre > Sk “— Spost

S: (d, e) — (d/, el) “ Spre; Sk, Spost

Types as relations:
Vf € F. p(f) ~(d,e) p«(f)
n~eno(n)  O~unc  Nmu)c (0,0) ~(d.e) (0, px)




Soundness of the repair type system
If s:(d,e) — (d’, €') < s, in the repair type system, then

Q if (0,p) ~d,e) (04, ps) and (o, p) >s— (0',p') in the
error-compensating semantics, then there exists (o7, p,)
such that (o’, p') ~(ar,er) (0%, p..) and
(04, px) >s.— (0%, pl) in the error-admitting semantics;

Q if (0,p) ~.e) (04, pi) and (04, pi) »s.— (0, pl) in the
error-admitting semantics, then there exists (o’, p’) such
that (o', p') ~(ar,e) (0%, p,) and (o, p) >s— (o', p') in the
error-compensating semantics;

© it cannot be that (o, p) ~(qg.e) (04, p+) and (0., ps) >5.
in the error-admitting semantics;

Q s.:(d,e) — (d', )"
where (r,r)# =4 o, (m,u)¥ =4 c, (u, m)# =4 c and
(d, e)*(f) =ar (d(f), e(£))* .



Example: Queue access

@ Error-admitting semantics: overflow, underflow lead to
abortion.

@ Error-compensating semantics: some platform-specific
implementation (e.g., enqueues to a full queue skipped,
dequeues from an empty queue return some default value)

@ Rationale: Compensation given by an implementation.

@ Program repair: based on an interval analysis about queue
length, makes it explicit what the compensation does.



Error-admitting semantics
States: 0 € Var — Z, g € Z*, |q| < N for a fixed N € N

Evaluation rules:

gl <N
0,q »enq(a)— o, q+[[a]o] o,v:q rdeq(x)- olx ] q

g =N
o,qg>enq(a)~ o, [] -deq(x)—




Safety type system
Types: lo,hi € N, lo < hi
Subtyping rules:

lo' < lo hi<hi
[lo, hi] < [0, hi"]

Typing rules:

hi <N 0<lo
enq(a) : [lo, hi] — [lo + 1, hi + 1] deq(x) : [lo, hi] — [lo — 1, hi — 1]

[lo, hi] < [log, hig] s : [log, hig] — [log, hig]  [log, hig] < [lo’, hi’]
s : [lo, hi] — [I0’, hi']




Error-compensating semantics

States as in the error-admitting semantics

Evaluation rules:

lg| < N lql =N
o,q »enq(a)~ o, q+[[alo] o,q »enq(a)~ o,q

0,v:q rdeq(x)= olx —v],qg o[ ~deq(x)= o[x 0], ]]



Repair type system
Types as in the safety type system

Subtyping rules:

lo' <lo hi< hi’
[lo, hi] < [0, hi"]

Typing rules:
hi <N
enq(a) : [lo, hi] — [lo+ 1, hi 4+ 1] enq(a) : [N, N] — [N, N]
— enq(a) — skip
lo <N

enq(a) : [lo, N] — [lo + 1, N]
— if —full then enq(a) else skip



0<lo

deq(x) : [/O7 hi] — [/O —1,hi — 1] deq(x) : [070] — [070]
— deq(x) —x:=0
0<hi

deq(x) : [0, hi] — [0, hi — 1]
— if —emp then deq(x) else x :=0

[log, hig] < [lo, hi] s : [lo, hi] — [lo', hi']l — s, [lo', hi’] < [log, hig)

s : [loo, hig] — [lop, hig] = s,



Example: Modular arithmetic

@ Error-admitting semantics: ideal arithmetic (in
[0..N —1]).
@ Error-compensating semantics: arithmetic modulo M.

@ Program repair: based on an interval analysis about
values of variables, inserts explicit mods (but not more
than indispensable).

@ Transformation of a proof about the repaired program to
a proof about a given program makes it possible to reason
in the ideal arithmetic and transfer the argument to
modular arithmetic (with proof transformation inserting
the interval reasoning).



Conclusion

@ Program repair can be put on a firm semantic footing.
The psychological engineering issue of reconstructing
programmer intent can be isolated.

@ The challenge is, given an error-compensating semantics,
to find a suitable program analysis with a suitable
semantical interpretation.

@ This set up, the type-systematic method makes soundness

proofs relatively straightforward checks also leading to
automatic transformations of program correctness proofs.



