
Resumptions, weak bisimilarity and

big-step semantics for interactive I/O
An exercise in mixed induction-coinduction

Tarmo Uustalu, Institute of Cybernetics, Tallinn
joint work with Keiko Nakata

TSEM, Tallinn, 13 May 2010

Motivation

Now and then we need rigorous semantic descriptions and
program logics for languages where programs may not
terminate, but can perform observable actions

Especially relevant in compiler correctness, program
analysis/verification

Big-step semantics: operational (an abstract machine),
but nonetheless compositional (close to
denotational)—useful in metatheory

Typical operational accounts of computation with
observable actions are small-step

Constructive type theory: a “finer” mathematics, only
computable functions exist—a useful stance for people
concerned with “executable specification”

This talk

Big-step semantics for While (imperative programs) with
interactive I/O

We only want to observe I/O actions

We want to identify any finite sequences of delays (silent
actions)

Main tools: interactive I/O resumptions (computation
trees), termination-sensitive weak bisimilarity

This needs coinduction and mixed induction-coinduction

Inspiration for the bigger context: Leroy’s certified
compiler project and coinductive big-step semantics

Outline

Basic (delayful) resumptions, strong bisimilarity,
responsive and commited resumptions

Weak bisimilarity

Basic (delayful) semantics

Delay-free resumptions, delay-free semantics
(removes finite sequences of delays on-the-fly)

Classical-style resumptions, classical-style semantics
(removes finite sequences of delays on-the-fly
but also detects divergence)

Syntax; states

We extend While with input and output statements:

s ::= skip | s0; s1 | x := e | if e then st else sf | while e do st
| input x | output e

States: assignments of integers to variables.

Basic (delayful) resumptions

Resumptions (computation trees), δ corresponds to an
internal action, observable as a delay:

σ : state
ret σ : res

f : Int → res
in f : res

v : Int r : res
out v r : res

r : res
δ r : res

(double horizontal rules—coinductive definition,
single—inductive definition)

Strong bisimilarity:

ret σ ≈ ret σ

∀v . f v ≈ f∗ v

in f ≈ in f∗

r ≈ r∗
out v r ≈ out v r∗

r ≈ r∗
δ r ≈ δ r∗

We think of strong bisimilarity as equality of resumptions,
but in intensional type theory, it is weaker
(just as equality of two functions on all argument values
does not entail their equality).

Convergence and divergence

Convergence (a resumption eventually terminates or does
a properly observable action):

ret σ ↓ ret σ in f ↓ in f out v r ↓ out v r

r ↓ r ′

δ r ↓ r ′

Divergence (it keeps doing internal actions forever)

r ↑
δ r ↑

Both are setoid predicates, i.e., stable under strong
bisimilarity.

Classically, one is the negation of the other.

Constructively, we have ∀r .¬ (∃r ′. r ↓ r ′) → r ↑, but
neither ∀r .¬ r ↑ → ∃r ′. r ↓ r ′ nor ∀r . (∃r ′. r ↓ r ′) ∨ r ↑.

Responsiveness

Responsiveness (a resumption keeps converging):

r ↓ ret σ

r ⇓
r ↓ in f ∀v . (f v)⇓

r ⇓
r ↓ out v r ′ r ′ ⇓

r ⇓

Responsiveness is the analogue in interactive computation
of termination from non-interactive computation.

Commitedness

Commitedness (a resumption always converges or
diverges):

r ↓ ret σ

r m
r ↓ in f ∀v . (f v)m

r m
r ↓ out v r ′ r ′ m

r m
r ↑
r m

Both responsiveness and commitedness are setoid
predicates.

Classically, every resumption is committed.
Constructively, this is not the case (cannot decide
halting).

Weak bisimilarity

In process calculi, divergence is identified with
termination. We reject this view as unrealistic. Our
version is “termination-sensitive”.

Weak bisimilarity (two resumptions keep converging to
related resumptions):

r ↓ ret σ r∗ ↓ ret σ

r ∼= r∗

r ↓ in f ∀v . f v ∼= f∗ v r∗ ↓ in f∗
r ∼= r∗

r ↓ out v r ′ r ′ ∼= r ′∗ r∗ ↓ out v r ′∗
r ∼= r∗

r ∼= r∗
δ r ∼= δ r∗

Classical-style weak bisimilarity

Classical-style version:

r ↓ ret σ r∗ ↓ ret σ

r ∼=c r∗

r ↓ out v r ′ r ′ ∼=c r ′∗ r∗ ↓ out v r ′∗
r ∼=c r∗

r ↓ in f r∗ ↓ in f∗ ∀v . f v ∼=c f∗ v

r ∼=c r∗

r ↑ r∗ ↑
r ∼=c r∗

Classically, the two notions are equivalent.

Constructively, the classical-style version is stronger.

Basic (delayful) semantics

Evaluation: associates a resumption to an (initial state):

(x := e, σ) ⇒ δ (ret σ[x 7→ JeKσ])

(skip, σ) ⇒ ret σ

(s0, σ) ⇒ r (s1, r)
∗⇒ r ′

(s0; s1, σ) ⇒ r ′

e |= σ (st , δ (ret σ))
∗⇒ r

(if e then st else sf , σ) ⇒ r

e 6|= σ (sf , δ (ret σ))
∗⇒ r

(if e then st else sf , σ) ⇒ r

e |= σ (st , δ (ret σ))
∗⇒ r (while e do st , r)

∗⇒ r ′

(while e do st , σ) ⇒ r ′

e 6|= σ

(while e do st , σ) ⇒ δ (ret σ)

(input x , σ) ⇒ in (λv .ret σ[x 7→ v]) (output e, σ) ⇒ out (JeKσ) (ret σ)

Basic (delayful) semantics ctd

Extended evaluation: associates a (total) resumption to
an (already accumulated) resumption:

(s, σ) ⇒ r

(s, ret σ)
∗⇒ r

∀v . (s, f v)
∗⇒ f ′ v

(s, in f)
∗⇒ in f ′

(s, r)
∗⇒ r ′

(s, out v r)
∗⇒ out v r ′

(s, r)
∗⇒ r ′

(s, δ r)
∗⇒ δ r ′

i.e., the coinductive prefix closure of evaluation.

Design choice: evaluation of an expression to
assign/update of a variable and evaluation of a guard
constitute internal actions, observable as delays.

Consideration: every loop always progresses, for instance,
while true do skip is not weakly bisimilar to skip.

Delay-free resumptions

Delay-free resumptions (the delay constructor removed):

σ : state
retr σ : resr

f : Int → resr

inr f : resr

v : Int r : resr

outr v r : resr

Delay-free resumptions embed in delayful resumptions.

Any responsive resumption normalizes to a weakly
bisimilar delay-free resumption.

Delay-free semantics

Convergent evaluation: inductive, parameterized over a
relation X , to be instantiated with the coinductive
extended evaluation:

(x := e, σ)⇒↓(X) retr (σ[x 7→ JeKσ])

(skip, σ)⇒↓(X) retr σ

(s0, σ)⇒↓(X) retr σ′ (s1, σ′)⇒↓(X) r

(s0; s1, σ)⇒↓(X) r

(s0, σ)⇒↓(X) inr f ∀v . (s1, f v) X f ′ v

(s0; s1, σ)⇒↓(X) inr f ′
(s0, σ)⇒↓(X) outr v r (s1, r) X r ′

(s0; s1, σ)⇒↓(X) outr v r ′

e |= σ (st , σ)⇒↓(X) r

(if e then st else sf , σ)⇒↓(X) r

e 6|= σ (sf , σ)⇒↓(X) r

(if e then st else sf , σ)⇒↓(X) r

e |= σ (st , σ)⇒↓(X) retr σ′ (while e do st , σ′)⇒↓(X) r

(while e do st , σ)⇒↓(X) r

e |= σ (st , σ)⇒↓(X) inr f ∀v . (while e do st , f v) X f ′ v

(while e do st , σ)⇒↓(X) inr f ′

e |= σ (st , σ)⇒↓(X) outr v r (while e do st , r) X r ′

(while e do st , σ)⇒↓(X) outr v r ′

e 6|= σ

(while e do st , σ)⇒↓(X) retr σ

(input x , σ)⇒↓(X) inr (λv .retr σ[x 7→ v]) (output e, σ)⇒↓(X) outr (JeKσ) (retr σ)

Delay-free semantics ctd

Extended evaluation: coinductive:24 (s, σ)⇒↓(∗⇒) r

(s, retr σ)
∗⇒ r

35
X ⊆ ∗⇒ (s, σ)⇒↓(X) r

(s, retr σ)
∗⇒ r

∀v . (s, f v)
∗⇒ f ′ v

(s, inr f)
∗⇒ inr f ′

(s, r)
∗⇒ r ′

(s, outr v r)
∗⇒ outr v r ′

Evaluation:
(s, r)⇒↓(∗⇒) r ′

(s, r)⇒r r ′

The delay-free semantics agrees with the delayful
semantics for responsive resumptions.

Classical-style resumptions

Classical-style resumptions (a special constructor for
divergence added to delay-free resumptions):

σ : state
retc σ : resc

f : Int → resc

inc f : resc

r : resc

outc v r : resc • : resc

Classical-style resumptions embed in delayful resumptions
(emb • = δ (emb •)).
Any committed resumption (classically, any resumption)
normalizes to a weakly bisimilar delay-free resumption.

Classical-style semantics ctd

Convergent evaluation: as in the delay-free semantics
(inductive)

Divergent evaluation: a new coinductive relation, also
parameterized in X :

(s0, σ) ⇒↑(X)

(s0; s1, σ) ⇒↑(X)

(s0, σ)⇒↓(X) retc σ′ (s1, σ′) ⇒↑(X)

(s0; s1, σ) ⇒↑(X)

e |= σ (st , σ) ⇒↑(X)

(if e then st else sf , σ) ⇒↑(X)

e 6|= σ (sf , σ) ⇒↑(X)

(if e then st else sf , σ) ⇒↑(X)

e |= σ (st , σ) ⇒↑(X)

(while e do st , σ) ⇒↑(X)

e |= σ (st , σ)⇒↓(X) retc σ′ (while e do st , σ′) ⇒↑(X)

(while e do st , σ) ⇒↑(X)

(divergent evaluation depends on convergent evaluation,
but not the other way around)

Classical-style semantics ctd

Extended evaluation: as in the delay-free semantics, but
with a choice between convergent and divergent
evaluation, and an additional case for the accumulated
resumption being a black hole:

X ⊆ ∗⇒ (s, σ)⇒↓(X) r

(s, retc σ)
∗⇒ r

X ⊆ ∗⇒ (s, σ) ⇒↑(X)

(s, retc σ)
∗⇒ •

∀v . (s, f v)
∗⇒ f ′ v

(s, inc f)
∗⇒ inc f ′

(s, r)
∗⇒ r ′

(s, outc v r)
∗⇒ outc v r ′ (s, •) ∗⇒ •

Evaluation: again a choice between convergent and
divergent evaluation:

(s, σ)⇒↓(∗⇒) r

(s, σ)⇒c r

(s, σ) ⇒↑(∗⇒)

(s, σ)⇒c •
The classical-style semantics agrees with the delayful
semantics for commited resumptions (classically, all
resumptions).

Conclusion

Constructive glasses give a nuanced picture of subtle
concepts like weak bisimilarity.

Interactive I/O is not considerably more complicated than
non-interactive (batch) computation—the same basic
considerations apply and help.

We hope we can also to treat concurrency.

An interesting exercise with mixed inductive-coinductive
definitions of the form νX µY F (X , Y).

In the Coq development we had to parameterized
inductive types and Mendler-style coinductive types (to
facilitate guarded corecursion).

For more details, check our TPHOLs 2009, ESOP 2010
papers and a new submission, and the accompanying Coq
code.

