Quotient Complexity of Regular Languages

Janusz Brzozowski

David R. Cheriton School of Computer Science

Tallinn University of Technology
Tallinn, Estonia
June 9, 2011
Outline

- Regular Languages
Outline

- Regular Languages
- Quotient Complexity
Outline

- Regular Languages
- Quotient Complexity
- State Complexity
Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results
Outline

- Regular Languages
- Quotient Complexity
- State Complexity
- Upper Bounds on Complexity of Operations
- Results
- Conclusions
Languages

- Alphabet Σ a finite set of letters
- Set of all words Σ^* free monoid generated by Σ
- Empty word ε
- Language $L \subseteq \Sigma^*$
Operations on Languages

- complement \(\overline{L} = \Sigma^* \setminus L \)
- union \(K \cup L \)
- intersection \(K \cap L \)
- difference \(K \setminus L \)
- symmetric difference \(K \oplus L \)
- general binary boolean operation \(K \circ L \)
Operations on Languages

- **complement** $\overline{L} = \Sigma^* \setminus L$
- **union** $K \cup L$
- **intersection** $K \cap L$
- **difference** $K \setminus L$
- **symmetric difference** $K \oplus L$
- **general binary boolean operation** $K \circ L$

product or (con)catenation,
$$K \cdot L = \{w \in \Sigma^* \mid w = uv, u \in K, v \in L\}$$

- **star** $K^* = \bigcup_{i \geq 0} K^i$
- **positive closure** $K^+ = \bigcup_{i \geq 1} K^i$
- **reverse** L^R
 $$\varepsilon^R = \varepsilon, \ (wa)^R = aw^R$$
Regular or Rational Languages

- basic languages \(\{\emptyset, \{\varepsilon\}\} \cup \{\{a\} \mid a \in \Sigma\} \)
- use a finite number of rational operations \(\cup, \cdot, *, (\cdot) \)
Regular or Rational Languages

- **basic languages** $\{\emptyset, \{\varepsilon\}\} \cup \\{\{a\} \mid a \in \Sigma\}$
- use a finite number of rational operations $\cup, \cdot, *, (\cdot)$

- Notation clumsy $L = (\{\varepsilon\} \cup \{a\})^* \cdot \{b\}$
- Free algebra over $\{\varepsilon, \emptyset\} \cup \Sigma$ with function symbols $\cup, \cdot, *$
- Use regular expression $E = (\varepsilon \cup a)^* \cdot b$
Regular or Rational Languages

- basic languages \(\{\emptyset, \{\epsilon\}\} \cup \{\{a\} \mid a \in \Sigma\} \)
- use a finite number of rational operations \(\cup, \cdot, *, (\cdot) \)

Notation clumsy \(L = (\{\epsilon\} \cup \{a\})^* \cdot \{b\} \)
- Free algebra over \(\{\epsilon, \emptyset\} \cup \Sigma \) with function symbols \(\cup, \cdot, * \)
- Use regular expression \(E = (\epsilon \cup a)^* \cdot b \)

Mapping \(\mathcal{L} \) from free algebra to regular languages
- \(\mathcal{L}(\emptyset) = \emptyset \), \(\mathcal{L}(\epsilon) = \{\epsilon\} \), \(\mathcal{L}(a) = \{a\} \)
- \(\mathcal{L}(E \cup F) = \mathcal{L}(E) \cup \mathcal{L}(F) \)
- \(\mathcal{L}(E \cdot F) = \mathcal{L}(E) \cdot \mathcal{L}(F) \), \(\mathcal{L}(E^*) = (\mathcal{L}(E))^* \)
- \(\mathcal{L}(\overline{E}) = \overline{\mathcal{L}(E)} \)
Quotient Complexity of a Language

- **Left quotient**, or quotient of a language L by a word w
- The language $L_w = \{x \in \Sigma^* \mid wx \in L\}$
Quotient Complexity of a Language

- **Left quotient**, or **quotient** of a language L by a word w
- The language $L_w = \{x \in \Sigma^* \mid wx \in L\}$

- The **quotient complexity** of L is the number of quotients of L
- Denoted by $\kappa(L)$ (kappa for both *kwotient* and *komplexity*)
- $\kappa(L)$ defined for any language, and may be finite or infinite
Quotient Complexity of a Language

- **Left quotient**, or quotient of a language L by a word w
 - The language $L_w = \{ x \in \Sigma^* \mid wx \in L \}$

- The **quotient complexity** of L is the number of quotients of L
- Denoted by $\kappa(L)$ (kappa for both kwotient and komplexity)
- $\kappa(L)$ defined for any language, and may be finite or infinite

Example

- Example: $\Sigma = \{ a, b \}$, $L = a\Sigma^*$
 - $\kappa(L) = 3$
 - $L_e = L$
 - $L_a = \Sigma^* = L_{aa} = L_{ab}$
 - $L_b = \emptyset = L_{ba} = L_{bb}$
Finding Quotients: The ε-Function

Does L contain the empty word?

\[x^\varepsilon = \begin{cases} \emptyset, & \text{if } x = \emptyset \text{, or } x \in \Sigma; \\ \varepsilon, & \text{if } x = \varepsilon \end{cases} \]

\[(\overline{L})^\varepsilon = \begin{cases} \emptyset, & \text{if } L^\varepsilon = \varepsilon; \\ \varepsilon, & \text{if } L^\varepsilon = \emptyset \end{cases} \]
Finding Quotients: The ε-Function

Does L contain the empty word?

$$x^\varepsilon = \begin{cases} \emptyset, & \text{if } x = \emptyset, \text{ or } x \in \Sigma; \\ \varepsilon, & \text{if } x = \varepsilon \end{cases}$$

$$(L)^\varepsilon = \begin{cases} \emptyset, & \text{if } L^\varepsilon = \varepsilon; \\ \varepsilon, & \text{if } L^\varepsilon = \emptyset \end{cases}$$

$$(K \cup L)^\varepsilon = K^\varepsilon \cup L^\varepsilon$$
$$(KL)^\varepsilon = K^\varepsilon \cap L^\varepsilon$$
$$(L^*)^\varepsilon = \varepsilon$$
Quotient by a Letter

\[x_a = \begin{cases} \emptyset, & \text{if } x \in \{\emptyset, \varepsilon\}, \text{ or } x \in \Sigma \text{ and } x \neq a; \\ \varepsilon, & \text{if } x = a \end{cases} \]
Quotient by a Letter

\[x_a = \begin{cases}
\emptyset, & \text{if } x \in \{\emptyset, \varepsilon\}, \text{ or } x \in \Sigma \text{ and } x \neq a; \\
\varepsilon, & \text{if } x = a
\end{cases} \]

\[
\begin{align*}
(L)_a &= \overline{(L_a)} \\
(K \cup L)_a &= K_a \cup L_a \\
(KL)_a &= K_a L \cup K^\varepsilon L_a \\
(L^*)_a &= L_a L^*
\end{align*}
\]
Quotient by a Word

\[
\begin{align*}
L_\varepsilon & = L \\
L_w & = L_a, \quad \text{if } w = a \in \Sigma \\
L_{wa} & = (L_w)_a
\end{align*}
\]
Quotient by a Word

\[L_\epsilon = L \]
\[L_w = L_a, \text{ if } w = a \in \Sigma \]
\[L_{wa} = (L_w)_a \]

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives
Quotient by a Word

\[
\begin{align*}
L_\varepsilon &= L \\
L_w &= L_a, \text{ if } w = a \in \Sigma \\
L_{wa} &= (L_w)_a
\end{align*}
\]

- Calculating quotients, we get expressions called derivatives
- There is an infinite number of distinct derivatives

Example

\[
\begin{align*}
(a^*)_a &= (a)a^* = \varepsilon a^* \\
(a^*)_{aa} &= (\varepsilon a^*)_a = \varepsilon a^* \cup \varepsilon (a^*)_a = \emptyset a^* \cup \varepsilon (\varepsilon a^*), \text{ etc.}
\end{align*}
\]
Similarity Laws

\[
\begin{align*}
L \cup L &= L \\
K \cup L &= L \cup K \\
K \cup (L \cup M) &= (K \cup L) \cup M \\
L \cup \emptyset &= L \\
L \emptyset &= \emptyset L = \emptyset \\
L \varepsilon &= \varepsilon L = L
\end{align*}
\]
Example

Example: $\Sigma = \{a, b\}$, $L = a\Sigma^*$

- $L_\varepsilon = L$
- $L_a = \Sigma^* = L_{aa} = L_{ab}$
- $L_b = \emptyset = L_{ba} = L_{bb}$
Example: $\Sigma = \{a, b\}$, $L = a\Sigma^*$

- $L_\epsilon = L$
- $La = \Sigma^* = L_{aa} = L_{ab}$
- $L_b = \emptyset = L_{ba} = L_{bb}$

\[
L = aLa \cup bLb, \\
La = aLa \cup bLa \cup \epsilon, \\
Lb = aLb \cup bLb.
\]
Example: \(\Sigma = \{a, b\} \), \(L = a\Sigma^* \)

- \(L_\varepsilon = L \)
- \(L_a = \Sigma^* = L_{aa} = L_{ab} \)
- \(L_b = \emptyset = L_{ba} = L_{bb} \)

\[
\begin{align*}
L &= aL_a \cup bL_b, \\
L_a &= aL_a \cup bL_a \cup \varepsilon, \\
L_b &= aL_b \cup bL_b.
\end{align*}
\]
Extended Regular Expressions

Example \((L = \Sigma^* a \Sigma^* \cap \Sigma^* bb \Sigma^*)\)

- \(L_\varepsilon = L\)
- \(L_a = \Sigma^* bb \Sigma^*\)
- \(L_b = \Sigma^* a \Sigma^* \cap \Sigma^* bb \Sigma^* \cup b \Sigma^*\)
- \(L_a = \Sigma^* bb \Sigma^*\)
- \(L_{ab} = \Sigma^* bb \Sigma^* \cup b \Sigma^*\)
- \(L_{ba} = \Sigma^* bb \Sigma^* = L_a\)
- \(L_{bb} = \emptyset\)
- \(L_{aba} = L_a\)
- \(L_{abb} = \emptyset\)
Extended Regular Expressions

Example \((L = \Sigma^* a \Sigma^* \cap \Sigma^* bb \Sigma^*)\)

- \(L_\varepsilon = L\)
- \(L_a = \Sigma^* bb \Sigma^*\)
- \(L_b = \Sigma^* a \Sigma^* \cap \Sigma^* bb \Sigma^* \cup b \Sigma^*\)
- \(L_{aa} = L_a\)
- \(L_{ab} = \Sigma^* bb \Sigma^* \cup b \Sigma^*\)
- \(L_{ba} = \Sigma^* bb \Sigma^* = L_a\)
- \(L_{bb} = \emptyset\)
- \(L_{aba} = L_a\)
- \(L_{abb} = \emptyset\)

\[
L = aL_a \cup bL_b, \\
L_a = aL_a \cup bL_{ab} \cup \varepsilon, \\
L_b = aL_a \cup b\emptyset, \\
L_{ab} = aL_a \cup b\emptyset
\]
Solving Equations \(X = AX \cup B \implies X = A^*B \)

Example \((L = \Sigma^* a\Sigma^* \cap \Sigma^* bb\Sigma^*) \)

\[
L &= aL_a \cup bL_b \\
L_a &= aL_a \cup bL_{ab} \cup \epsilon \\
L_b &= aL_a \cup b\emptyset \\
L_{ab} &= aL_a \cup b\emptyset
\]
Solving Equations $X = AX \cup B \implies X = A^*B$

Example $(L = \Sigma^*a\Sigma^* \cap \Sigma^*bb\Sigma^*)$

- $L = aL_a \cup bL_b$
- $L_a = aL_a \cup bL_{ab} \cup \varepsilon$
- $L_b = aL_a \cup b\emptyset$
- $L_{ab} = aL_a \cup b\emptyset$

$L = aL_a \cup bL_b$
$L_a = aL_a \cup bL_b \cup \varepsilon$
$L_b = aL_a \cup b\emptyset$
Solving Equations $X = AX \cup B \implies X = A^* B$

Example ($L = \Sigma^* a \Sigma^* \cap \Sigma^* bb \Sigma^*$)

\[
\begin{align*}
L &= aL_a \cup bL_b \\
L_a &= aL_a \cup bL_{ab} \cup \varepsilon \\
L_b &= aL_a \cup b\emptyset \\
L_{ab} &= aL_a \cup b\emptyset \\
\end{align*}
\]

\[
\begin{align*}
L &= aL_a \cup bL_b \\
L_a &= aL_a \cup bL_b \cup \varepsilon \\
L_b &= aL_a \cup b\emptyset \\
\end{align*}
\]

\[
\begin{align*}
L &= \mathcal{L}(a \cup ba)L_a \\
L_a &= \mathcal{L}(a \cup ba)L_a \cup \varepsilon = \mathcal{L}(a \cup ba)^* \\
L &= \mathcal{L}(a \cup ba)(a \cup ba)^* \\
\end{align*}
\]
Deterministic finite automaton \(\mathcal{A} = (Q, \Sigma, \delta, q_0, F) \)

- \(Q \): set of states
- \(\delta : Q \times \Sigma \rightarrow Q \): transition function
- \(q_0 \): initial state
- \(F \subseteq Q \): set of final or accepting states
Automata

Deterministic finite automaton (DFA) \(A = (Q, \Sigma, \delta, q_0, F) \)
- \(Q \) set of states
- \(\delta : Q \times \Sigma \rightarrow Q \) transition function
- \(q_0 \) initial state
- \(F \subseteq Q \) set of final or accepting states

Nondeterministic finite automaton (NFA) \(N = (Q, \Sigma, \delta, I, F) \)
- \(Q \) set of states
- \(\delta : Q \times \Sigma \rightarrow 2^Q \) transition function
- \(I \) set of initial states
- \(F \subseteq Q \) set of final or accepting states
Quotient Automaton

DFA $A = (Q, \Sigma, \delta, q_0, F)$

- $Q = \{ L_w | w \in \Sigma^* \}$
- $\delta(L_w, a) = L_{wa}$
- $q_0 = L_\varepsilon = L$
- $F = \{ L_w | \varepsilon \in L_w \}$ accepting or final quotients
Quotient Automaton

DFA $A = (Q, \Sigma, \delta, q_0, F)$

- $Q = \{ L_w \mid w \in \Sigma^* \}$
- $\delta(L_w, a) = L_{wa}$
- $q_0 = L_\epsilon = L$
- $F = \{ L_w \mid \epsilon \in L_w \}$ accepting or final quotients

L is recognizable if and only if the number of quotients is finite (Nerode, 1958; Brzozowski, 1962)
State complexity of L is the number of states in the minimal DFA recognizing L.
State complexity of L is the number of states in the minimal DFA recognizing L.

Why define the complexity of a language by the size of its automaton, a different object?
State Complexity

State complexity of \(L \) is the number of states in the minimal DFA recognizing \(L \)

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of \(L \) is isomorphic to the minimal DFA of \(L \)
State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity = quotient complexity
State complexity of L is the number of states in the minimal DFA recognizing L

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity $=$ quotient complexity
- Quotient complexity is more natural
State complexity of L is the number of states in the minimal DFA recognizing L.

- Why define the complexity of a language by the size of its automaton, a different object?
- Quotient DFA of L is isomorphic to the minimal DFA of L
- State complexity $=$ quotient complexity
- Quotient complexity is more natural
- Quotients have some advantages
A subclass C of regular languages

$L_1, \ldots, L_k \in C$ with quotient complexities n_1, \ldots, n_k

A k-ary operation f on L_1, \ldots, L_k

Quotient complexity of $f(L_1, \ldots, L_k)$

Quotient complexity of f in C is the worst case quotient complexity of $f(L_1, \ldots, L_k)$ as L_1, \ldots, L_k range over C

A function of n_1, \ldots, n_k
Complexity of Operations

- A subclass C of regular languages
- $L_1, \ldots, L_k \in C$ with quotient complexities n_1, \ldots, n_k
- A k-ary operation f on L_1, \ldots, L_k
- Quotient complexity of $f(L_1, \ldots, L_k)$
- **Quotient complexity of f in C** is the worst case quotient complexity of $f(L_1, \ldots, L_k)$ as L_1, \ldots, L_k range over C
- A function of n_1, \ldots, n_k

Example

- Regular languages K and L with $\kappa(K) = m$, $\kappa(L) = n$
- Union: $\kappa(K \cup L) \leq mn$
- Complement: $\kappa(\overline{L}) = \kappa(L) = n$
Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of mn for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^n is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2^n bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2^n is tight (rediscovered)
Some Early Work on State Complexity

- 1957, Rabin and Scott: upper bound of mn for intersection
- 1962, Brzozowski: upper bounds for union, product and star
- 1963, Lupanov: NFA to DFA conversion bound of 2^n is tight
- 1964, Lyubich: unary case
- 1966, Mirkin: 2^n bound for reversal is attainable
- 1970, Maslov: examples meeting bounds for union, concatenation, star and other operations
- 1971, Moore: NFA to DFA conversion bound of 2^n is tight (rediscovered)

Renewed interest

- 1991, Birget: “state complexity”
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
Upper Bounds Using Automata

- Given automata \mathcal{A}, \mathcal{B} of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
Upper Bounds Using Automata

- Given automata \(A, B \) of languages \(K, L \), find \(\kappa(f(K, L)) \)
- Check if automata “complete”
- If there is a “sink state”, is there only one?
Given automata A, B of languages K, L, find $\kappa(f(K, L))$

Check if automata “complete”

If there is a “sink state”, is there only one?

Is every state “useful”?
Given automata A, B of languages K, L, find $\kappa(f(K, L))$

- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

Upper Bounds Using Automata
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

- Construct DFA for $f(K, L)$ directly
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
Given automata A, B of languages K, L, find $\kappa(f(K, L))$

- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states
Upper Bounds Using Automata

- Given automata A, B of languages K, L, find $\kappa(f(K, L))$
- Check if automata “complete”
- If there is a “sink state”, is there only one?
- Is every state “useful”?

- Construct DFA for $f(K, L)$ directly
- Construct NFA, convert to DFA
- Use NFA with ε transitions
- Use NFA with multiple initial states

There is an alternative: Quotient complexity
Formulas for Boolean Operations and Product

Theorem

If \(K \) and \(L \) are regular expressions, then

\[
(L^c)_w = L^c_w
\]

\[
(K \circ L)_w = K_w \circ L_w
\]

\[
(KL)_w = K_wL \cup K^\varepsilon L_w \cup \left(\bigcup_{w=uv, u,v \in \Sigma^+} K^\varepsilon_u L_v \right)
\]
Example Formula for Product:

\[(KL)_w = K_w L \cup K^\varepsilon L_w \cup \left(\bigcup_{w=uv} K_u^\varepsilon L_v \right)\]

Example

- \(\kappa(G) = n\)
- \((\Sigma^* G)_w = \Sigma^* G \cup G_w \cup \bigcup_{w=uv} G_v\)
- \(G\) is always present on the right-hand side
- At most \(2^{n-1}\) subsets of quotients to be added to \(\Sigma^* G\)
- \(\kappa(\Sigma^* G) \leq 2^{n-1}\)
Formula for Star

Theorem

For the empty word

\[(L^*)_\varepsilon = \varepsilon \cup LL^*\]

and for \(w \in \Sigma^+\)

\[(L^*)_w = \left(L_w \cup \bigcup_{w=uv} (L^*)_u L_v \right) L^* \]
Quotient Formulas

All you have to do is count!
Upper bounds for operations

Theorem

For any languages K and L with $\kappa(K) = m$ and $\kappa(L) = n$,

- $\kappa(L) = n$. $\kappa(K \circ L) \leq mn$.
- If K (L) has k (ℓ) accepting quotients, then
 - If $k = 0$ or $\ell = 0$, then $\kappa(KL) = 1$.
 - If $k, \ell > 0$ and $n = 1$, then $\kappa(KL) \leq m - (k - 1)$.
 - If $k, \ell > 0$ and $n > 1$, then $\kappa(KL) \leq m2^n - k2^{n-1}$.
For any languages K and L with $\kappa(K) = m$ and $\kappa(L) = n$,

- $\kappa(\overline{L}) = n$. $\kappa(K \circ L) \leq mn.$
- If K (L) has k (ℓ) accepting quotients, then
 - If $k = 0$ or $\ell = 0$, then $\kappa(KL) = 1$.
 - If $k, \ell > 0$ and $n = 1$, then $\kappa(KL) \leq m - (k - 1)$.
 - If $k, \ell > 0$ and $n > 1$, then $\kappa(KL) \leq m2^n - k2^{n-1}$.

Claim for boolean operations is obvious since $(\overline{L})_w = \overline{L}_w$ and $(K \cup L)_w = K_w \cup L_w$.
Proof for product \((KL)_w = K_w L \cup K^\varepsilon L_w \cup \bigcup_{w=uv \atop u,v \in \Sigma^+} K_u^\varepsilon L_v\)

- if \(k = 0\) or \(\ell = 0\), then \(KL = \emptyset\) and \(\kappa(KL) = 1\)
- If \(k, \ell > 0\), \(n = 1\), then \(L = \Sigma^*\) and \(w \in K \Rightarrow (KL)_w = \Sigma^*\)
- All \(k\) accepting quotients of \(K\) produce \(\Sigma^*\) in \(KL\) \((1)\)
- For each rejecting quotient of \(K\), we have two choices for the union of quotients of \(L\): the empty union or \(\Sigma^*\)
- If we choose the empty union, at most \(m - k\) quotients of \(KL\)
- Choosing \(\Sigma^*\) results in \((KL)_w = \Sigma^*\), which has been counted
- Altogether, there are at most \(1 + m - k\) quotients of \(KL\)
Proof for product \((KL)_w = K_w L \cup K^e L_w \cup \left(\bigcup_{w=uv} K_u^e L_v \right)\)

- \(k, l > 0\) and \(n > 1\)
- If \(w \notin K\), then we can choose \(K_w\) in \(m - k\) ways, and the union of quotients of \(L\) in \(2^n\) ways
- If \(w \in K\), then we can choose \(K_w\) in \(k\) ways, and the set of quotients of \(L\) in \(2^{n-1}\) ways, since \(L\) is then always present
- Thus we have \((m - k)2^n + k2^{n-1}\)
Star

Let \(M = L^* \), \(w \neq \varepsilon \)
\[
M_w = (L_w \cup M^e_wL \cup \bigcup_{w=uv, u,v \in \Sigma^+} M^e_u L_v) M
\]

Theorem

- If \(n = 1 \), then \(\kappa(L^*) \leq 2 \).
- If \(n > 1 \) and only \(L_\varepsilon \) accepts, then \(\kappa(L^*) = n \).
- If \(n > 1 \) and \(L \) has \(l > 0 \) accepting quotients \(\neq L \), then
 \[
 \kappa(L^*) \leq 2^{n-1} + 2^{n-l-1}.
 \]
Witnesses to bounds

- This is a challenging problem
- Take a guess
- How do you prove the guess meets the bound?
- Use quotients, of course!
Witnesses to bounds

Example
- Symmetric difference, $K \oplus L$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*, L = (a^*b)^{n-1}(a \cup b)^*$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^* a)^{m-1}(a \cup b)^*$, $L = (a^* b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If $i < k$, let $u = a^{m-1-k} b^n$
Witnesses to bounds

Example

- **Symmetric difference,** $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If $i < k$, let $u = a^{m-1-k} b^n$
- xu not full of a’s, is full of b’s, yu full of a’s and b’s
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*, \ L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If $i < k$, let $u = a^{m-1-k} b^n$
- xu not full of a’s, is full of b’s, yu full of a’s and b’s
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If $i < k$, let $u = a^{m-1-k} b^n$
- xu not full of a’s, is full of b’s, yu full of a’s and b’s
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
- $xu \in K \oplus L$, and $yu \notin K \oplus L$, i.e., $(K \oplus L)_x \neq (K \oplus L)_y$
Witnesses to bounds

Example

- Symmetric difference, $K \oplus L$
- $K = (b^*a)^{m-1}(a \cup b)^*$, $L = (a^*b)^{n-1}(a \cup b)^*$
- Words $a^i b^j$, $0 \leq i \leq m - 1$, $0 \leq j \leq n - 1$
- Let $x = a^i b^j$ and $y = a^k b^\ell$
- If $i < k$, let $u = a^{m-1-k} b^n$
- xu not full of a’s, is full of b’s, yu full of a’s and b’s
- Then $xu \notin K$, $yu \in K$, and $xu, yu \in L$
- $xu \in K \oplus L$, and $yu \notin K \oplus L$, i.e., $(K \oplus L)_x \neq (K \oplus L)_y$
- Case $j < \ell$ is similar
Witnesses to bounds

Example

- Symmetric difference, \(K \oplus L \)
- \(K = (b^*a)^{m-1}(a \cup b)^*, \ L = (a^*b)^{n-1}(a \cup b)^* \)
- Words \(a^i b^j \), \(0 \leq i \leq m - 1, 0 \leq j \leq n - 1 \)
- Let \(x = a^i b^j \) and \(y = a^k b^\ell \)
- If \(i \leq k \), let \(u = a^{m-1-k} b^n \)
- \(xu \) not full of \(a \)'s, is full of \(b \)'s, \(yu \) full of \(a \)'s and \(b \)'s
- Then \(xu \notin K \), \(yu \in K \), and \(xu, yu \in L \)
- \(xu \in K \oplus L \), and \(yu \notin K \oplus L \), i.e., \((K \oplus L)_x \neq (K \oplus L)_y \)
- Case \(j < \ell \) is similar
- All quotients of \(K \oplus L \) by these \(mn \) words are distinct
Recent work on quotient complexity

- WIA 2001, Câmpeanu, Culik, Salomaa, Yu: finite languages
- DCFS 2009: Brzozowski: regular languages (quotients)
- TCS 2009: Han Salomaa: suffix-free languages
- 2009: Han, Salomaa, Wood: prefix-free languages
- LATIN 2010, Brzozowski, Jirásková, Li: ideal languages
- CSR 2010, Brzozowski, Jirásková, Zou: closed languages
- AFL 2011, Brzozowski, Liu: star-free languages
- AFL 2011, Brzozowski, Jirásková, Li, Smith: bifix-, factor-, subword-free languages
Prefixes, Suffixes, Factors and Subwords

- \(w = uv \) \(u \) is a prefix of \(w \)
Prefixes, Suffixes, Factors and Subwords

- $w = uv$ u is a prefix of w
- üks is a prefix of üksteist
Prefixes, Suffixes, Factors and Subwords

- $w = uv$, u is a prefix of w
- üks is a prefix of üksteist
- $w = uv$, v is a suffix of w
Prefixes, Suffixes, Factors and Subwords

- $w = uv$ u is a prefix of w
- üks is a prefix of üksteist
- $w = uv$ v is a suffix of w
- päev is suffix of laupäev
Prefixes, Suffixes, Factors and Subwords

- \(w = uv \) \(u \) is a prefix of \(w \)
- \(üks \) is a prefix of \(üksteist \)
- \(w = uv \) \(v \) is a suffix of \(w \)
- \(päev \) is suffix of \(laupäev \)
- \(w = u xv \) \(x \) is a factor of \(w \)
Prefixes, Suffixes, Factors and Subwords

- $w = uv$ u is a prefix of w
- üks is a prefix of üksteist
- $w = uv$ v is a suffix of w
- päev is suffix of laupäev
- $w = uxv$ x is a factor of w
- serv is a factor of konservatiivsus
Prefixes, Suffixes, Factors and Subwords

- $w = uv$ u is a prefix of w
- üks is a prefix of üksteist
- $w = uv$ v is a suffix of w
- päev is suffix of laupäev
- $w = uxv$ x is a factor of w
- serv is a factor of konservatiivsus
- $w = w_0 a_0 w_1 a_1 \cdots a_n w_n$, $a_0 \cdots a_n$ is a subword of w
Prefixes, Suffixes, Factors and Subwords

- $w = uv$ u is a prefix of w
- üks is a prefix of üksteist
- $w = uv$ v is a suffix of w
- päev is suffix of laupäev
- $w = u xv$ x is a factor of w
- serv is a factor of konservatiivi
- $w = w_0 a_0 w_1 a_1 \cdots a_n w_n$ $a_0 \cdots a_n$ is a subword of w
- kaks is a subword of kaheksa
Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and $u, w \in L$ implies $v \in L$
- L is prefix-closed if u is a prefix of v and $v \in L$ implies $u \in L$
- L is converse prefix-closed if u is a prefix of v, and $u \in L$ implies $v \in L$ right ideal
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \not\in L$ prefix code
Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and $u, w \in L$ implies $v \in L$
- L is prefix-closed if u is a prefix of v and $v \in L$ implies $u \in L$
- L is converse prefix-closed if u is a prefix of v, and $u \in L$ implies $v \in L$ (right ideal)
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \notin L$ (prefix code)

- L is suffix-convex
- L is factor-convex
- L is subword-convex
- L is bifix-convex
Closed Languages

- L is prefix-closed
- L is suffix-closed
- L is factor-closed
- L is subword-closed
- L is bifix-closed if it is both prefix- and suffix-closed
 if and only if it is factor closed
Ideal Languages

L is nonempty

- Right ideal $L = L\Sigma^*$
- Left ideal $L = \Sigma^* L$
- Two-sided ideal $L = \Sigma^* L\Sigma^*$
- All-sided ideal $L = \Sigma^* \omega L$
Ideal Languages

L is nonempty

- **Right ideal** $L = L\Sigma^*$
- **Left ideal** $L = \Sigma^* L$
- **Two-sided ideal** $L = \Sigma^* \Sigma^*$
- **All-sided ideal** $L = \Sigma^* \varnothing L$

Shuffle: let $w = a_1a_2\cdots a_k$, $a_i \in \Sigma$

$\Sigma^* \varnothing w = \Sigma^* \varnothing (a_1a_2\cdots a_k) = \Sigma^* a_1\Sigma^* a_2\Sigma^* \cdots \Sigma^* a_k\Sigma^*$

$\Sigma^* \varnothing L = \bigcup_{w \in L} (\Sigma^* \varnothing w)$
X-Free Languages

- L is **prefix-free**:
- L is **suffix-free**
- L is **factor-free**
- L is **subword-free**
- L is **bifix-free** if it is both prefix- and suffix-free
Star-Free Languages

- \(\emptyset, \{ \varepsilon \}, \{ a \}, a \in \Sigma \) are star-free
- If \(K \) and \(L \) are star-free, then so are
 - \(\overline{L} \)
 - \(K \cup L \)
 - \(KL \)
Star-Free Languages

- \emptyset, $\{\varepsilon\}$, $\{a\}$, $a \in \Sigma$ are star-free
- If K and L are star-free, then so are \overline{L}, $K \cup L$, KL

- The smallest class of languages containing finite languages and closed under boolean operations and product
Tight Upper Bounds for Union ($|\Sigma|$)

- mn regular (2), star-free (2), prefix-, factor-, subword-closed (2), suffix-closed (4), left ideal (4)
- $mn - 2$ prefix-free (2)
- $mn - (m + n - 2)$ suffix-free (2), right, two-sided, all-sided ideal (2)
- $mn - (m + n)$ bifix-, factor-free (3), subword-free ($m + n - 3$), finite ($mn - 2(m + n) + 5$)
- $\max(m, n)$ free unary, closed unary
- $\min(m, n)$ ideal unary

Similar results for intersection, difference, symmetric difference
Tight Upper Bounds for Product (|Σ|)

- \((m - 1)2^n + 2^{n-1}\) regular (2), star-free (4)
- \((m - 1)2^{n-1} + 1\) suffix-free (3)
- \((m + 1)2^{n-2}\) prefix-closed (3)
- \(m + 2^{n-2}\) right ideal (3)
- \((m - 1)n + 1\) suffix-closed (3)
- \(m + n - 1\) left, two-sided, all-sided ideal (1), unary ideal, factor-closed (2), subword-closed (2)
- \(m + n - 2\) closed unary, free unary, prefix-, bifix-, factor, subword-free (1)
Tight Upper Bounds for Star ($|\Sigma|$)

- $2^{n-1} + 2^{n-2}$ regular (2), star-free (4)
- $2^{n-2} + 1$ prefix-closed (3), suffix-free (2)
- $2^{n-3} + 2^{n-4}$ finite (3)
- $n^2 - 7n + 13$ finite unary, star-free unary
- $n + 1$ left, right, two-sided, all-sided ideals (2)
- n free unary, suffix-closed (2), prefix-free (2)
- $n - 1$ bifix-, factor-, subword-free (2)
- 2 closed unary, factor-, subword-closed (2)
Tight Upper Bounds for Reversal ($|\Sigma|$)

- 2^n regular (2),
- $2^n - 1$ star-free ($n - 1$)
- $2^{n-1} + 1$ suffix-closed (3), left ideal (3)
- 2^{n-1} prefix-closed (2), right ideal (2)
- $2^{n-2} + 1$ free unary, prefix-, suffix-free (3), factor-closed (3), subword-closed (2n), two-sided, all-sided ideal (3)
- $2^{n-3} + 2$ bifix-, factor-free (3), subword-free ($2^{n-3} - 1$)
- $2^{(n+1)/2} - 1$ finite, n odd (2)
- $3 \cdot 2^{n/2-1} - 1$ finite, n even (2)
- n unary
Conclusions

- Quotients provide a uniform approach
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems
Conclusions

- Quotients provide a uniform approach
- Upper bounds for the complexity of operations
- Verifying that witnesses meet these bounds
- A step towards a theory of complexity of languages
- An interesting theory
- Difficult problems
- State complexity useful when implementing regular operations
Related work

- Combined operations, for example, KL^*
Related work

- Combined operations, for example, KL^*
- Other operations, for example, shuffle
Related work

- Combined operations, for example, KL^*
- Other operations, for example, shuffle
- Nondeterministic complexity
Related work

- Combined operations, for example, KL^*
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity
Related work

- Combined operations, for example, KL^*
- Other operations, for example, shuffle
- Nondeterministic complexity
- Transition complexity
- Syntactic complexity
LÖPP