# Syntactic Complexity of Regular Languages 

Janusz Brzozowski<br>David R. Cheriton School of Computer Science

Waterloo

Tallinn University of Technology
Tallinn, Estonia
June 13, 2011

## Languages

- Alphabet $\Sigma$ a finite set of letters
- Set of all words $\Sigma^{*}$ free monoid generated by $\Sigma$
- Set of non-empty words $\Sigma^{+}$free semigroup generated by $\Sigma$
- Empty word $\varepsilon$
- Language $L \subseteq \Sigma^{*}$
- The $\varepsilon$-function $L^{\varepsilon}$ of a regular language $L$

$$
L^{\varepsilon}=\left\{\begin{array}{cl}
\emptyset, & \text { if } \varepsilon \notin L ; \\
\{\varepsilon\}, & \text { if } \varepsilon \in L .
\end{array}\right.
$$

## Congruences on $\sum^{*}$

- An equivalence relation $\sim$ on $\Sigma^{*}$ is a left congruence if

$$
x \sim y \Leftrightarrow u x \sim u y, \text { for all } u \in \Sigma^{*}
$$

## Congruences on $\Sigma^{*}$

- An equivalence relation $\sim$ on $\Sigma^{*}$ is a left congruence if

$$
x \sim y \Leftrightarrow u x \sim u y, \text { for all } u \in \Sigma^{*}
$$

- It is a right congruence if, for all $x, y \in \Sigma^{*}$,

$$
x \sim y \Leftrightarrow x v \sim y v, \text { for all } v \in \Sigma^{*}
$$

## Congruences on $\Sigma^{*}$

- An equivalence relation $\sim$ on $\Sigma^{*}$ is a left congruence if

$$
x \sim y \Leftrightarrow u x \sim u y, \text { for all } u \in \Sigma^{*}
$$

- It is a right congruence if, for all $x, y \in \Sigma^{*}$,

$$
x \sim y \Leftrightarrow x v \sim y v, \text { for all } v \in \Sigma^{*}
$$

- It is a congruence if it is both a left and a right congruence, or

$$
x \sim y \Leftrightarrow u x v \sim u y v, \text { for all } u, v \in \Sigma^{*}
$$

Syntactic Complexity
Languages with Special Quotients
Ideals and Closed Languages
Prefix-, Suffix-, and Bifix-Free Languages
Star-Free Languages
Conclusions

## Nerode Congruence on $\Sigma^{*}$

- $x \sim_{L} y$ if and only if $x v \in L \Leftrightarrow y v \in L$, for all $v \in \Sigma^{*}$


## Nerode Congruence on $\sum^{*}$

- $x \sim_{L} y$ if and only if $x v \in L \Leftrightarrow y v \in L$, for all $v \in \Sigma^{*}$
- The (left) quotient, of a language $L$ by a word $w$ is the language $L_{w}=\left\{x \in \Sigma^{*} \mid w x \in L\right\}$
- $x \sim_{L} y$ if and only if $L_{x}=L_{y}$
- Number of classes of $\sim_{L}=$ number of quotients of $L$
- The quotient complexity of $L$ is the number of quotients of $L$


## Nerode Congruence on $\Sigma^{*}$

- $x \sim_{L} y$ if and only if $x v \in L \Leftrightarrow y v \in L$, for all $v \in \Sigma^{*}$
- The (left) quotient, of a language $L$ by a word $w$ is the language $L_{w}=\left\{x \in \Sigma^{*} \mid w x \in L\right\}$
- $x \sim_{L} y$ if and only if $L_{x}=L_{y}$
- Number of classes of $\sim_{L}=$ number of quotients of $L$
- The quotient complexity of $L$ is the number of quotients of $L$
- The quotient automaton of a regular language $L$ is

$$
\begin{aligned}
& \mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right), \text { where } Q=\left\{L_{w} \mid w \in \Sigma^{*}\right\} \\
& \delta\left(L_{w}, a\right)=L_{w a}, q_{0}=L_{\varepsilon}=L, F=\left\{L_{w} \mid \varepsilon \in L_{w}\right\}
\end{aligned}
$$

- $\kappa(L)=$ quotient complexity $=$ state complexity


## Myhill Congruence

- $x \approx_{L} y$ if and only if $u x v \in L \Leftrightarrow u y v \in L$ for all $u, v \in \Sigma^{*}$


## Myhill Congruence

- $x \approx_{L} y$ if and only if $u x v \in L \Leftrightarrow u y v \in L$ for all $u, v \in \Sigma^{*}$
- Also known as the syntactic congruence of $L$
- $\Sigma^{+} / \approx_{L}$ syntactic semigroup of $L$
- $\Sigma^{*} / \approx_{L}$ syntactic monoid of $L$
- Syntactic complexity $\sigma(L)$ : cardinality of syntactic semigroup


## Myhill Congruence

- $x \approx_{L} y$ if and only if $u x v \in L \Leftrightarrow u y v \in L$ for all $u, v \in \Sigma^{*}$
- Also known as the syntactic congruence of $L$
- $\Sigma^{+} / \approx_{L}$ syntactic semigroup of $L$
- $\Sigma^{*} / \approx_{L}$ syntactic monoid of $L$
- Syntactic complexity $\sigma(L)$ : cardinality of syntactic semigroup
- The transformation semigroup $T_{L}$ of a quotient automaton $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ of $L:$
- Set of transformations of states of $\mathcal{A}$ by non-empty words
- Syntactic semigroup isomorphic to transformation semigroup


## Quotient Complexity vs Syntactic Complexity



Figure: Automata with various syntactic complexities.

## Quotient Complexity vs Syntactic Complexity



Figure: Automata with various syntactic complexities.

- $\sigma\left(L_{1}\right)=3 \quad \sigma\left(L_{2}\right)=9 \quad \sigma\left(L_{3}\right)=27$
- Can we predict this?


## Transformations of $Q=\{0,1, \ldots, n-1\}$

- A transformation $t=\left(\begin{array}{ccccc}0 & 1 & \cdots & n-2 & n-1 \\ i_{0} & i_{1} & \cdots & i_{n-2} & i_{n-1}\end{array}\right)$
- The image of element $i$ under transformation $t$ is it
- The identity transformation maps each element to itself
- $t$ contains a cycle $\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ of length $k$ if there exist $i_{1}, \ldots, i_{k}$ such that $i_{1} t=i_{2}, i_{2} t=i_{3}, \ldots, i_{k-1} t=i_{k}, i_{k} t=i_{1}$
- A singular transformation, denoted by $\binom{i}{j}$, has $i t=j$, and $h t=h$ for all $h \neq i$.
- For $i<j$, a transposition is the cycle $(i, j)$
- A constant transformation, $\binom{Q}{j}$, has $i t=j$ for all $i$.


## Generators

## Theorem (Piccard, 1935)

The complete transformation monoid $\mathcal{T}_{Q}$ on $Q=\{0,1, \ldots, n-1\}$ of size $n^{n}$ can be generated by any cyclic permutation of $n$ elements together with a transposition and a "returning" transformation $r=\binom{n-1}{0}$. In particular, $T_{n}$ can be generated by $c=(0,1, \ldots, n-1), t=(0,1)$ and $r=\binom{n-1}{0}$.

## Generators

## Theorem (Piccard, 1935)

The complete transformation monoid $\mathcal{T}_{Q}$ on $Q=\{0,1, \ldots, n-1\}$ of size $n^{n}$ can be generated by any cyclic permutation of $n$ elements together with a transposition and a "returning" transformation $r=\binom{n-1}{0}$. In particular, $T_{n}$ can be generated by $c=(0,1, \ldots, n-1), t=(0,1)$ and $r=\binom{n-1}{0}$.

## Proposition

For any language $L$ with $\kappa(L)=n>1$, we have $n-1 \leq \sigma(L) \leq n^{n}$.
Each state $>0$ reached from the initial state, so at least $n-1$ If $\Sigma=\{a\}$ and $L=a^{n-1} a^{*}$, then $\kappa(L)=n$, and $\sigma(L)=n-1$

## Special Quotients, $\kappa(L)=n$

- If one of the quotients of $L$ is $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$), then we say that $L$ has $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$).


## Special Quotients, $\kappa(L)=n$

- If one of the quotients of $L$ is $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$), then we say that $L$ has $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$).
- A quotient $L_{w}$ of a language $L$ is uniquely reachable (ur) if $L_{x}=L_{w}$ implies that $x=w$.


## Special Quotients, $\kappa(L)=n$

- If one of the quotients of $L$ is $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$), then we say that $L$ has $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$).
- A quotient $L_{w}$ of a language $L$ is uniquely reachable (ur) if $L_{x}=L_{w}$ implies that $x=w$.


## Special Quotients, $\kappa(L)=n$

- If one of the quotients of $L$ is $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$), then we say that $L$ has $\emptyset$ (respectively, $\{\varepsilon\}, \Sigma^{*}, \Sigma^{+}$).
- A quotient $L_{w}$ of a language $L$ is uniquely reachable (ur) if $L_{x}=L_{w}$ implies that $x=w$.


## Theorem

1. If $L$ has $\emptyset$ or $\Sigma^{*}$, then $\sigma(L) \leq n^{n-1}$.
2. If $L$ has $\{\varepsilon\}$ or $\Sigma^{+}$, then $\sigma(L) \leq n^{n-2}$.
3. If $L$ is uniquely reachable, then $\sigma(L) \leq(n-1)^{n}$.
4. If $L_{a}$ is uniquely reachable, $a \in \Sigma$, then $\sigma(L) \leq 1+(n-2)^{n}$.

## Special Quotients, $\kappa(L)=n$

| $\emptyset$ | $\Sigma^{*}$ | $\{\varepsilon\}$ | $\Sigma^{+}$ |  | $L$ is ur | $L_{a}$ is ur |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sqrt{ }$ |  |  |  | $n^{n-1}$ | $(n-1)^{n-1}$ | $1+(n-3)^{n-2}$ |
|  | $\checkmark$ |  |  | $n^{n-1}$ | $(n-1)^{n-1}$ | $1+(n-3)^{n-2}$ |
| $\sqrt{ }$ |  | $\sqrt{2}$ |  | $n^{n-2}$ | $(n-1)^{n-2}$ | $1+(n-4)^{n-2}$ |
|  | $\sqrt{ }$ |  | $\sqrt{ }$ | $n^{n-2}$ | $(n-1)^{n-2}$ | $1+(n-4)^{n-2}$ |
| $\sqrt{ }$ | $\sqrt{ }$ |  |  | $n^{n-2}$ | $(n-1)^{n-2}$ | $1+(n-4)^{n-2}$ |
| $\sqrt{ }$ | $\sqrt{ }$ |  | $\sqrt{ }$ | $n^{n-3}$ | $(n-1)^{n-3}$ | $1+(n-5)^{n-2}$ |
| $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ |  | $n^{n-3}$ | $(n-1)^{n-3}$ | $1+(n-5)^{n-2}$ |
| $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $\sqrt{ }$ | $n^{n-4}$ | $(n-1)^{n-4}$ | $1+(n-6)^{n-2}$ |

## Proof of Special Quotient Theorem $n \geq 1 \kappa(L)=n$

## Proof.

- Since $\emptyset_{a}=\emptyset$ for all $a \in \Sigma$, only $n-1$ states in the quotient automaton distinguish two transformations. $n^{n-1}$
If $L$ has $\Sigma^{*}$, then $\left(\Sigma^{*}\right)_{a}=\Sigma^{*}$, for all $a \in \Sigma$.


## Proof of Special Quotient Theorem $n \geq 1 \kappa(L)=n$

## Proof.

- Since $\emptyset_{a}=\emptyset$ for all $a \in \Sigma$, only $n-1$ states in the quotient automaton distinguish two transformations. $n^{n-1}$ If $L$ has $\Sigma^{*}$, then $\left(\Sigma^{*}\right)_{a}=\Sigma^{*}$, for all $a \in \Sigma$.
- Since $\{\varepsilon\}_{a}=\emptyset$ for all $a \in \Sigma, L$ has $\emptyset$ if $L$ has $\{\varepsilon\}$. Two states that have image $\emptyset . \quad n^{n-2}$
Dually, $\left(\Sigma^{+}\right)_{a}=\Sigma^{*}$ for all $a \in \Sigma$.


## Proof of Special Quotient Theorem $n \geq 1 \kappa(L)=n$

## Proof.

- Since $\emptyset_{a}=\emptyset$ for all $a \in \Sigma$, only $n-1$ states in the quotient automaton distinguish two transformations. $n^{n-1}$ If $L$ has $\Sigma^{*}$, then $\left(\Sigma^{*}\right)_{a}=\Sigma^{*}$, for all $a \in \Sigma$.
- Since $\{\varepsilon\}_{a}=\emptyset$ for all $a \in \Sigma, L$ has $\emptyset$ if $L$ has $\{\varepsilon\}$. Two states that have image $\emptyset . \quad n^{n-2}$
Dually, $\left(\Sigma^{+}\right)_{a}=\Sigma^{*}$ for all $a \in \Sigma$.
- If $L$ is uniquely reachable then $L_{w}=L$ implies $w=\varepsilon, L$ does not appear, and there are $n-1$ choices. $(n-1)^{n}$


## Proof of Special Quotient Theorem $n \geq 1 \kappa(L)=n$

## Proof.

- Since $\emptyset_{a}=\emptyset$ for all $a \in \Sigma$, only $n-1$ states in the quotient automaton distinguish two transformations. $n^{n-1}$ If $L$ has $\Sigma^{*}$, then $\left(\Sigma^{*}\right)_{a}=\Sigma^{*}$, for all $a \in \Sigma$.
- Since $\{\varepsilon\}_{a}=\emptyset$ for all $a \in \Sigma, L$ has $\emptyset$ if $L$ has $\{\varepsilon\}$. Two states that have image $\emptyset . \quad n^{n-2}$
Dually, $\left(\Sigma^{+}\right)_{a}=\Sigma^{*}$ for all $a \in \Sigma$.
- If $L$ is uniquely reachable then $L_{w}=L$ implies $w=\varepsilon, L$ does not appear, and there are $n-1$ choices. $\quad(n-1)^{n}$
- If $L_{a}$ is uniquely reachable, then so is $L$. Hence $L$ never appears, and $L_{a}$ appears only once. There can be at most $(n-2)^{n}$ other transformations. $1+(n-2)^{n}$


## Prefixes and Suffixes

- $w=u v \quad u$ is a prefix of $w$
- $w=u v \quad v$ is a suffix of $w$
- $w=u \times v \quad x$ is a factor of $w$


## Convex Languages

- A language $L$ is prefix-convex if $u$ is a prefix of $v, v$ is a prefix of $w$ and $u, w \in L$ implies $v \in L$
- L is prefix-closed if $u$ is a prefix of $v$ and $v \in L$ implies $u \in L$
- L is converse prefix-closed if $u$ is a prefix of $v$, and $u \in L$ implies $v \in L$ right ideal
- L is prefix-free if $u \neq v$ is a prefix of $v$ and $v \in L$ implies $u \notin L \quad$ prefix code


## Convex Languages

- A language $L$ is prefix-convex if $u$ is a prefix of $v, v$ is a prefix of $w$ and $u, w \in L$ implies $v \in L$
- $L$ is prefix-closed if $u$ is a prefix of $v$ and $v \in L$ implies $u \in L$
- $L$ is converse prefix-closed if $u$ is a prefix of $v$, and $u \in L$ implies $v \in L$ right ideal
- L is prefix-free if $u \neq v$ is a prefix of $v$ and $v \in L$ implies $u \notin L \quad$ prefix code
- $L$ is suffix-convex
- $L$ is factor-convex
- $L$ is bifix-convex


## Ideals and Closed Languages

- right ideal $L=L \Sigma^{*}$
- left ideal $L=\Sigma^{*} L$
- 2-sided ideal $L=\Sigma^{*} L \Sigma^{*}$
- Ideals are complements of closed languages
- right ideals are complements of prefix-closed languages
- left ideals are complements of suffix-closed languages
- 2-sided ideals are complements of factor-closed languages
- Since syntactic complexity is preserved under complementation, our proofs are in terms of ideals only.


## Right Ideals and Prefix-Closed Languages

## Theorem

Let $L \subseteq \Sigma^{*}$ and $\kappa(L)=n$. If $L$ is a right ideal or a prefix-closed language, then $\sigma(L) \leq n^{n-1}$. Moreover, the bound is tight for

- $n=1$ if $|\Sigma| \geq 1$
- $n=2$ if $|\Sigma| \geq 2$
- $n=3$ if $|\Sigma| \geq 3$
- $n \geq 4$ if $|\Sigma| \geq 4$


## Right Ideals and Prefix-Closed Languages

## Theorem

Let $L \subseteq \Sigma^{*}$ and $\kappa(L)=n$. If $L$ is a right ideal or a prefix-closed language, then $\sigma(L) \leq n^{n-1}$. Moreover, the bound is tight for

- $n=1$ if $|\Sigma| \geq 1$
- $n=2$ if $|\Sigma| \geq 2$
- $n=3$ if $|\Sigma| \geq 3$
- $n \geq 4$ if $|\Sigma| \geq 4$


## Proof.

Since $L$ has $\Sigma^{*}, \sigma(L) \leq n^{n-1}$.
Next we show the bound is tight.

## Proof of Right Ideal Theorem, $n \leq 3$

- If $n=1, L=a^{*}$ meets the bound.
- If $n=2$, then $b^{*} a(a \cup b)^{*}$ meets the bound.
- If $n=3$, then automaton on next slide with alphabet $\{a, c, d\}$ meets the bound.


## Proof of Right Ideal Theorem, $n \geq 4$



## Proof of Right Ideal Theorem, $n \geq 4$



$$
t=\left(\begin{array}{ccccccc}
0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\
i_{0} & i_{1} & i_{2} & \cdots & i_{n-3} & i_{n-2} & n-1
\end{array}\right)
$$

## Proof of Right Ideal Theorem, $n \geq 4$



$$
t=\left(\begin{array}{ccccccc}
0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\
i_{0} & i_{1} & i_{2} & \cdots & i_{n-3} & i_{n-2} & n-1
\end{array}\right)
$$

## Case 1

$i_{k} \neq n-1$ for all $k, 0 \leq k \leq n-2$.
Since all the images of the first $n-1$ states are in the set $\{0,1, \ldots, n-2\}, t$ can be performed by $\{a, b, c\}$.

## Case 2

- $i_{h}=n-1$ for some $h, 0 \leq h \leq n-2$
- There exists $j, 0 \leq j \leq n-2$ such that $i_{k} \neq j$ for all $k$
- Define $i_{k}^{\prime}$ for all $0 \leq k \leq n-2$ as follows:
- $i_{k}^{\prime}=j$ if $i_{k}=n-1$, and $i_{k}^{\prime}=i_{k}$ if $i_{k} \neq n-1$
- $s=\left(\begin{array}{ccccccc}0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i_{0}^{\prime} & i_{1}^{\prime} & i_{2}^{\prime} & \cdots & i_{n-3}^{\prime} & i_{n-2}^{\prime} & n-1\end{array}\right)$
- Let $r=(j, n-2) \quad \mathcal{A}_{n}$ can do $s$ and $r$


## Case 2

- $i_{h}=n-1$ for some $h, 0 \leq h \leq n-2$
- There exists $j, 0 \leq j \leq n-2$ such that $i_{k} \neq j$ for all $k$
- Define $i_{k}^{\prime}$ for all $0 \leq k \leq n-2$ as follows:
- $i_{k}^{\prime}=j$ if $i_{k}=n-1$, and $i_{k}^{\prime}=i_{k}$ if $i_{k} \neq n-1$
- $s=\left(\begin{array}{ccccccc}0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i_{0}^{\prime} & i_{1}^{\prime} & i_{2}^{\prime} & \cdots & i_{n-3}^{\prime} & i_{n-2}^{\prime} & n-1\end{array}\right)$
- Let $r=(j, n-2) \quad \mathcal{A}_{n}$ can do $s$ and $r$


## $t=s r d r$

If $k t=n-1$, then $k s=j, j r=n-2,(n-2) d=n-1$, $(n-1) r=n-1$. If $k t=n-2$, then $k s=n-2,(n-2) r=j$, $j d=j$, and $j r=n-2$. If $k t=i_{k}<n-2$, then $k(s r d r)=i_{k}$.

## Syntactic Complexity Bounds for Right Ideals

| $\|\Sigma\|$ | $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $\ldots$ | $n=n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\ldots$ | $\mathbf{n - 1}$ |
| 2 | - | $\mathbf{2}$ | $\mathbf{7}$ | $\mathbf{3 1}$ | $\mathbf{1 6 7}$ | $\ldots$ | $?$ |
| 3 | - | - | $\mathbf{9}$ | $\mathbf{6 1}$ | $\mathbf{5 4 5}$ | $\ldots$ | $?$ |
| 4 | - | - | - | $\mathbf{6 4}$ | $\mathbf{6 2 5}$ | $\ldots$ | $\mathbf{n}^{\mathbf{n - 1}}$ |

All the bounds are tight
The bounds for $n \leq 5$ were verified by a computer program

## Left Ideals and Suffix-Closed Languages

We provide strong support for the following conjecture:
Conjecture 1 If $L$ is a left ideal or a suffix-closed language with quotient complexity $\kappa(L)=n \geq 1$, then its syntactic complexity is less than or equal to $n^{n-1}+n-1$.

The bound is met with $|\Sigma| \geq 5$
Note the lack of symmetry between left and right ideals!

## Automaton $\mathcal{B}_{n}$ with $n^{n-1}+n-1$ Transformations



## Automaton $\mathcal{B}_{n}$ with $n^{n-1}+n-1$ Transformations



- $a=(1, \ldots, n-1), b=(1,2), c=\binom{n-1}{1}, d=\binom{n-1}{0}, e=\binom{Q}{1}$
- $\mathcal{B}_{n}$ is minimal
- $L\left(\mathcal{B}_{n}\right)$ is a left ideal


## $n^{n-1}$ Transformations

$t=\left(\begin{array}{ccccccc}0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ 0 & i_{1} & i_{2} & \cdots & i_{n-3} & i_{n-2} & i_{n-1}\end{array}\right)$,
(1) If $i_{k} \neq 0$ for all $k, 1 \leq k \leq n-1, t$ can be done by $\mathcal{B}_{n}$
(2) If $i_{h}=0$ for some $h, 1 \leq h \leq n-1$, then there exists $j$, $1 \leq j \leq n-1, i_{k} \neq j$ for all $k, 1 \leq k \leq n-1$.
Let $i_{k}^{\prime}=j$ if $i_{k}=0$, and $i_{k}^{\prime}=i_{k}$, otherwise, and let $s=\left(\begin{array}{ccccccc}0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ 0 & i_{1}^{\prime} & i_{2}^{\prime} & \cdots & i_{n-3}^{\prime} & i_{n-2}^{\prime} & i_{n-1}^{\prime}\end{array}\right), r=(j, n-1)$.
$\mathcal{B}_{n}$ can do $s$ and $r$; consider srdr.
If $k t=0$, then $k s=j$, $j r=n-1,(n-1) d=0$, and $0 r=0$.
If $k t=n-1$, then $k s=n-1,(n-1) r=j, j d=j$, and $j r=n-1$.
If $0<k t<n-1$, then srdr maps $k$ to $k t$.
So $t=s r d r$, and $t$ can be performed by $\mathcal{B}_{n}$ as well.

## $n-1$ Transformations

- Transformation $t=\binom{Q}{j}$ maps all the states to $j \neq 0$
- There are $n-1$ such transformations
- If $j=1$, then $t=e$; therefore $t$ can be performed by $\mathcal{B}_{n}$
- Otherwise, let $s=(1, j)$
- $s$ can be performed by $\mathcal{B}_{n}$
- Since $t=e s, t$ can also be performed by $\mathcal{B}_{n}$


## $n-1$ Transformations

- Transformation $t=\binom{Q}{j}$ maps all the states to $j \neq 0$
- There are $n-1$ such transformations
- If $j=1$, then $t=e$; therefore $t$ can be performed by $\mathcal{B}_{n}$
- Otherwise, let $s=(1, j)$
- $s$ can be performed by $\mathcal{B}_{n}$
- Since $t=e s, t$ can also be performed by $\mathcal{B}_{n}$
- If $\delta(0, w)=i \neq 0$, then $w=u e v$
- But ue maps all the states to 1
- So there are no other transformations


## Aperiodic Inputs

- Let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be the quotient DFA of a left ideal.
- For $w \in \Sigma^{*}$, consider $q_{0}=p_{0}, p_{1}, p_{2} \ldots$ where $p_{i}=\delta\left(q_{0}, w^{i}\right)$.
- We must have some $i$ and $j>i$ such that $p_{0}, p_{1}, \ldots, p_{i}, p_{i+1}, \ldots p_{j-1}$ are distinct and $p_{j}=p_{i}$.
- The sequence $q_{0}=p_{0}, p_{1}, \ldots, p_{i}, p_{i+1}, \ldots p_{j-1}$ of states with $p_{j}=p_{i}$ is called the behavior of $w$ on $\mathcal{A}$
- $j-i$ is the period of that behavior.
- If the period of $w$ is 1 , then its behavior is aperiodic; otherwise, it is periodic.


## Properties of Left Ideals

## Lemma

If $\mathcal{A}$ is the quotient automaton of a left ideal $L$, then the behavior of every word $w \in \Sigma^{*}$ is aperiodic. Also, $L$ does not have $\emptyset$.

## Properties of Left Ideals

## Lemma

If $\mathcal{A}$ is the quotient automaton of a left ideal $L$, then the behavior of every word $w \in \Sigma^{*}$ is aperiodic. Also, $L$ does not have $\emptyset$.


## Properties of Left Ideals

## Lemma

If $\mathcal{A}$ is the quotient automaton of a left ideal $L$, then the behavior of every word $w \in \Sigma^{*}$ is aperiodic. Also, $L$ does not have $\emptyset$.


- If $w^{i} x \in L$ but $w^{j-1} x=w^{j-i-1}\left(w^{i} x\right) \notin L, L$ is not left ideal
- If $w^{j-1} x \in L$ but $w^{i} x \notin L$, then $w^{i} x=w^{j} x=w w^{j-1} \notin L$


## Left Ideals $\mathbf{n} \leq \mathbf{3}$

## Theorem

If $1 \leq n \leq 3$ and $L$ is a left ideal or a suffix-closed language with $\kappa(L)=n$, then $\sigma(L) \leq n^{n-1}+n-1$. Moreover, the bound is tight for $n=1$ if $|\Sigma| \geq 1$, for $n=2$ if $|\Sigma| \geq 3$, and for $n=3$ if $|\Sigma| \geq 4$.

## $\mathbf{n}<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$. $\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.


## n $<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$.
$\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a)=1$ for some $a \in \Sigma$.


## n $<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$.
$\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a)=1$ for some $a \in \Sigma$.
- We cannot have $a$ : $[1,0]$, and so we have $a:[1,1]$


## n $<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$.
$\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a)=1$ for some $a \in \Sigma$.
- We cannot have $a:[1,0]$, and so we have $a:[1,1]$
- If $\Sigma=\{a\}$, then $L=a a^{*}=a^{*} a$ with $\sigma(L)=1$.


## n $<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$.
$\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a)=1$ for some $a \in \Sigma$.
- We cannot have $a:[1,0]$, and so we have $a:[1,1]$
- If $\Sigma=\{a\}$, then $L=a a^{*}=a^{*} a$ with $\sigma(L)=1$.
- If $\Sigma=\{a, b\}$, then we have three cases:

1. If $b:[1,1]$, then $L=\Sigma^{*} \Sigma$ with $\sigma(L)=1$.
2. If $b:[0,0]$, then $L=\Sigma^{*} a$ with $\sigma(L)=2$.
3. If $b:[0,1]$, then $L=\Sigma^{*} a \Sigma^{*}$ with $\sigma(L)=2$.

## n $<3$

$\mathrm{n}=1$ : Here $L=\Sigma^{*}$. The bound is met by $a^{*}$ over $\Sigma=\{a\}$. $\mathrm{n}=2$ :

- Only $[1,0]$ is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a)=1$ for some $a \in \Sigma$.
- We cannot have $a:[1,0]$, and so we have $a:[1,1]$
- If $\Sigma=\{a\}$, then $L=a a^{*}=a^{*} a$ with $\sigma(L)=1$.
- If $\Sigma=\{a, b\}$, then we have three cases:

1. If $b:[1,1]$, then $L=\Sigma^{*} \Sigma$ with $\sigma(L)=1$.
2. If $b:[0,0]$, then $L=\Sigma^{*} a$ with $\sigma(L)=2$.
3. If $b:[0,1]$, then $L=\Sigma^{*} a \Sigma^{*}$ with $\sigma(L)=2$.

- If $\Sigma=\{a, b, c\}, L=\Sigma^{*} a(a \cup b)^{*}$ meets the bound 3 .

Syntactic Complexity
Languages with Special Quotients
Ideals and Closed Languages
Prefix-, Suffix-, and Bifix-Free Languages
Star-Free Languages
Conclusions

## $\mathrm{n}=3$

$\mathrm{n}=3$ :

- For $|\Sigma|=1, L=a^{*}$ aa and $\sigma(L)=2$


## $\mathrm{n}=3$

$\mathrm{n}=3$ :

- For $|\Sigma|=1, L=a^{*}$ aa and $\sigma(L)=2$
- For $|\Sigma|=2, \sigma(L) \leq 7$; $a$ : [001], $b$ : [122] meet this bound


## $\mathrm{n}=3$

$\mathrm{n}=3$ :

- For $|\Sigma|=1, L=a^{*}$ aa and $\sigma(L)=2$
- For $|\Sigma|=2, \sigma(L) \leq 7$; $a$ : [001], $b$ : [122] meet this bound
- For $|\Sigma|=3, \sigma(L) \leq 9$; and $\mathcal{B}_{3}$ restricted to inputs $b:[0,2,1]$, $d:[0,1,0]$ and $e:[1,1,1]$ meets this bound


## $\mathrm{n}=3$

$\mathrm{n}=3$ :

- For $|\Sigma|=1, L=a^{*}$ aa and $\sigma(L)=2$
- For $|\Sigma|=2, \sigma(L) \leq 7$; $a$ : [001], $b$ : [122] meet this bound
- For $|\Sigma|=3, \sigma(L) \leq 9$; and $\mathcal{B}_{3}$ restricted to inputs $b:[0,2,1]$, $d:[0,1,0]$ and $e:[1,1,1]$ meets this bound
- For $|\Sigma|=4, a$ and $b$ of $\mathcal{B}_{3}$ coincide; omit $a$.


## $\mathrm{n}=3$

$\mathrm{n}=3$ :

- For $|\Sigma|=1, L=a^{*}$ aa and $\sigma(L)=2$
- For $|\Sigma|=2, \sigma(L) \leq 7$; $a$ : [001], $b$ : [122] meet this bound
- For $|\Sigma|=3, \sigma(L) \leq 9$; and $\mathcal{B}_{3}$ restricted to inputs $b:[0,2,1]$, $d:[0,1,0]$ and $e:[1,1,1]$ meets this bound
- For $|\Sigma|=4$, $a$ and $b$ of $\mathcal{B}_{3}$ coincide; omit $a$.
- Next table shows $\mathcal{B}_{3}$ with $3^{2}+2=11$ transformations. We show that 11 is indeed the maximal bound.


## $\mathrm{n}=3$ with $|\Sigma \mathbf{\Sigma}|=4$

Table: The eleven transformations of automaton $\mathcal{B}_{3}$ of a left ideal.

|  | $b$ | $c$ | $d$ | $e$ | $b b$ | $b d$ | $c b$ | $d b$ | $e b$ | $b d b$ | $c b d$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| 1 | 2 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 0 | 0 |
| 2 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 0 | 2 | 2 | 0 |

## $\mathrm{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$


## $\mathrm{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$


## $\mathrm{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$
- Not ruled out by Lemma and not in Table: $[1,1,0],[1,1,2]$, [1, 2, 2], $[2,0,2],[2,1,1]$, and [2, 1, 2]


## $\mathrm{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$
- Not ruled out by Lemma and not in Table: $[1,1,0],[1,1,2]$, [1, 2, 2], [2, 0, 2], [2, 1, 1], and [2, 1, 2]
- $t_{1}:[1,1,0]$ and $c b:[0,2,2]$ yield $t_{1} c b:[2,2,0]$
$t_{2}:[1,1,2]$ and $d b:[0,2,0]$ yield $t_{2} d b:[2,2,0]$
$t_{3}:[1,2,2]$ and $d:[0,1,0]$ yield $t_{3} d:[1,0,0]$
$t_{4}:[2,0,2]$ and $c:[0,1,1]$ yield $t_{4} c:[1,0,1]$
$t_{5}:[2,1,1]$ and $b d b:[0,0,2]$ yield $t_{5} b d b:[2,0,0]$
$t_{6}:[2,1,2]$ and $b d:[0,0,1]$ yield $t_{6} b d:[1,0,1]$


## $\mathrm{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$
- Not ruled out by Lemma and not in Table: $[1,1,0],[1,1,2]$, [1, 2, 2], $[2,0,2],[2,1,1]$, and [2, 1, 2]
- $t_{1}:[1,1,0]$ and $c b:[0,2,2]$ yield $t_{1} c b:[2,2,0]$
$t_{2}:[1,1,2]$ and $d b:[0,2,0]$ yield $t_{2} d b:[2,2,0]$
$t_{3}:[1,2,2]$ and $d:[0,1,0]$ yield $t_{3} d:[1,0,0]$
$t_{4}:[2,0,2]$ and $c:[0,1,1]$ yield $t_{4} c:[1,0,1]$
$t_{5}:[2,1,1]$ and $b d b:[0,0,2]$ yield $t_{5} b d b:[2,0,0]$
$t_{6}:[2,1,2]$ and $b d:[0,0,1]$ yield $t_{6} b d:[1,0,1]$
- Conflicts are independent of the set of accepting states


## $\mathbf{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$
- Not ruled out by Lemma and not in Table: $[1,1,0],[1,1,2]$, [1, 2, 2], $[2,0,2],[2,1,1]$, and [2, 1, 2]
- $t_{1}:[1,1,0]$ and $c b:[0,2,2]$ yield $t_{1} c b:[2,2,0]$
$t_{2}:[1,1,2]$ and $d b:[0,2,0]$ yield $t_{2} d b:[2,2,0]$
$t_{3}:[1,2,2]$ and $d:[0,1,0]$ yield $t_{3} d:[1,0,0]$
$t_{4}:[2,0,2]$ and $c:[0,1,1]$ yield $t_{4} c:[1,0,1]$
$t_{5}:[2,1,1]$ and $b d b:[0,0,2]$ yield $t_{5} b d b:[2,0,0]$
$t_{6}:[2,1,2]$ and $b d:[0,0,1]$ yield $t_{6} b d:[1,0,1]$
- Conflicts are independent of the set of accepting states
- Conflicts above are disjoint pairs


## $\mathbf{n}=3$ continued, periodic behaviors

- $\left(p_{0}, p_{1} ; p_{2}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{0}\right),\left(p_{0}, p_{1}, p_{2} ; p_{3}=p_{1}\right)$
- Ruled out by Lemma: $[1,0,0],[1,0,1],[1,0,2],[1,2,0]$, $[1,2,1],[2,0,0],[2,1,0],[2,2,0],[2,0,1]$, and $[2,2,1]$
- Not ruled out by Lemma and not in Table: $[1,1,0],[1,1,2]$, [1, 2, 2], $[2,0,2],[2,1,1]$, and [2, 1, 2]
- $t_{1}:[1,1,0]$ and $c b:[0,2,2]$ yield $t_{1} c b:[2,2,0]$
$t_{2}:[1,1,2]$ and $d b:[0,2,0]$ yield $t_{2} d b:[2,2,0]$
$t_{3}:[1,2,2]$ and $d:[0,1,0]$ yield $t_{3} d:[1,0,0]$
$t_{4}:[2,0,2]$ and $c:[0,1,1]$ yield $t_{4} c:[1,0,1]$
$t_{5}:[2,1,1]$ and $b d b:[0,0,2]$ yield $t_{5} b d b:[2,0,0]$
$t_{6}:[2,1,2]$ and $b d:[0,0,1]$ yield $t_{6} b d:[1,0,1]$
- Conflicts are independent of the set of accepting states
- Conflicts above are disjoint pairs
- At most one from each pair, so no more than 11


## Syntactic Complexities for Left Ideals

|  | $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ |  | $n=n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\|\Sigma\|=1$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\ldots$ | $\mathbf{n}-\mathbf{1}$ |
| $\|\Sigma\|=2$ | - | $\mathbf{2}$ | $\mathbf{7}$ | 17 | 34 | $\ldots$ | $?$ |
| $\|\Sigma\|=3$ | - | $\mathbf{3}$ | $\mathbf{9}$ | 25 | 65 | $\ldots$ | $?$ |
| $\|\Sigma\|=4$ | - | - | $\mathbf{1 1}$ | 64 | 453 | $\ldots$ | $?$ |
| $\|\Sigma\|=5$ | - | - | - | 67 | 629 | $\ldots$ | $n^{n-1}+n-1$ |

## Two-Sided Ideals and Factor-Closed Languages

Conjecture 2. If $L$ is a two-sided ideal or a factor-closed language with $\kappa(L)=n \geq 2$, then $\sigma(L) \leq n^{n-2}+(n-2) 2^{n-2}+1$.

## Two-Sided Ideals and Factor-Closed Languages

Conjecture 2. If $L$ is a two-sided ideal or a factor-closed language with $\kappa(L)=n \geq 2$, then $\sigma(L) \leq n^{n-2}+(n-2) 2^{n-2}+1$.

- For $n=2$ and $\Sigma=\{a, b\}, \Sigma^{*} a \Sigma^{*}$ meets the bound 2
- For $n=3$ and $\Sigma=\{a, b, c\},\left(b \cup c \cup a c^{*} b\right)^{*} a c^{*} a \Sigma^{*}$ works
- For $n \geq 4$, use $\mathcal{C}_{n}=(Q, \Sigma, \delta, 0,\{n-1\})$, where $Q=\{0, \ldots, n-1\}, \Sigma=\{a, b, c, d, e, f\}$, and $\delta$ is on next slide
- For $n=4, a$ and $b$ coincide, so $|\Sigma|=5$


## Automaton $\mathcal{C}_{n}$



- $a=(1,2, \ldots, n-2), b=(1,2), c=\binom{n-2}{1}, d=\binom{n-2}{0}$, $\delta(i, e)=1$ for $i=0, \ldots, n-2, \delta(n-1, e)=n-1, f=\binom{1}{n-1}$
- DFA $\mathcal{C}_{n}$ is minimal and $L=L\left(\mathcal{C}_{n}\right)$ is a two-sided ideal


## Syntactic Complexities for Two-Sided Ideals

| $\|\Sigma\|$ | $n=1$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ |  | $n=n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\ldots$ | $\mathbf{n - \mathbf { 1 }}$ |
| 2 | - | $\mathbf{2}$ | 5 | 11 | 19 | $\ldots$ | $?$ |
| 3 | - | - | 6 | 16 | 47 | $\ldots$ | $?$ |
| 4 | - | - | - | 23 | 90 | $\ldots$ | $?$ |
| 5 | - | - | - | 25 | 147 | $\cdots$ | $?$ |
| 6 | - | - | - | - | 150 | $\ldots$ | $f(n)$ |

## Prefix-Free Regular Languages

## Theorem

If $L$ is regular and prefix-free with $\kappa(L)=n \geq 2$, then $\sigma(L) \leq n^{n-2}$. Moreover, this bound is tight for $n=2$ if $|\Sigma| \geq 1$, for $n=3$ if $|\Sigma| \geq 2$, for $n=4$ if $|\Sigma| \geq 4$, and for $n \geq 5$ if $|\Sigma| \geq n+1$.

## Prefix-Free Witness with 1,296 Transformations

$$
\Sigma=\{a, b, c\} \cup \Gamma \quad \Gamma=\left\{d_{1}, \ldots, d_{n-2}\right\}
$$



## Suffix-Free Regular Languages

Notation change: $Q=\{1,2, \ldots, n\}$.
$G_{n}=\left\{t \in \mathcal{T}_{Q} \mid 1 \notin \operatorname{img} t, n t=n\right.$, and $1 t=n$ or $1 t \neq i t$ for $\left.i \neq 1\right\}$.
Let $g(n)=\left|G_{n}\right| . \quad G_{n}$ is not a semigroup for $n \geq 3$ :
$s=[2,3,3, \ldots, 3, n] \in G_{n}$ but $s^{2}=[3,3,3, \ldots, 3, n] \notin G_{n}$.

## Proposition

If $L$ is a regular language with $\kappa(L)=n$, then the following hold: 1. If $L$ is suffix-free, then $T_{L}$ is a subset of $G_{n}$.
2. If $L$ is suffix-free and $n \geq 2$, then

$$
\sigma(L) \leq g(n)=(n-1)^{n-2}+(n-2)^{n-1}
$$

3. If $L$ has 1 final quotient, and $T_{L} \subseteq G_{n}$, then $L$ is suffix-free.

## Suffix-Free Regular Languages

$P_{n}=\left\{t \in G_{n} \mid\right.$ for all $i, j \in Q, i \neq j$, we have $i t=j t=n$ or it $\left.\neq j t\right\}$.

## Proposition

For $n \geq 3, P_{n} \subseteq G_{n}$ is a semigroup, and

$$
p(n)=\left|P_{n}\right|=\sum_{k=1}^{n-1} C_{k}^{n-1}(n-1-k)!C_{n-1-k}^{n-2}
$$

## Suffix-Free Regular Languages

## Proposition

When $n \geq 3$, the semigroup $P_{n}$ can be generated by the following set $I_{n}$ of transformations of $Q: I_{3}=\{a, b\}$, where $a=[3,2,3]$ and $b=[2,3,3] ; I_{4}=\{a, b, c\}$, where $a=[4,3,2,4], b=[2,4,3,4]$, $c=[2,3,4,4] ;$ for $n \geq 5, I_{n}=\left\{a_{0}, \ldots, a_{n-1}\right\}$, where

$$
\begin{aligned}
& a_{0}=\left[\begin{array}{ccccccc}
n, & 3, & 2, & 4, & \ldots, & n-1, & n
\end{array}\right], \\
& a_{1}=\left[\begin{array}{cccccc}
n, & 3, & 4, & \ldots, & n-1, & 2, \\
a_{i} & =\left[\begin{array}{ccccc}
n,
\end{array}\right],
\end{array} \begin{array}{lllll}
2, & \ldots, & i, & i+1, & \ldots, \\
n
\end{array}\right],
\end{aligned}
$$

for $i=2, \ldots, n-1$. That is, $a_{0}=\binom{1}{n}(2,3)$,
$a_{1}=\binom{1}{n}(2,3, \ldots, n-1)$, and $j a_{i}=j+1$ for $j=1, \ldots, i-1$,
$i a_{i}=n$, and $j a_{i}=j$ for $j=i+1, \ldots, n$.

## Suffix-Free Regular Languages

## Proposition

For $n \geq 5$, let $\mathcal{A}_{n}=\{Q, \Sigma, \delta, 1, F\}$ be the DFA with alphabet $\Sigma=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$, where each $a_{i}$ defines a transformation as above, and $F=\{2\}$. Then $L=L\left(\mathcal{A}_{n}\right)$ has quotient complexity $\kappa(L)=n$, and syntactic complexity $\sigma(L)=p(n)$. Moreover, $L$ is suffix-free.

## Suffix-Free Regular Languages

## Proposition

For $n \geq 5$, let $\mathcal{A}_{n}=\{Q, \Sigma, \delta, 1, F\}$ be the DFA with alphabet $\Sigma=\left\{a_{0}, a_{1}, \ldots, a_{n-1}\right\}$, where each $a_{i}$ defines a transformation as above, and $F=\{2\}$. Then $L=L\left(\mathcal{A}_{n}\right)$ has quotient complexity $\kappa(L)=n$, and syntactic complexity $\sigma(L)=p(n)$. Moreover, $L$ is suffix-free.

Conjecture 3 (Suffix-Free Regular Languages). If $L$ is a suffix-free regular language with $\kappa(L)=n \geq 2$, then $\sigma(L) \leq p(n)$ and this is a tight bound.
Proved for $n \geq 4$

## Bifix-Free Regular Languages

$$
H_{n}=\left\{t \in G_{n} \mid(n-1) t=n\right\} \quad h(n)=\left|H_{n}\right|
$$

## Proposition

If $L$ is a regular language with quotient complexity $n$ and syntactic semigroup $T_{L}$, then the following hold:

1. If $L$ is bifix-free, then $T_{L}$ is a subset of $H_{n}$.
2. If $L$ is bifix-free and $n \geq 3$, then

$$
\sigma(L) \leq h(n)=(n-1)^{n-3}+(n-2)^{n-2} .
$$

3. If $L$ has 1 accepting quotient, $T_{L} \subseteq H_{n}$, then $L$ is bifix-free.

## Bifix-Free Regular Languages

$$
R_{n}=\left\{t \in H_{n} \mid i t=j t=n \text { or } i t \neq j t \text { for all } 1 \leq i, j \leq n\right\} .
$$

## Proposition

For $n \geq 3, R_{n} \subseteq H_{n}$ is a semigroup, and its cardinality is

$$
r(n)=\left|R_{n}\right|=\sum_{k=0}^{n-2}\left(C_{k}^{n-2}\right)^{2}(n-2-k)!
$$

## Bifix-Free Regular Languages

$$
R_{n}=\left\{t \in H_{n} \mid \text { it }=j t=n \text { or } i t \neq j t \text { for all } 1 \leq i, j \leq n\right\} .
$$

## Proposition

For $n \geq 3, R_{n} \subseteq H_{n}$ is a semigroup, and its cardinality is

$$
r(n)=\left|R_{n}\right|=\sum_{k=0}^{n-2}\left(C_{k}^{n-2}\right)^{2}(n-2-k)!
$$

Conjecture 4 (Bifix-Free Regular Languages). If $L$ is a bifix-free regular language with $\kappa(L)=n \geq 2$, then $\sigma(L) \leq r(n)$ and this is a tight bound.
Proved for $n \leq 5$

## Summary for Prefix-, Suffix-, and Bifix-Free Languages

|  | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $n=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\|\Sigma\|=1$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| $\|\Sigma\|=2$ | $*$ | $\mathbf{3} / \mathbf{3} / *$ | $\mathbf{1 1 / 1 1 / 7}$ | $\mathbf{4 9} / \mathbf{4 9} / \mathbf{2 0}$ | $?$ |
| $\|\Sigma\|=3$ | $*$ | $*$ | $\mathbf{1 4 / 1 3 / *}$ | $\mathbf{9 5 / 6 1 / 3 1}$ | $?$ |
| $\|\Sigma\|=4$ | $*$ | $*$ | $\mathbf{1 6} / * / *$ | $\mathbf{1 1 0} / \mathbf{6 7} / \mathbf{3 2}$ | $?$ |
| $\|\Sigma\|=5$ | $*$ | $*$ | $*$ | $\mathbf{1 1 9 / 7 3 / 3 3}$ | $?$ |
| $\|\Sigma\|=6$ | $*$ | $*$ | $*$ | $\mathbf{1 2 5} / ? / \mathbf{3 4}$ | $? / 501 / ?$ |
| $\cdots$ |  |  |  |  |  |
| $n^{n-2} / p(n) / r(n)$ | $\mathbf{1} / \mathbf{1} / \mathbf{1}$ | $\mathbf{3 / 3} / \mathbf{2}$ | $\mathbf{1 6} / \mathbf{1 3} / \mathbf{7}$ | $\mathbf{1 2 5} / 73 / \mathbf{3 4}$ | $\mathbf{1 2 9 6} / 501 / 209$ |
| Suf-free $: g(n)$ | 1 | 3 | 17 | 145 | 1,649 |
| Bif-free $: h(n)$ | 1 | 2 | 7 | 43 | 381 |

## Star-Free Languages

- $\emptyset,\{\varepsilon\},\{a\}, a \in \Sigma$ are star-free
- If $K$ and $L$ are star-free, then so are
- $\bar{L}$
- $K \cup L$
- KL


## Aperiodic Transformations


(a)

(b)

Convert forest into a directed graph. This graph defines

$$
t=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 4 & 4 & 5 & 5 & 7 & 7
\end{array}\right)
$$

Thus there is a one-to-one relation between aperiodic transformations of a set of $n$ elements and forests with $n$ nodes.

## Aperiodic Transformations Bound

## Proposition

The syntactic complexity $\sigma(L)$ of a star free language $L$ satisfies $\sigma(L) \leq(n+1)^{n-1}$.

## Monotonic Automata

A DFA $\mathcal{D}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is monotonic if there exists a total order $\leq$ on $Q$ such that, for each $a \in \Sigma$, we have $p<q$ implies $\delta(p, a) \leq \delta(q, a)$.

## Theorem

Every monotonic DFA is permutation-free. The number $f(n)$ of monotonic transformations of $Q=\{1, \ldots, n\}$ is

$$
f(n)=\sum_{k=1}^{n} C_{k-1}^{n-1} C_{k}^{n}=C_{n}^{2 n-1}
$$

## Partially Monotonic Automata

A partial transformation may be undefined for some arguments. Partially monotonic - monotonic where defined.

## Example

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 2 | 2 | - | 1 | 1 |
| 2 | 3 | 3 | 2 | - | 1 | 1 | 2 |
| 3 | 3 | - | 3 | 3 | 2 | 1 | 3 |

## Partially Monotonic Automata

Replace dashes by a new state 4, add singular transformation $f$ :

## Example

|  | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 2 | 2 | 4 | 1 | 1 |
| 2 | 3 | 3 | 2 | 4 | 1 | 1 | 2 |
| 3 | 3 | 4 | 3 | 3 | 2 | 1 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 1 | 4 |

Generates 41 transformations

## Summary for Star-Free Languages

| $\|\Sigma\| / n$ | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{6}$ |
| 2 | $*$ | $\mathbf{2}$ | $\mathbf{7}$ | $?$ | $?$ | $?$ |
| 3 | $*$ | $\mathbf{3}$ | $\mathbf{9}$ | $?$ | $?$ | $?$ |
| 4 | $*$ | $*$ | $\mathbf{1 0}$ | $?$ | $?$ | $?$ |
| 5 | $*$ | $*$ | $*$ | $?$ | $?$ | $?$ |
| 6 | $*$ | $*$ | $*$ | $?$ | $?$ | $?$ |
| 7 | $*$ | $*$ | $*$ | 47 | $?$ | $?$ |
| 8 | $*$ | $*$ | $*$ | $?$ | $?$ | $?$ |
| 9 | $*$ | $*$ | $*$ | $?$ | 196 | $?$ |
| $\cdots$ |  |  |  |  |  |  |
| mon. $C_{n}^{2 n-1}$ | 1 | 3 | 10 | 35 | 126 | 462 |
| part.mon. |  | 3 | 10 | 41 | 196 | 1007 |
| aper. $(n+1)^{n-1}$ | 1 | 2 | 16 | 125 | 1,296 | 16,807 |

## Conclusions

- Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.


## Conclusions

- Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.
- The major open problems are the upper bound for left ideals, suffix-free languages, and star-free languages.


## Conclusions

- Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.
- The major open problems are the upper bound for left ideals, suffix-free languages, and star-free languages.
- Although star-free languages meet (almost) all the quotient complexity bounds of regular languages, their syntactic complexity is much smaller.


## References

- Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011


## References

- Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011
- Brzozowski, Li, Ye. Prefix-, Suffix-, Bifix-Free: DCFS 2011


## References

- Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011
- Brzozowski, Li, Ye. Prefix-, Suffix-, Bifix-Free: DCFS 2011
- Brzozowski, Li. Star-Free: In preparation

