Syntactic Complexity of Regular Languages

Janusz Brzozowski

David R. Cheriton School of Computer Science

Tallinn University of Technology Tallinn, Estonia June 13, 2011

(日) (同) (三) (三)

- Alphabet Σ a finite set of letters
- Set of all words Σ^* free monoid generated by Σ
- Set of non-empty words Σ^+ $\;$ free semigroup generated by Σ
- Empty word ε
- Language $L \subseteq \Sigma^*$
- The ε -function L^{ε} of a regular language L

$$L^{\varepsilon} = \begin{cases} \emptyset, & \text{if } \varepsilon \notin L; \\ \{\varepsilon\}, & \text{if } \varepsilon \in L. \end{cases}$$

(日) (同) (三) (三)

Congruences on Σ^*

 \bullet An equivalence relation \sim on Σ^* is a left congruence if

 $x \sim y \Leftrightarrow ux \sim uy$, for all $u \in \Sigma^*$

Congruences on Σ^*

 \bullet An equivalence relation \sim on Σ^* is a left congruence if

 $x \sim y \Leftrightarrow ux \sim uy$, for all $u \in \Sigma^*$

• It is a right congruence if, for all $x, y \in \Sigma^*$,

 $x \sim y \Leftrightarrow xv \sim yv$, for all $v \in \Sigma^*$

Congruences on Σ^*

 \bullet An equivalence relation \sim on Σ^* is a left congruence if

 $x \sim y \Leftrightarrow ux \sim uy$, for all $u \in \Sigma^*$

• It is a right congruence if, for all $x, y \in \Sigma^*$,

 $x \sim y \Leftrightarrow xv \sim yv$, for all $v \in \Sigma^*$

• It is a congruence if it is both a left and a right congruence, or

 $x \sim y \Leftrightarrow uxv \sim uyv$, for all $u, v \in \Sigma^*$

Nerode Congruence on Σ^*

• $x \sim_L y$ if and only if $xv \in L \Leftrightarrow yv \in L$, for all $v \in \Sigma^*$

< ロ > < 同 > < 三 > < 三

Nerode Congruence on Σ^*

- $x \sim_L y$ if and only if $xv \in L \Leftrightarrow yv \in L$, for all $v \in \Sigma^*$
- The (left) quotient, of a language L by a word w is the language L_w = {x ∈ Σ* | wx ∈ L}
- $x \sim_L y$ if and only if $L_x = L_y$
- Number of classes of \sim_L = number of quotients of L
- The quotient complexity of *L* is the number of quotients of *L*

- < 同 > < 三 > < 三 >

Nerode Congruence on Σ^*

- $x \sim_L y$ if and only if $xv \in L \Leftrightarrow yv \in L$, for all $v \in \Sigma^*$
- The (left) quotient, of a language L by a word w is the language L_w = {x ∈ Σ* | wx ∈ L}
- $x \sim_L y$ if and only if $L_x = L_y$
- Number of classes of \sim_L = number of quotients of L
- The quotient complexity of *L* is the number of quotients of *L*
- The quotient automaton of a regular language *L* is $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$, where $Q = \{L_w \mid w \in \Sigma^*\}$, $\delta(L_w, a) = L_{wa}, q_0 = L_{\varepsilon} = L, F = \{L_w \mid \varepsilon \in L_w\}$.
- κ(L)=quotient complexity = state complexity

Myhill Congruence

• $x \approx_L y$ if and only if $uxv \in L \Leftrightarrow uyv \in L$ for all $u, v \in \Sigma^*$

(日) (同) (日) (日)

Myhill Congruence

- $x \approx_L y$ if and only if $uxv \in L \Leftrightarrow uyv \in L$ for all $u, v \in \Sigma^*$
- Also known as the syntactic congruence of L
- Σ^+ / \approx_L syntactic semigroup of L
- Σ^* / \approx_L syntactic monoid of L
- Syntactic complexity $\sigma(L)$: cardinality of syntactic semigroup

A □ > A □ > A

Myhill Congruence

- $x \approx_L y$ if and only if $uxv \in L \Leftrightarrow uyv \in L$ for all $u, v \in \Sigma^*$
- Also known as the syntactic congruence of L
- Σ^+ / \approx_L syntactic semigroup of L
- Σ^* / \approx_L syntactic monoid of L
- Syntactic complexity $\sigma(L)$: cardinality of syntactic semigroup
- The transformation semigroup T_L of a quotient automaton $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ of L:
- $\bullet\,$ Set of transformations of states of ${\cal A}$ by non-empty words
- Syntactic semigroup isomorphic to transformation semigroup

Quotient Complexity vs Syntactic Complexity

A >

Quotient Complexity vs Syntactic Complexity

•
$$\sigma(L_1) = 3$$
 $\sigma(L_2) = 9$ $\sigma(L_3) = 27$

• Can we predict this?

< A

Transformations of $Q = \{0, 1, \dots, n-1\}$

- A transformation $t = \begin{pmatrix} 0 & 1 & \cdots & n-2 & n-1 \\ i_0 & i_1 & \cdots & i_{n-2} & i_{n-1} \end{pmatrix}$
- The image of element *i* under transformation *t* is *it*
- The identity transformation maps each element to itself
- t contains a cycle (i_1, i_2, \ldots, i_k) of length k if there exist i_1, \ldots, i_k such that $i_1t = i_2, i_2t = i_3, \ldots, i_{k-1}t = i_k, i_kt = i_1$
- A singular transformation, denoted by (ⁱ_j), has it = j, and ht = h for all h ≠ i.
- For i < j, a transposition is the cycle (i, j)
- A constant transformation, $\binom{Q}{i}$, has it = j for all i.

< 口 > < 同 > < 三 > < 三

Generators

Theorem (Piccard, 1935)

The complete transformation monoid T_Q on $Q = \{0, 1, ..., n-1\}$ of size n^n can be generated by any cyclic permutation of n elements together with a transposition and a "returning" transformation $r = \binom{n-1}{0}$. In particular, T_n can be generated by c = (0, 1, ..., n-1), t = (0, 1) and $r = \binom{n-1}{0}$.

A (10) > A (10) > A (10)

Generators

Theorem (Piccard, 1935)

The complete transformation monoid T_Q on $Q = \{0, 1, ..., n-1\}$ of size n^n can be generated by any cyclic permutation of n elements together with a transposition and a "returning" transformation $r = \binom{n-1}{0}$. In particular, T_n can be generated by c = (0, 1, ..., n-1), t = (0, 1) and $r = \binom{n-1}{0}$.

Proposition

For any language L with
$$\kappa(L) = n > 1$$
, we have $n - 1 \le \sigma(L) \le n^n$.

Each state > 0 reached from the initial state, so at least n-1If $\Sigma = \{a\}$ and $L = a^{n-1}a^*$, then $\kappa(L) = n$, and $\sigma(L) = n - 1$.

Special Quotients, $\kappa(L) = n$

 If one of the quotients of L is Ø (respectively, {ε}, Σ*, Σ⁺), then we say that L has Ø (respectively, {ε}, Σ*, Σ⁺).

▲□▶ ▲ □▶ ▲ □

Special Quotients, $\kappa(L) = n$

- If one of the quotients of L is Ø (respectively, {ε}, Σ*, Σ⁺), then we say that L has Ø (respectively, {ε}, Σ*, Σ⁺).
- A quotient L_w of a language L is uniquely reachable (ur) if
 L_x = L_w implies that x = w.

- < 同 > < 三 > < 三 >

Special Quotients, $\kappa(L) = n$

- If one of the quotients of L is Ø (respectively, {ε}, Σ*, Σ⁺), then we say that L has Ø (respectively, {ε}, Σ*, Σ⁺).
- A quotient L_w of a language L is uniquely reachable (ur) if
 L_x = L_w implies that x = w.

- < 同 > < 三 > < 三 >

Special Quotients, $\kappa(L) = n$

- If one of the quotients of L is Ø (respectively, {ε}, Σ*, Σ⁺), then we say that L has Ø (respectively, {ε}, Σ*, Σ⁺).
- A quotient L_w of a language L is uniquely reachable (ur) if
 L_x = L_w implies that x = w.

Theorem

If L has Ø or Σ*, then σ(L) ≤ nⁿ⁻¹.
 If L has {ε} or Σ⁺, then σ(L) ≤ nⁿ⁻².
 If L is uniquely reachable, then σ(L) ≤ (n-1)ⁿ.
 If L_a is uniquely reachable, a ∈ Σ, then σ(L) ≤ 1 + (n-2)ⁿ.

(日) (同) (三) (三)

Special Quotients, $\kappa(L) = n$

Ø	Σ*	$\{\varepsilon\}$	Σ^+		<i>L</i> is ur	L _a is ur
				n^{n-1}	$(n-1)^{n-1}$	$1+(n-3)^{n-2}$
				n^{n-1}	$(n-1)^{n-1}$	$1+(n-3)^{n-2}$
		\checkmark		<i>n</i> ^{<i>n</i>-2}	$(n-1)^{n-2}$	$1+(n-4)^{n-2}$
				n ⁿ⁻²	$(n-1)^{n-2}$	$1+(n-4)^{n-2}$
				<i>n</i> ^{<i>n</i>-2}	$(n-1)^{n-2}$	$1+(n-4)^{n-2}$
				<i>n</i> ^{<i>n</i>-3}	$(n-1)^{n-3}$	$1+(n-5)^{n-2}$
		\checkmark		<i>n</i> ^{<i>n</i>-3}	$(n-1)^{n-3}$	$1+(n-5)^{n-2}$
				n^{n-4}	$(n-1)^{n-4}$	$1+(n-6)^{n-2}$

- 4 同 2 4 日 2 4 日 2

3

Proof of Special Quotient Theorem $n \ge 1 \kappa(L) = n$

Proof.

Since Ø_a = Ø for all a ∈ Σ, only n − 1 states in the quotient automaton distinguish two transformations. nⁿ⁻¹
 If L has Σ*, then (Σ*)_a = Σ*, for all a ∈ Σ.

Proof of Special Quotient Theorem $n \ge 1 \kappa(L) = n$

Proof.

- Since Ø_a = Ø for all a ∈ Σ, only n − 1 states in the quotient automaton distinguish two transformations. nⁿ⁻¹
 If L has Σ*, then (Σ*)_a = Σ*, for all a ∈ Σ.
- Since {ε}_a = Ø for all a ∈ Σ, L has Ø if L has {ε}. Two states that have image Ø. nⁿ⁻² Dually, (Σ⁺)_a = Σ^{*} for all a ∈ Σ.

Proof of Special Quotient Theorem $n \ge 1 \kappa(L) = n$

Proof.

- Since Ø_a = Ø for all a ∈ Σ, only n − 1 states in the quotient automaton distinguish two transformations. nⁿ⁻¹
 If L has Σ*, then (Σ*)_a = Σ*, for all a ∈ Σ.
- Since {ε}_a = Ø for all a ∈ Σ, L has Ø if L has {ε}. Two states that have image Ø. nⁿ⁻²
 Dually, (Σ⁺)_a = Σ^{*} for all a ∈ Σ.
- If L is uniquely reachable then $L_w = L$ implies $w = \varepsilon$, L does not appear, and there are n 1 choices. $(n 1)^n$

Proof of Special Quotient Theorem $n \ge 1 \kappa(L) = n$

Proof.

- Since Ø_a = Ø for all a ∈ Σ, only n − 1 states in the quotient automaton distinguish two transformations. nⁿ⁻¹
 If L has Σ*, then (Σ*)_a = Σ*, for all a ∈ Σ.
- Since {ε}_a = Ø for all a ∈ Σ, L has Ø if L has {ε}. Two states that have image Ø. nⁿ⁻²
 Dually, (Σ⁺)_a = Σ^{*} for all a ∈ Σ.
- If L is uniquely reachable then $L_w = L$ implies $w = \varepsilon$, L does not appear, and there are n 1 choices. $(n 1)^n$
- If L_a is uniquely reachable, then so is L. Hence L never appears, and L_a appears only once. There can be at most $(n-2)^n$ other transformations. $1 + (n-2)^n$

Prefixes and Suffixes

- w = uv u is a prefix of w
- w = uv v is a suffix of w
- w = u x v x is a factor of w

< ロ > < 同 > < 三 > < 三

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and u, w ∈ L implies v ∈ L
- *L* is prefix-closed if *u* is a prefix of *v* and $v \in L$ implies $u \in L$
- L is converse prefix-closed if u is a prefix of v, and u ∈ L implies v ∈ L right ideal
- *L* is prefix-free if $u \neq v$ is a prefix of *v* and $v \in L$ implies $u \notin L$ prefix code

(日) (同) (三) (

Convex Languages

- A language L is prefix-convex if u is a prefix of v, v is a prefix of w and u, w ∈ L implies v ∈ L
- *L* is prefix-closed if *u* is a prefix of *v* and $v \in L$ implies $u \in L$
- L is converse prefix-closed if u is a prefix of v, and u ∈ L implies v ∈ L right ideal
- L is prefix-free if $u \neq v$ is a prefix of v and $v \in L$ implies $u \notin L$ prefix code
- *L* is suffix-convex
- L is factor-convex
- L is bifix-convex

(日) (同) (三) (三)

Ideals and Closed Languages

- right ideal $L = L\Sigma^*$
- left ideal $L = \Sigma^* L$
- 2-sided ideal $L = \Sigma^* L \Sigma^*$
- Ideals are complements of closed languages
 - right ideals are complements of prefix-closed languages
 - left ideals are complements of suffix-closed languages
 - 2-sided ideals are complements of factor-closed languages
- Since syntactic complexity is preserved under complementation, our proofs are in terms of ideals only.

A (1) > A (1) > A

Right Ideals and Prefix-Closed Languages

Theorem

Let $L \subseteq \Sigma^*$ and $\kappa(L) = n$. If L is a right ideal or a prefix-closed language, then $\sigma(L) \leq n^{n-1}$. Moreover, the bound is tight for

- n = 1 if $|\Sigma| \ge 1$
- n = 2 if $|\Sigma| \ge 2$

•
$$n = 3$$
 if $|\Sigma| \ge 3$

• $n \ge 4$ if $|\Sigma| \ge 4$

- < 同 > < 三 > < 三 >

Right Ideals and Prefix-Closed Languages

Theorem

Let $L \subseteq \Sigma^*$ and $\kappa(L) = n$. If L is a right ideal or a prefix-closed language, then $\sigma(L) \leq n^{n-1}$. Moreover, the bound is tight for

- n = 1 if $|\Sigma| \ge 1$
- n = 2 if $|\Sigma| \ge 2$

•
$$n = 3$$
 if $|\Sigma| \ge 3$

• $n \ge 4$ if $|\Sigma| \ge 4$

Proof.

Since *L* has Σ^* , $\sigma(L) \leq n^{n-1}$. Next we show the bound is tight.

Proof of Right Ideal Theorem, $n \leq 3$

- If n = 1, $L = a^*$ meets the bound.
- If n = 2, then $b^*a(a \cup b)^*$ meets the bound.
- If n = 3, then automaton on next slide with alphabet {a, c, d} meets the bound.

A (1) > A (1) > A

Proof of Right Ideal Theorem, $n \ge 4$

(日) (同) (三) (三)

э

Proof of Right Ideal Theorem, $n \ge 4$

$$t = \left(\begin{array}{ccccc} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i_0 & i_1 & i_2 & \cdots & i_{n-3} & i_{n-2} & n-1 \end{array}\right),$$

< ロ > < 同 > < 三 > < 三

э

Proof of Right Ideal Theorem, $n \ge 4$

$$t = \left(\begin{array}{cccccc} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i_0 & i_1 & i_2 & \cdots & i_{n-3} & i_{n-2} & n-1 \end{array}\right),$$

Case 1

 $i_k \neq n-1$ for all $k, 0 \leq k \leq n-2$. Since all the images of the first n-1 states are in the set $\{0, 1, \dots, n-2\}, t$ can be performed by $\{a, b, c\}$.

Case 2

•
$$i_h = n - 1$$
 for some h , $0 \le h \le n - 2$

- There exists j, $0 \le j \le n-2$ such that $i_k \ne j$ for all k
- Define i'_k for all $0 \le k \le n-2$ as follows:
- $i'_k = j$ if $i_k = n 1$, and $i'_k = i_k$ if $i_k \neq n 1$

•
$$s = \begin{pmatrix} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i'_0 & i'_1 & i'_2 & \cdots & i'_{n-3} & i'_{n-2} & n-1 \end{pmatrix}$$

• Let $r = (j, n-2)$ \mathcal{A}_n can do s and r
Case 2

•
$$i_h = n - 1$$
 for some h , $0 \le h \le n - 2$

- There exists j, $0 \le j \le n-2$ such that $i_k \ne j$ for all k
- Define i'_k for all $0 \le k \le n-2$ as follows:
- $i'_k = j$ if $i_k = n 1$, and $i'_k = i_k$ if $i_k \neq n 1$

•
$$s = \begin{pmatrix} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ i'_0 & i'_1 & i'_2 & \cdots & i'_{n-3} & i'_{n-2} & n-1 \end{pmatrix}$$

• Let $r = (j, n-2)$ \mathcal{A}_n can do s and r

t = srdr

If
$$kt = n - 1$$
, then $ks = j$, $jr = n - 2$, $(n - 2)d = n - 1$,
 $(n - 1)r = n - 1$. If $kt = n - 2$, then $ks = n - 2$, $(n - 2)r = j$,
 $jd = j$, and $jr = n - 2$. If $kt = i_k < n - 2$, then $k(srdr) = i_k$.

Syntactic Complexity Bounds for Right Ideals

$ \Sigma $	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	 n = n
1	1	1	2	3	4	 n-1
2	-	2	7	31	167	 ?
3	_	-	9	61	545	 ?
4	-	-	-	64	625	 n ⁿ⁻¹

All the bounds are tight The bounds for $n \le 5$ were verified by a computer program

< ロ > < 同 > < 三 > < 三

Left Ideals and Suffix-Closed Languages

We provide strong support for the following conjecture:

Conjecture 1 If *L* is a left ideal or a suffix-closed language with quotient complexity $\kappa(L) = n \ge 1$, then its syntactic complexity is less than or equal to $n^{n-1} + n - 1$.

The bound is met with $|\Sigma| \geq 5$

Note the lack of symmetry between left and right ideals!

(4月) イラト イラ

Automaton \mathcal{B}_n with $n^{n-1} + n - 1$ Transformations

イロン 不同 とくほう イロン

Automaton \mathcal{B}_n with $n^{n-1} + n - 1$ Transformations

•
$$a = (1, \dots, n-1)$$
, $b = (1, 2)$, $c = \binom{n-1}{1}$, $d = \binom{n-1}{0}$, $e = \binom{Q}{1}$

- \mathcal{B}_n is minimal
- $L(\mathcal{B}_n)$ is a left ideal

n^{n-1} Transformations

$$t = \begin{pmatrix} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ 0 & i_1 & i_2 & \cdots & i_{n-3} & i_{n-2} & i_{n-1} \end{pmatrix},$$

$$if i_k \neq 0 \text{ for all } k, 1 \leq k \leq n-1, t \text{ can be done by } \mathcal{B}_n$$

$$if i_h = 0 \text{ for some } h, 1 \leq h \leq n-1, \text{ then there exists } j,$$

$$1 \leq j \leq n-1, i_k \neq j \text{ for all } k, 1 \leq k \leq n-1.$$
Let $i'_k = j$ if $i_k = 0$, and $i'_k = i_k$, otherwise, and let
$$s = \begin{pmatrix} 0 & 1 & 2 & \cdots & n-3 & n-2 & n-1 \\ 0 & i'_1 & i'_2 & \cdots & i'_{n-3} & i'_{n-2} & i'_{n-1} \end{pmatrix}, r = (j, n-1).$$
 $\mathcal{B}_n \text{ can do } s \text{ and } r; \text{ consider } srdr.$
If $kt = 0$, then $ks = j$, $jr = n-1$, $(n-1)d = 0$, and $0r = 0$.
If $kt = n-1$, then $ks = n-1$, $(n-1)r = j$, $jd = j$, and
 $jr = n-1$.
If $0 < kt < n-1$, then $srdr$ maps k to kt .
So $t = srdr$, and t can be performed by \mathcal{B}_n as well.

n-1 Transformations

- Transformation $t = \begin{pmatrix} Q \\ i \end{pmatrix}$ maps all the states to $j \neq 0$
- There are n-1 such transformations
- If j = 1, then t = e; therefore t can be performed by \mathcal{B}_n
- Otherwise, let s = (1, j)
- s can be performed by \mathcal{B}_n
- Since t = es, t can also be performed by \mathcal{B}_n

- < 同 > < 三 > < 三 >

n-1 Transformations

- Transformation $t = \begin{pmatrix} Q \\ i \end{pmatrix}$ maps all the states to $j \neq 0$
- There are n-1 such transformations
- If j = 1, then t = e; therefore t can be performed by \mathcal{B}_n
- Otherwise, let s = (1, j)
- s can be performed by \mathcal{B}_n
- Since t = es, t can also be performed by \mathcal{B}_n

• If
$$\delta(0,w)=i
eq 0$$
, then $w=uev$

- But ue maps all the states to 1
- So there are no other transformations

(日) (同) (三) (三)

Aperiodic Inputs

- Let $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ be the quotient DFA of a left ideal.
- For $w \in \Sigma^*$, consider $q_0 = p_0, p_1, p_2 \dots$ where $p_i = \delta(q_0, w^i)$.
- We must have some i and j > i such that p₀, p₁,..., p_i, p_{i+1},... p_{j-1} are distinct and p_j = p_i.
- The sequence $q_0 = p_0, p_1, \dots, p_i, p_{i+1}, \dots, p_{j-1}$ of states with $p_j = p_i$ is called the behavior of w on \mathcal{A}
- j i is the period of that behavior.
- If the period of w is 1, then its behavior is aperiodic; otherwise, it is periodic.

・ロト ・同ト ・ヨト ・ヨト

Properties of Left Ideals

Lemma

If \mathcal{A} is the quotient automaton of a left ideal L, then the behavior of every word $w \in \Sigma^*$ is aperiodic. Also, L does not have \emptyset .

A (1) > A (1) > A

Properties of Left Ideals

Lemma

If \mathcal{A} is the quotient automaton of a left ideal L, then the behavior of every word $w \in \Sigma^*$ is aperiodic. Also, L does not have \emptyset .

Properties of Left Ideals

Lemma

If \mathcal{A} is the quotient automaton of a left ideal L, then the behavior of every word $w \in \Sigma^*$ is aperiodic. Also, L does not have \emptyset .

• If $w^i x \in L$ but $w^{j-1}x = w^{j-i-1}(w^i x) \notin L$, L is not left ideal • If $w^{j-1}x \in L$ but $w^i x \notin L$, then $w^i x = w^j x = ww^{j-1} \notin L$

イロト イポト イヨト イヨト

Left Ideals $n \leq 3$

Theorem

If $1 \le n \le 3$ and L is a left ideal or a suffix-closed language with $\kappa(L) = n$, then $\sigma(L) \le n^{n-1} + n - 1$. Moreover, the bound is tight for n = 1 if $|\Sigma| \ge 1$, for n = 2 if $|\Sigma| \ge 3$, and for n = 3 if $|\Sigma| \ge 4$.

- < 同 > < 三 > < 三 >

$\mathbf{n} < \mathbf{3}$

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

• Only [1,0] is ruled out by Lemma. The bound 3 holds.

(日) (同) (三) (三)

э

n < 3

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

- Only [1,0] is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a) = 1$ for some $a \in \Sigma$.

< ロ > < 同 > < 三 > < 三

n < 3

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

- Only [1,0] is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a) = 1$ for some $a \in \Sigma$.
- We cannot have a : [1,0], and so we have a : [1,1]

n < 3

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

- Only [1,0] is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a) = 1$ for some $a \in \Sigma$.
- We cannot have a : [1,0], and so we have a : [1,1]
- If $\Sigma = \{a\}$, then $L = aa^* = a^*a$ with $\sigma(L) = 1$.

- < 同 > < 三 > < 三 >

n < 3

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

- Only [1,0] is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a) = 1$ for some $a \in \Sigma$.
- We cannot have a : [1,0], and so we have a : [1,1]
- If $\Sigma = \{a\}$, then $L = aa^* = a^*a$ with $\sigma(L) = 1$.
- If Σ = {a, b}, then we have three cases:
 1. If b : [1, 1], then L = Σ*Σ with σ(L) = 1.
 2. If b : [0, 0], then L = Σ*a with σ(L) = 2.
 3. If b : [0, 1], then L = Σ*aΣ* with σ(L) = 2.

- 4 同 6 4 日 6 4 日 6

n < 3

n=1: Here $L = \Sigma^*$. The bound is met by a^* over $\Sigma = \{a\}$. n=2:

- Only [1,0] is ruled out by Lemma. The bound 3 holds.
- We must have $\delta(0, a) = 1$ for some $a \in \Sigma$.
- We cannot have a : [1,0], and so we have a : [1,1]
- If $\Sigma = \{a\}$, then $L = aa^* = a^*a$ with $\sigma(L) = 1$.

If Σ = {a, b}, then we have three cases:
1. If b: [1, 1], then L = Σ*Σ with σ(L) = 1.
2. If b: [0, 0], then L = Σ*a with σ(L) = 2.
3. If b: [0, 1], then L = Σ*aΣ* with σ(L) = 2.

• If $\Sigma = \{a, b, c\}$, $L = \Sigma^* a(a \cup b)^*$ meets the bound 3.

n = 3

n=3: • For $|\Sigma| = 1$, $L = a^*aa$ and $\sigma(L) = 2$

(日) (同) (三) (三)

э

n = 3

n=3:

• For
$$|\Sigma| = 1$$
, $L = a^*aa$ and $\sigma(L) = 2$
• For $|\Sigma| = 2$, $\sigma(L) \le 7$; $a : [001]$, $b : [122]$ meet this bound

*ロ> *個> *国> *国>

æ

n = 3

n=3:

• For
$$|\Sigma| = 1$$
, $L = a^*aa$ and $\sigma(L) = 2$

• For $|\Sigma| = 2$, $\sigma(L) \le 7$; a : [001], b : [122] meet this bound

• For $|\Sigma| = 3$, $\sigma(L) \le 9$; and \mathcal{B}_3 restricted to inputs b : [0, 2, 1], d : [0, 1, 0] and e : [1, 1, 1] meets this bound

- 4 同 6 4 日 6 4 日 6

n = 3

n=3:

• For
$$|\Sigma| = 1$$
, $L = a^*aa$ and $\sigma(L) = 2$

• For
$$|\Sigma|=$$
 2, $\sigma(L)\leq$ 7; a : [001], b : [122] meet this bound

- For $|\Sigma| = 3$, $\sigma(L) \le 9$; and \mathcal{B}_3 restricted to inputs b : [0, 2, 1], d : [0, 1, 0] and e : [1, 1, 1] meets this bound
- For $|\Sigma| = 4$, a and b of \mathcal{B}_3 coincide; omit a.

n = 3

n=3:

• For
$$|\Sigma|=1$$
, $L=a^*aa$ and $\sigma(L)=2$

• For
$$|\Sigma|=$$
 2, $\sigma(L)\leq$ 7; a : [001], b : [122] meet this bound

- For $|\Sigma| = 3$, $\sigma(L) \le 9$; and \mathcal{B}_3 restricted to inputs b : [0, 2, 1], d : [0, 1, 0] and e : [1, 1, 1] meets this bound
- For $|\Sigma| = 4$, *a* and *b* of \mathcal{B}_3 coincide; omit *a*.
- Next table shows B_3 with $3^2 + 2 = 11$ transformations. We show that 11 is indeed the maximal bound.

- < 同 > < 三 > < 三 >

Table: The eleven transformations of automaton \mathcal{B}_3 of a left ideal.

	b	С	d	е	bb	bd	cb	db	eb	bdb	cbd
0	0	0	0	1	0	0	0	0	2	0	0
1	2	1	1	1	1	0	2	2	2	0	0
2	1	1	0	1	2	1	2	0	2	2	0

(日) (同) (三) (三)

э

n = 3 continued, periodic behaviors

•
$$(p_0, p_1; p_2 = p_0)$$
, $(p_0, p_1, p_2; p_3 = p_0)$, $(p_0, p_1, p_2; p_3 = p_1)$

A > < > > < >

э

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0), (p_0, p_1, p_2; p_3 = p_0), (p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0], [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]

・ 同 ト ・ 三 ト ・ 三

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0)$, $(p_0, p_1, p_2; p_3 = p_0)$, $(p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0],
 [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]
- Not ruled out by Lemma and not in Table: [1,1,0], [1,1,2], [1,2,2], [2,0,2], [2,1,1], and [2,1,2]

・ 同 ト ・ ヨ ト ・ ヨ

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0), (p_0, p_1, p_2; p_3 = p_0), (p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0], [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]
- Not ruled out by Lemma and not in Table: [1,1,0], [1,1,2], [1,2,2], [2,0,2], [2,1,1], and [2,1,2]
- t₁: [1,1,0] and cb: [0,2,2] yield t₁cb: [2,2,0]
 t₂: [1,1,2] and db: [0,2,0] yield t₂db: [2,2,0]
 t₃: [1,2,2] and d: [0,1,0] yield t₃d: [1,0,0]
 t₄: [2,0,2] and c: [0,1,1] yield t₄c: [1,0,1]
 t₅: [2,1,1] and bdb: [0,0,2] yield t₅bdb: [2,0,0]
 - $t_6: [2,1,2]$ and bd: [0,0,1] yield $t_6bd: [1,0,1]$

< 同 > < 三 > < 三 >

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0), (p_0, p_1, p_2; p_3 = p_0), (p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0], [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]
- Not ruled out by Lemma and not in Table: [1,1,0], [1,1,2], [1,2,2], [2,0,2], [2,1,1], and [2,1,2]
- t₁: [1,1,0] and cb: [0,2,2] yield t₁cb: [2,2,0]
 t₂: [1,1,2] and db: [0,2,0] yield t₂db: [2,2,0]
 - t_2 : [1, 1, 2] and db: [0, 2, 0] yield t_2db : [2, 2, 0] t_3 : [1, 2, 2] and d: [0, 1, 0] yield t_3d : [1, 0, 0]
 - t_4 : [2,0,2] and c: [0,1,1] yield t_3c : [1,0,1]
 - $t_5: [2, 1, 1]$ and bdb: [0, 0, 2] yield $t_5bdb: [2, 0, 0]$
 - $t_6: [2,1,2]$ and bd: [0,0,1] yield $t_6bd: [1,0,1]$
- Conflicts are independent of the set of accepting states

- < 同 > < 三 > < 三 >

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0), (p_0, p_1, p_2; p_3 = p_0), (p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0], [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]
- Not ruled out by Lemma and not in Table: [1,1,0], [1,1,2], [1,2,2], [2,0,2], [2,1,1], and [2,1,2]
- t_1 : [1,1,0] and cb: [0,2,2] yield t_1cb : [2,2,0]
 - t_2 : [1, 1, 2] and db: [0, 2, 0] yield t_2db : [2, 2, 0] t_3 : [1, 2, 2] and d: [0, 1, 0] yield t_3d : [1, 0, 0]
 - t_4 : [2, 0, 2] and c: [0, 1, 1] yield t_4c : [1, 0, 1]
 - t_5 : [2, 1, 1] and bdb: [0, 0, 2] yield t_5bdb : [2, 0, 0]
 - $t_6: [2,1,2]$ and bd: [0,0,1] yield $t_6bd: [1,0,1]$
- Conflicts are independent of the set of accepting states
- Conflicts above are disjoint pairs

n = 3 continued, periodic behaviors

- $(p_0, p_1; p_2 = p_0)$, $(p_0, p_1, p_2; p_3 = p_0)$, $(p_0, p_1, p_2; p_3 = p_1)$
- Ruled out by Lemma: [1,0,0], [1,0,1], [1,0,2], [1,2,0], [1,2,1], [2,0,0], [2,1,0], [2,2,0], [2,0,1], and [2,2,1]
- Not ruled out by Lemma and not in Table: [1,1,0], [1,1,2], [1,2,2], [2,0,2], [2,1,1], and [2,1,2]
- $t_1 : [1, 1, 0]$ and cb : [0, 2, 2] yield $t_1cb : [2, 2, 0]$
 - t_2 : [1, 1, 2] and db: [0, 2, 0] yield t_2db : [2, 2, 0]
 - t_3 : [1,2,2] and d: [0,1,0] yield t_3d : [1,0,0] t_4 : [2,0,2] and c: [0,1,1] yield t_4c : [1,0,1]
 - t_4 : [2, 0, 2] and c : [0, 1, 1] yield t_4c : [1, 0, 1] t_5 : [2, 1, 1] and bdb : [0, 0, 2] yield t_5bdb : [2, 0, 0]
 - $t_6: [2,1,2]$ and bd: [0,0,1] yield $t_6bd: [1,0,1]$
- Conflicts are independent of the set of accepting states
- Conflicts above are disjoint pairs
- At most one from each pair, so no more than 11

Syntactic Complexities for Left Ideals

	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	n = n
$ \Sigma = 1$	1	1	2	3	4	 n – 1
$ \Sigma = 2$	_	2	7	17	34	 ?
$ \Sigma = 3$	_	3	9	25	65	 ?
$ \Sigma = 4$	-	-	11	64	453	 ?
$ \Sigma = 5$	_	-	-	67	629	 $n^{n-1}+n-1$

Two-Sided Ideals and Factor-Closed Languages

Conjecture 2. If *L* is a two-sided ideal or a factor-closed language with $\kappa(L) = n \ge 2$, then $\sigma(L) \le n^{n-2} + (n-2)2^{n-2} + 1$.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

Two-Sided Ideals and Factor-Closed Languages

Conjecture 2. If *L* is a two-sided ideal or a factor-closed language with $\kappa(L) = n \ge 2$, then $\sigma(L) \le n^{n-2} + (n-2)2^{n-2} + 1$.

- For n = 2 and $\Sigma = \{a, b\}$, $\Sigma^* a \Sigma^*$ meets the bound 2
- For n = 3 and $\Sigma = \{a, b, c\}$, $(b \cup c \cup ac^*b)^*ac^*a\Sigma^*$ works
- For $n \ge 4$, use $C_n = (Q, \Sigma, \delta, 0, \{n-1\})$, where $Q = \{0, \ldots, n-1\}$, $\Sigma = \{a, b, c, d, e, f\}$, and δ is on next slide
- For n = 4, a and b coincide, so $|\Sigma| = 5$

- 4 同 6 4 日 6 4 日 6

Automaton C_n

• $a = (1, 2, ..., n-2), b = (1, 2), c = \binom{n-2}{1}, d = \binom{n-2}{0}, \delta(i, e) = 1$ for $i = 0, ..., n-2, \delta(n-1, e) = n-1, f = \binom{1}{n-1}$

• DFA C_n is minimal and $L = L(C_n)$ is a two-sided ideal

A B > A B >
Syntactic Complexities for Two-Sided Ideals

$ \Sigma $	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	n = n
1	1	1	2	3	4	 n – 1
2	_	2	5	11	19	 ?
3	-	-	6	16	47	 ?
4	-	-	-	23	90	 ?
5	_	_	_	25	147	 ?
6	-				150	 f(n)

Janusz Brzozowski Syntactic Complexity of Regular Languages

A > < > > < >

Prefix-Free Regular Languages

Theorem

If L is regular and prefix-free with $\kappa(L) = n \ge 2$, then $\sigma(L) \le n^{n-2}$. Moreover, this bound is tight for n = 2 if $|\Sigma| \ge 1$, for n = 3 if $|\Sigma| \ge 2$, for n = 4 if $|\Sigma| \ge 4$, and for $n \ge 5$ if $|\Sigma| \ge n + 1$.

A (1) > A (1) > A (1)

Prefix-Free Witness with 1,296 Transformations

$$\Sigma = \{a, b, c\} \cup \Gamma$$
 $\Gamma = \{d_1, \ldots, d_{n-2}\}$

(日) (同) (三) (三)

э

Suffix-Free Regular Languages

Notation change: $Q = \{1, 2, \ldots, n\}.$

 $G_n = \{t \in \mathcal{T}_Q \mid 1 \notin \text{img } t, nt = n, \text{ and } 1t = n \text{ or } 1t \neq it \text{ for } i \neq 1\}.$ Let $g(n) = |G_n|$. G_n is not a semigroup for $n \geq 3$: $s = [2, 3, 3, \dots, 3, n] \in G_n$ but $s^2 = [3, 3, 3, \dots, 3, n] \notin G_n$.

Proposition

If L is a regular language with $\kappa(L) = n$, then the following hold: 1. If L is suffix-free, then T_L is a subset of G_n . 2. If L is suffix-free and n > 2, then

$$\sigma(L) \leq g(n) = (n-1)^{n-2} + (n-2)^{n-1}$$

3. If L has 1 final quotient, and $T_L \subseteq G_n$, then L is suffix-free.

Suffix-Free Regular Languages

$$P_n = \{t \in G_n \mid \text{ for all } i, j \in Q, i \neq j, \text{ we have } it = jt = n \text{ or } it \neq jt \}.$$

Proposition

For $n \ge 3$, $P_n \subseteq G_n$ is a semigroup, and

$$p(n) = |P_n| = \sum_{k=1}^{n-1} C_k^{n-1}(n-1-k)! C_{n-1-k}^{n-2}.$$

(日) (同) (日) (日)

Suffix-Free Regular Languages

Proposition

When $n \ge 3$, the semigroup P_n can be generated by the following set I_n of transformations of Q: $I_3 = \{a, b\}$, where a = [3, 2, 3] and b = [2, 3, 3]; $I_4 = \{a, b, c\}$, where a = [4, 3, 2, 4], b = [2, 4, 3, 4], c = [2, 3, 4, 4]; for $n \ge 5$, $I_n = \{a_0, ..., a_{n-1}\}$, where

$$a_0 = [$$
 $n, 3, 2, 4, \ldots, n-1, n],
 $a_1 = [$ $n, 3, 4, \ldots, n-1, 2, n],
 $a_i = [$ $2, \ldots, i, n, i+1, \ldots, n],$$$

for i = 2, ..., n - 1. That is, $a_0 = \binom{1}{n}(2,3)$, $a_1 = \binom{1}{n}(2,3,...,n-1)$, and $ja_i = j + 1$ for j = 1,..., i - 1, $ia_i = n$, and $ja_i = j$ for j = i + 1,..., n.

Suffix-Free Regular Languages

Proposition

For $n \geq 5$, let $A_n = \{Q, \Sigma, \delta, 1, F\}$ be the DFA with alphabet $\Sigma = \{a_0, a_1, \dots, a_{n-1}\}$, where each a_i defines a transformation as above, and $F = \{2\}$. Then $L = L(A_n)$ has quotient complexity $\kappa(L) = n$, and syntactic complexity $\sigma(L) = p(n)$. Moreover, L is suffix-free.

- 4 同 6 4 日 6 4 日 6

Suffix-Free Regular Languages

Proposition

For $n \geq 5$, let $A_n = \{Q, \Sigma, \delta, 1, F\}$ be the DFA with alphabet $\Sigma = \{a_0, a_1, \dots, a_{n-1}\}$, where each a_i defines a transformation as above, and $F = \{2\}$. Then $L = L(A_n)$ has quotient complexity $\kappa(L) = n$, and syntactic complexity $\sigma(L) = p(n)$. Moreover, L is suffix-free.

Conjecture 3 (Suffix-Free Regular Languages). If L is a suffix-free regular language with $\kappa(L) = n \ge 2$, then $\sigma(L) \le p(n)$ and this is a tight bound.

Proved for $n \ge 4$

Bifix-Free Regular Languages

$$H_n = \{t \in G_n \mid (n-1)t = n\} \quad h(n) = |H_n|$$

Proposition

If L is a regular language with quotient complexity n and syntactic semigroup T_L , then the following hold:

- 1. If L is bifix-free, then T_L is a subset of H_n .
- 2. If L is bifix-free and $n \ge 3$, then

$$\sigma(L) \leq h(n) = (n-1)^{n-3} + (n-2)^{n-2}.$$

3. If L has 1 accepting quotient, $T_L \subseteq H_n$, then L is bifix-free.

Bifix-Free Regular Languages

$$R_n = \{t \in H_n \mid it = jt = n \text{ or } it \neq jt \text{ for all } 1 \leq i, j \leq n\}.$$

Proposition

For $n \ge 3$, $R_n \subseteq H_n$ is a semigroup, and its cardinality is

$$r(n) = |R_n| = \sum_{k=0}^{n-2} (C_k^{n-2})^2 (n-2-k)!$$

▲□ ► ▲ □ ► ▲ □

Bifix-Free Regular Languages

$$R_n = \{t \in H_n \mid it = jt = n \text{ or } it \neq jt \text{ for all } 1 \leq i, j \leq n\}.$$

Proposition

For $n \ge 3$, $R_n \subseteq H_n$ is a semigroup, and its cardinality is

$$r(n) = |R_n| = \sum_{k=0}^{n-2} (C_k^{n-2})^2 (n-2-k)!$$

Conjecture 4 (Bifix-Free Regular Languages). If L is a bifix-free regular language with $\kappa(L) = n \ge 2$, then $\sigma(L) \le r(n)$ and this is a tight bound.

Proved for $n \leq 5$

(日) (同) (三) (三)

Summary for Prefix-, Suffix-, and Bifix-Free Languages

	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
$ \Sigma = 1$	1	2	3	4	5
$ \Sigma = 2$	*	3/3/*	11/11/7	49/49/20	?
$ \Sigma = 3$	*	*	14/13 /*	95/61/31	?
$ \Sigma = 4$	*	*	16 / */*	110/67/32	?
$ \Sigma = 5$	*	*	*	119 /73/ 33	?
$ \Sigma = 6$	*	*	*	125/ ? /34	? /501/ ?
•••					
$n^{n-2}/p(n)/r(n)$	1/1/1	3/3/2	16/13/7	125 /73/ 34	1296 /501/209
Suf-free : $g(n)$	1	3	17	145	1,649
Bif-free : $h(n)$	1	2	7	43	381

A > < > > < >

Star-Free Languages

A (1) > A (1) > A

Aperiodic Transformations

Convert forest into a directed graph. This graph defines

Thus there is a one-to-one relation between aperiodic transformations of a set of n elements and forests with n nodes.

Aperiodic Transformations Bound

Proposition

The syntactic complexity $\sigma(L)$ of a star free language L satisfies $\sigma(L) \leq (n+1)^{n-1}$.

< ロ > < 同 > < 三 > < 三

Monotonic Automata

A DFA $\mathcal{D} = (Q, \Sigma, \delta, q_0, F)$ is monotonic if there exists a total order \leq on Q such that, for each $a \in \Sigma$, we have p < q implies $\delta(p, a) \leq \delta(q, a)$.

Theorem

Every monotonic DFA is permutation-free. The number f(n) of monotonic transformations of $Q = \{1, ..., n\}$ is

$$f(n) = \sum_{k=1}^{n} C_{k-1}^{n-1} C_{k}^{n} = C_{n}^{2n-1}.$$

Partially Monotonic Automata

A partial transformation may be undefined for some arguments. Partially monotonic - monotonic where defined.

Example

	а	b	С	d	е	f	g
1	1	1	2	2	—	1	1
2	3	3	2	_	1	1	2
3	3	—	3	3	2	1	3

A (1) > A (2) > A

Partially Monotonic Automata

Replace dashes by a new state 4, add singular transformation f:

Example

	а	b	С	d	е	f	g
1	1	1	2	2	4	1	1
2	3	3	2	4	1	1	2
3	3	4	3	3	2	1	3
4	4	4	4	4	4	1	4

Generates 41 transformations

A □ > A □ > A

Conclusions

Summary for Star-Free Languages

$ \Sigma / n$	1	2	3	4	5	6
1	1	1	2	3	5	6
2	*	2	7	?	?	?
3	*	3	9	?	?	?
4	*	*	10	?	?	?
5	*	*	*	?	?	?
6	*	*	*	?	?	?
7	*	*	*	47	?	?
8	*	*	*	?	?	?
9	*	*	*	?	196	?
mon. C_n^{2n-1}	1	3	10	35	126	462
part.mon.		3	10	41	196	1007
aper. $(n+1)^{n-1}$	1	2	16	125	1,296	16,807

A > < > > < >

э

• Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.

Conclusions

- Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.
- The major open problems are the upper bound for left ideals, suffix-free languages, and star-free languages.

A (1) > A (2) > A

Conclusions

- Despite the fact that syntactic congruence has left-right symmetry, there are significant differences between left and right ideals, and between prefix and suffix-free languages.
- The major open problems are the upper bound for left ideals, suffix-free languages, and star-free languages.
- Although star-free languages meet (almost) all the quotient complexity bounds of regular languages, their syntactic complexity is much smaller.

▲□ ► ▲ □ ► ▲ □

• Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011

▲ 同 ▶ ▲ 国 ▶ ▲ 国

- Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011
- Brzozowski, Li, Ye. Prefix-, Suffix-, Bifix-Free: DCFS 2011

A (1) > A (1) > A

- Brzozowski, Ye. Left, Right, 2-Sided Ideals: DLT 2011
- Brzozowski, Li, Ye. Prefix-, Suffix-, Bifix-Free: DCFS 2011
- Brzozowski, Li. Star-Free: In preparation

A (1) > A (1) > A