UNIVERSITY OF
Southampton

School of Electronics
and Computer Science

Preemptive type checking in dynamically typed
programs

Neville Grech, Julian Rathke, Bernd Fischer
n.grech@ecs.soton.ac.uk

Dynamically-typed languages

Principal type of a variable is mutated through assignments:

def plus2(a):

if isinstance(a,str):
add=’ ’

elif isinstance(a,int):
add=2

else:
return O

return a+add

Dynamically-typed languages

Principal type of a variable is mutated through assignments:

def plus2(a):

if isinstance(a,str):
add=’ ’

elif isinstance(a,int):
add=2

else:
return O

return a+add

» Variable type depends on the path through the control flow
graph (CFG)

Dynamically-typed languages

Principal type of a variable is mutated through assignments:

def plus2(a):

if isinstance(a,str):
add=’ ’

elif isinstance(a,int):
add=2

else:
return O

return a+add

» Variable type depends on the path through the control flow
graph (CFG)

» Static typing is, in general, uncomputable.

Disadvantages of dynamically-typed languages

v

Slower - they're usually interpreted.

v

No static type safety guarantee.

v

Lack of type annotations — lack of documentation.

v

Need more testing to find basic type errors.

Advantages of dynamically-typed languages

» Lack of type annotations simplifies the syntax — easier to
learn.

» Implementations and programmer tools are easier to write.

» Support higher-level language constructs such as
metaprogramming and reflection.

> Increased developer productivity.

Advantages of dynamically-typed languages

v

Lack of type annotations simplifies the syntax — easier to
learn.

Implementations and programmer tools are easier to write.

Support higher-level language constructs such as
metaprogramming and reflection.

Increased developer productivity.

Popularity has increased (JavaScript, Python, Ruby, etc...)

We want an easy way to find type errors in these languages

A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.

A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.

» These raise an error if applied to a non-int or a non-str,
respectively.

A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.

» These raise an error if applied to a non-int or a non-str,
respectively.

» true and false are built-ins, not constants.

A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.

» These raise an error if applied to a non-int or a non-str,
respectively.

» true and false are built-ins, not constants.

Functions, built-ins can be redefined - constants cannot.
All state is global.

A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.
» These raise an error if applied to a non-int or a non-str,
respectively.
» true and false are built-ins, not constants.
Functions, built-ins can be redefined - constants cannot.
All state is global.

data Const I Int
| S String
| P Program
| None

Abstact Syntax

A program is simply a list of statements:

data Stmt = Def Id Id [Stmt] -- Function definitions
| Id := Expr -- Assignment
| Return Expr -- Return from function
| If Expr [Stmt] [Stmt] -- if..then..else
| While Expr [Stmt] -- While Loop
| Only Expr -— An expression is also
-- a valid statement
data Expr = Id Id -- An Identifier is an Expr
| Co Const -- So is a constant
| 0Of Id Expr -- And a function call

compile :: [Stmt] -> Program

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

Pseudocode: LC ¢ = TOS:=c

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant
| LG Id -- Load Global

Pseudocode: LG x = TOS:=x

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant
| LG Id -- Load Global
| SG Id -- Store Global

Pseudocode: SGx = x:=T0S

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant
| LG Id -- Load Global
| SG Id -- Store Global
| CF Id -- Call Function

Pseudocode: CFf = f()

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant
| LG Id -- Load Global
| SG Id -- Store Global
| CF Id -- Call Function
| MF Program -- Make Function

Pseudocode: MF p = TOS:=p

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

Pseudocode:

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc -- Jump

JPn = PC:=n

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

Pseudocode:

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc —-- Jump

JIF Loc -- Jump if false

JIFn = if TOS then PC41 else n

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc -- Jump

JIF Loc -- Jump if false
RET -- Return

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc -- Jump

JIF Loc -- Jump if false
RET -- Return

HLT -- Halt

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant
| LG Id -- Load Global
| SG Id -- Store Global
| CF Id -- Call Function
| MF Program -- Make Function
| JP Loc -- Jump
| JIF Loc -- Jump if false
| RET -- Return
| HLT -- Halt
| INIT -- Initialise virtual machine

Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

| LG Id -- Load Global

| SG Id -- Store Global

| CF Id -- Call Function

| MF Program -- Make Function

| JP Loc -- Jump

| JIF Loc -- Jump if false

| RET -- Return

| HLT -- Halt
| INIT -- Initialise virtual machine
| INITF -- Initialisation in function

Compilation example

AST

[x := Id true,

While randchoice
[If randchoice
-- THEN

[x := Co (I 2)]
-- ELSE

[y := Id x]
]

Compilation example

AST

[x := Id true,
While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

S5G vy,

JP 3,

HLT]

Compilation example

AST

[x := Id true,

While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,
LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

5G vy,

JP 3,

HLT]

Compilation example

AST

[x := Id true,
While randchoice

[If randchoice
-- THEN

[x := Co (I 2)]
-- ELSE

[y := Id x]

Bytecode

[INIT,
LG true,
SG x,
LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

5G y,

JP 3,

HLT]

Compilation example

AST

[x := Id true,
While randchoice
[If randchoice

-- THEN

[x := Co (I 2)1]
-- ELSE

[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

S5G vy,

JP 3,

HLT]

Compilation example

AST

[x := Id true,
While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]

-- ELSE
[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,
LG x,
5G vy,
Jp 3,
HLT]

Compilation example

AST

[x := Id true,
While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

Jp 3,
HLT]

Virtual Machine

» Easily implemented using a set of reduction rules:

redi :: Inst -> (Map Id Const, Loc)
-> (Map Id Const, Loc)

Virtual Machine

» Easily implemented using a set of reduction rules:

redi :: Inst -> (Map Id Const, Loc)
-> (Map Id Const, Loc)

» For example:

(env <+> (tos,c), pc+l)

redi (LG x) (env, pc) (env <+> (tos, env!x), pc+l)
redi (SG x) (env, pc) (env <+> (x,env!tos), pc+1)
redi (JP t) (env, _) = (env, t)

redi (LC c¢) (env, pc)

Interpretation example

[INIT,

LC (I 3),
LC (S "n"),
S5G g,

MF [INITF,
LC (I 4), eny = “
SG g,
RET],

SG f,

CF f,

LG f,

HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

S5G g,

MF [INITF,
LC (I 4), env = [tos : 3]
SG g,
RET],

SG f,

CF f£,

LG £,

HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

S5G g,

MF [INITF,
LC (I 4), env = [tos : " h"]
SG g,
RET],

SG f,

CF f£,

LG £,

HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

SG g,

MF [INITF,
LC (1 4), env =[tos:"h' g:"h"]
SG g,
RET],

SG f,

CF f,

LG f,

HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "n"),

SG g,

MF [INITF,
LC (I 4),
SG g,
RET],

SG f,

CF f,

LG f,

HLT]

env = [tos :< function... >, g : " h"]

Interpretation example

[INIT,

LC (I 3),

LC (S "n"),

SG g,

MF [INITF,
LC (I 4), env = [tos :< function... >, f :<
SG g, function... >,g : " h"]
RET],

se¢ f,

CF £,
LG £,
HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "n"),

SG g,

MF [INITF,
LC (I 4),
56 g,
RET],

SG f,

CF f,

LG f,
HLT]

env = [tos : 4, f :< function... >, g : " h"]

Interpretation example

[INIT,

Lc (I 3),

LC (S "n"),

SG g,

MF [INITF,
LC (I 4),
SG g, env = [tos : 4, f :< function... >, g : 4]
RET],

s¢ £,

CF f,

LG f,
HLT]

Interpretation example

[INIT,

Lc (I 3),

LC (S "n"),

SG g,

MF [INITF,
LC (I 4),
SG g, env = [tos : 4, f :< function... >, g : 4]
RET],

SG f,
CF f,
LG f,
HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

5G g,

MF [INITF,
LC (I 4), env = [tos :< function... >, f :<
SG g, function... >, g : 4]
RET],

sG £,

CF f,

LG f,

HLT]

Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

56 g,

MF [INITF,
LC (I 4), env = [tos :< function... >, f :<
SG¢ g, function... >, g : 4]
RET],

SG £,

CF £,

LG f,

HLT]

A flow-sensitive type inference algorithm

Types of variables are dependent on location.

» Therefore, type mappings (Map Id Type) are associated with
program locations (Loc).

A flow-sensitive type inference algorithm

Types of variables are dependent on location.

» Therefore, type mappings (Map Id Type) are associated with
program locations (Loc).

Our type inferencer infers two mappings for every location:
infer :: Program -> (Map Loc Mapping, Map Loc Mapping)
We refer to the left mapping as p (present):
> “The possible types of variables after executing the instruction
at location Loc”

A flow-sensitive type inference algorithm

Types of variables are dependent on location.

» Therefore, type mappings (Map Id Type) are associated with
program locations (Loc).

Our type inferencer infers two mappings for every location:
infer :: Program -> (Map Loc Mapping, Map Loc Mapping)
We refer to the left mapping as p (present):
> “The possible types of variables after executing the instruction
at location Loc”
We refer to the right mapping as £ (future):

> “The possible types that variables will be used as, at locations
accessible from Loc, Loc inclusive”

A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.

A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.

The £ mapping is formed mainly by a backwards analysis:

» Control-flow splits introduce union types — since we cannot
statically say where the execution would proceed.

A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.

The £ mapping is formed mainly by a backwards analysis:

» Control-flow splits introduce union types — since we cannot
statically say where the execution would proceed.

Function types are made up of two mappings:

» side-effects - types of all variables after invoking the function.
Corresponds to p mapping.

» constraints - types of all variables for the function to succeed.
Corresponds to £ mapping.

A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.

The £ mapping is formed mainly by a backwards analysis:

» Control-flow splits introduce union types — since we cannot
statically say where the execution would proceed.

Function types are made up of two mappings:

» side-effects - types of all variables after invoking the function.
Corresponds to p mapping.

» constraints - types of all variables for the function to succeed.
Corresponds to £ mapping.

Algorithm is based on low-level dynamically-typed bytecode.
At runtime, the source is no longer available.

(Part of) our type definitions

data Type = Int | Str | Pr | Bool | NoneType
Undef

Uncons

Err

|
|
|
| Fn Mapping Mapping

Concrete types: Runtime values can only have a concrete type.

(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err
Fn Mapping Mapping

The type of a variable that has not been defined and initialised is
Undef: can only appear in the P environment.

(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
I
|

Err
Fn Mapping Mapping

The type of a variable in the F environment is Uncons if this
variable is not read

(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err

Fn Mapping Mapping

Represents a type error

(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err
Fn Mapping Mapping

a function, constraints on existing variables are expressed in the
first mapping while side-effects on types are represented in the
second mapping.

Typing rules

Reduction rules match on instructions, transforming an
environment into another:

type Mapping = Map Id Type
type Env = (Mapping, Mapping)
red :: Inst -> Env -> Env

Typing rules

Reduction rules match on instructions, transforming an
environment into another:

type Mapping = Map Id Type
type Env = (Mapping, Mapping)
red :: Inst -> Env -> Env

» The p mapping given to red is the p mapping from the
previous location in the program.

Typing rules

Reduction rules match on instructions, transforming an
environment into another:

type Mapping = Map Id Type
type Env = (Mapping, Mapping)
red :: Inst -> Env -> Env

» The p mapping given to red is the p mapping from the
previous location in the program.

» The f mapping given to red is the f mapping from the next
location in the program.

Typing rules

Reduction rules match on instructions, transforming an
environment into another:

type Mapping = Map Id Type
type Env = (Mapping, Mapping)
red :: Inst -> Env -> Env

» The p mapping given to red is the p mapping from the
previous location in the program.

» The f mapping given to red is the f mapping from the next
location in the program.

» If next or previous location is more than one location, the
mappings are joined into one mapping, introducing union
types.

Rules

red (LC c) (p,f) =

typeof returns the type of a constant

Rules

red (LC c) (p,f) =
(p <+> (tos, typeof c),

typeof returns the type of a constant

Rules

red (LC c) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))

typeof returns the type of a constant

Rules

red (LC c) (p,f) =

(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =

(p <+> (tos, gT p x),

gT gets the type of an identifier from a type mapping

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))

gT gets the type of an identifier from a type mapping

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),

gT gets the type of an identifier from a type mapping

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))

gT gets the type of an identifier from a type mapping

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)

toTypeMap transforms a Id-Value map to Ild-Type map

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)
red (INITF) (_,f) = (defaultFnMap, f)

defaultFnMap containts the default types for all variables

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)
red (INITF) (_,f) = (defaultFnMap, f)
red (RET) (p,-) = (p, defaultFnMap)

defaultFnMap containts the default types for all variables

Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)
red (INITF) (_,f) = (defaultFnMap, f)
red (RET) (p,-) = (p, defaultFnMap)
red (HLT) (p,-) = (p, Map.fromList [(ALL,Uncons)])

defaultFnMap containts the default types for all variables

More rules

red (JP n) env = env

More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))

More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =

where typs=infer pr

infer returns all present and future types for all variables for all
locations for a particular program

More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =
(p <+> (tos, Fn (1st typs ! 0) (fst typs ! (length pr -1))),
£)
where typs=infer pr

infer returns all present and future types for all variables for all
locations for a particular program

More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =
(p <+> (tos, Fn (1st typs ! 0) (fst typs ! (length pr -1))),
f)
where typs=infer pr
red (CF fn) (p,f) =
(pp,Map.fromList [(k,meetType (gT f k) (gT £ff k))
| k <- allids f ff])
where (pp,ff)=apply (p,f) (gT p fn)

meetType performs an intersection of two types
apply introduces contstraints and side effects of a given function
to a given environment

Type inference example with loops

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool
SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool
SG x, -- x:Bool
LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool
SG x, -- x:Bool
LC None, -- TOS:NoneType, randbool: Fn (TO0S:NoneType->Bool)
CF randbool,
JIF 15,
LC None,
CF randbool,
JIF 12,
LC (I 2),
SG x,
JP 14,
LG x,
SG vy,
JP 3,
HLT]

Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG
SG
LC
CF

true, -- TO0S:Bool
X, -- x:Bool

None, -- TOS:NoneType, randbool:

randbool, -- TOS:Bool, x:Bool

JIF 15,

LC
CF

None,
randbool,

JIF 12,

LC
SG
JP
LG
SG
JP

(I 2),
X,
14,
X,
v
3,

HLT]

Fn (TOS:NoneType->Bool)

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- TO0OS:Bool, x:Bool
JIF 15, -- T0S:Bool, x:Bool
LC None,

CF randbool,

JIF 12,

LC (I 2),

SG x,

JP 14,

LG x, -- x:Bool

SG vy, -- y:Bool

JP 3,

HLT] -- TO0S:Bool, x:Bool , y:Uninit

Type inference example with loops

[INIT,

LG
SG
LC

LC

true,
X,
None,

None,

-- true:Bool, y:Uninit
-- T0S:Bool
-- x:Bool

—-- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- TO0OS:Bool, x:Bool
JIF 15,

-- T0S:Bool, x:Bool

CF randbool,
JIF 12,

LC
SG
JP
LG
SG
JP

(I 2),
X,

14,

X,

v

3,

HLT]

- TOS:Int, x:Bool

-- x:Bool
-- y:Bool

-- T0S:Bool, x:Bool

, y:Uninit

Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- TO0OS:Bool, x:Bool
JIF 15, -- TO0S:Bool, x:Bool
LC None,

CF randbool,

JIF 12,

LC (I 2), -- TO0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool

SG vy, -- y:Bool

JP 3,

HLT] -- T0S:Bool, x:Bool , y:Uninit

Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- T0S:Bool, x:Bool/Int
JIF 15, -- T0S:Bool, x:Bool/Int
LC None,

CF randbool,

JIF 12,

LC (I 2), -- T0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool

SG vy, -- y:Bool

JP 3,

HLT] -- T0S:Bool, x:Bool , y:Uninit

Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- T0S:Bool, x:Bool/Int
JIF 15, -- T0S:Bool, x:Bool/Int
LC None,

CF randbool,

JIF 12,

LC (I 2), -- T0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool/Int

SG vy, -- y:Bool/Int

JP 3,

HLT] -- T0S:Bool, x:Bool , y:Uninit

Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- T0S:Bool, x:Bool/Int
JIF 15, -- T0S:Bool, x:Bool/Int
LC None,

CF randbool,

JIF 12,

LC (I 2), -- T0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool/Int

SG vy, -- y:Bool/Int

JP 3,

HLT] -- TO0S:Bool, x:Bool/Int, y:Uninit/Int/Bool

Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- T0S:Bool, x:Bool/Int

JIF 15, -- T0S:Bool, x:Bool/Int

LC None,

CF randbool,

JIF 12,

LC (I 2), -- T0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool/Int

SG vy, -- y:Bool/Int

JP 3,

HLT] -- TO0S:Bool, x:Bool/Int, y:Uninit/Int/Bool

F-environment is done in a similar way, but predominantly using a
backwards analysis.

More types

The types described here do not really appear at runtime:

More types

The types described here do not really appear at runtime:

type Set0fType = Set Type
data Type = ...

The types we described so far

More types

The types described here do not really appear at runtime:

type Set0fType = Set Type
data Type = ...
| Union SetO0fType

Union types, introduced in control flow joins/splits

More types

The types described here do not really appear at runtime:

type Set0fType = Set Type

data Type = ...
| Union SetOfType

| Inter SetO0fType

Intersection types, introduced in the F environment by successive
function applications that introduce different constraints to the

same variable

More types

The types described here do not really appear at runtime:

type Set0fType = Set Type

data Type = ...
| Union SetOfType

| Inter SetOfType
| T Id -- variable types

A placeholder for types of variables that cannot be determined at

this stage

More types

The types described here do not really appear at runtime:

type Set0fType = Set Type
data Type = ...
| Union SetOfType
| Inter SetOfType
| T Id -- variable types
| Aff Type Env Id -- affected types

An effect or constraint introduced by a function of a particular
type on a variable with identifier Id, under environment Env

Variable/affected types and type evaluation

[INIT,

MF [INITF,
CF g,
RET],

SG f,

MF [INITF,
LC (I 3),
SG x,
RET],

SG g,

CF f,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
CF g,
RET],
SG f, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) _ ALL))
MF [INITF,
LC (I 3),
SG x,
RET],
SG g,

CF f,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
CF g,
RET],
SG f, --f: Fn (ALL: (Aff (T g) - ALL) -> (Aff (T g) _ ALL))
MF [INITF,
LC (I 3),
SG x,
RET],
SG g, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) - ALL)),
g: Fn (x: Uncons -> Int)
CF £,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
CF g,
RET],
SG f, --f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
MF [INITF,
LC (I 3),
SG x,
RET],
SG g, ——f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL)),
g: Fn (x: Uncons -> Int)
CF f, -- environment eO
HLT]

We evaluate f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T
g) _ ALL)) under environment 0.

Variable/affected types and type evaluation

[INIT,
MF [INITF,
CF g,
RET],
SG f, --f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
MF [INITF,
LC (I 3),
SG x,
RET],
SG g, ——f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL)),
g: Fn (x: Uncons -> Int)
CF f, -- environment e0O
HLT]

We evaluate £: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T
g) - ALL)) under environment 0.
ALL: (Aff (T g) _ ALL) in the p env. evaluates to x: Int

Variable/affected types and type evaluation

[INIT,
MF [INITF,
CF g,
RET],
SG f, --f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
MF [INITF,
LC (I 3),
SG x,
RET],
SG g, ——f: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL)),
g: Fn (x: Uncons -> Int)
CF f, -- environment e0O
HLT]

We evaluate £: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T
g) - ALL)) under environment 0.

ALL: (Aff (T g) _ ALL) in the p env. evaluates to x: Int
ALL: (Aff (T g) _ ALL) in the f env. evaluates to x: Uncons

Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
LC (I 4),
SG x,
RET],
SG g,
CF h,
RET],
SG f,
MF [INITF,
CF g,
RET],
SG h,
CF f,
CF f,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
Lc (I 4,
SG x,
RET],
SG g, --g: Fn (x: Uncons -> Int)
CF h,
RET],
sG f,
MF [INITF,
CF g,
RET],
SG h,
CF £,
CF £,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
LC (I 4),
SG x,
RET],
SG g, --g: Fn (x: Uncons -> Int)
CF h,
RET],
SG £, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) _ ALL))
MF [INITF,
CF g,
RET],
SG h,
CF £,
CF £,
HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
LC (I 4),
SG x,
RET],
SG g, --g: Fn (x: Uncons -> Int)
CF h,
RET],
SG f, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) _ ALL))
MF [INITF,
CF g,
RET],
SG h, --h: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
CF f,
CF £,

HLT]

Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
LC (I 4),
SG x,
RET],
SG g, --g: Fn (x: Uncons -> Int)
CF h,
RET],
SG f, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) _ ALL))
MF [INITF,
CF g,
RET],

SG h, --h: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
CF f, --x: Int

CF f, --x: Int

HLT]

Conclusion and Future work

It is very difficult (though possible) to infer anything in a
dynamically-typed langauge where everything can be re-defined at
runtime.

Conclusion and Future work

It is very difficult (though possible) to infer anything in a
dynamically-typed langauge where everything can be re-defined at
runtime.
Once we formalise assertion insertion, we shall prove:

» Transformed program p’ never raises unexpected type errors.

» If p = p’ then original program never raises unexpected type
errors.

» If p doesn't raise any type errors, the evaluation of p and p’
are the same.

Conclusion and Future work

It is very difficult (though possible) to infer anything in a
dynamically-typed langauge where everything can be re-defined at
runtime.
Once we formalise assertion insertion, we shall prove:

» Transformed program p’ never raises unexpected type errors.

» If p = p’ then original program never raises unexpected type
errors.

» If p doesn't raise any type errors, the evaluation of p and p’
are the same.

We shall also explore the use of SMT to find type errors in
dynamically-typed programs.

	bla
	bla

