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Dynamically-typed languages

Principal type of a variable is mutated through assignments:

def plus2(a):

if isinstance(a,str):
add=’ ’

elif isinstance(a,int):
add=2

else:
return O

return a+add
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Dynamically-typed languages

Principal type of a variable is mutated through assignments:

def plus2(a):

if isinstance(a,str):
add=’ ’

elif isinstance(a,int):
add=2

else:
return O

return a+add

» Variable type depends on the path through the control flow
graph (CFG)

» Static typing is, in general, uncomputable.



Disadvantages of dynamically-typed languages

v

Slower - they're usually interpreted.

v

No static type safety guarantee.

v

Lack of type annotations — lack of documentation.

v

Need more testing to find basic type errors.



Advantages of dynamically-typed languages

» Lack of type annotations simplifies the syntax — easier to
learn.

» Implementations and programmer tools are easier to write.

» Support higher-level language constructs such as
metaprogramming and reflection.

> Increased developer productivity.



Advantages of dynamically-typed languages

v

Lack of type annotations simplifies the syntax — easier to
learn.

Implementations and programmer tools are easier to write.

Support higher-level language constructs such as
metaprogramming and reflection.

Increased developer productivity.

Popularity has increased (JavaScript, Python, Ruby, etc...)

We want an easy way to find type errors in these languages
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A mini-language with dynamic typing

The language only supports basic control flow structures, function
calls, assignments and function definitions.
Built-in functions: useint and usestr.
» These raise an error if applied to a non-int or a non-str,
respectively.
» true and false are built-ins, not constants.
Functions, built-ins can be redefined - constants cannot.
All state is global.

data Const I Int
| S String
| P Program
| None



Abstact Syntax

A program is simply a list of statements:

data Stmt = Def Id Id [Stmt] -- Function definitions
| Id := Expr -- Assignment
| Return Expr -- Return from function
| If Expr [Stmt] [Stmt] -- if..then..else
| While Expr [Stmt] -- While Loop
| Only Expr -— An expression is also
-- a valid statement
data Expr = Id Id -- An Identifier is an Expr
| Co Const -- So is a constant
| 0Of Id Expr -- And a function call

compile :: [Stmt] -> Program



Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

Pseudocode: LC ¢ = TOS:=c
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Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

Pseudocode:

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc —-- Jump

JIF Loc -- Jump if false

JIFn = if TOS then PC41 else n



Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

LG Id -- Load Global

SG Id -- Store Global

CF Id -- Call Function

MF Program -- Make Function
JP Loc -- Jump

JIF Loc -- Jump if false
RET -- Return
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SG Id -- Store Global
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MF Program -- Make Function
JP Loc -- Jump

JIF Loc -- Jump if false
RET -- Return

HLT -- Halt
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data Inst = LC Const -- Load Constant
| LG Id -- Load Global
| SG Id -- Store Global
| CF Id -- Call Function
| MF Program -- Make Function
| JP Loc -- Jump
| JIF Loc -- Jump if false
| RET -- Return
| HLT -- Halt
| INIT -- Initialise virtual machine



Bytecode instructions

Runtime is based on low-level dynamically-typed bytecode.

data Inst = LC Const -- Load Constant

| LG Id -- Load Global

| SG Id -- Store Global

| CF Id -- Call Function

| MF Program -- Make Function

| JP Loc -- Jump

| JIF Loc -- Jump if false

| RET -- Return

| HLT -- Halt
| INIT -- Initialise virtual machine
| INITF -- Initialisation in function
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AST

[x := Id true,

While randchoice
[If randchoice
-- THEN

[x := Co (I 2)]
-- ELSE

[y := Id x]
]



Compilation example

AST

[x := Id true,
While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

S5G vy,

JP 3,

HLT]



Compilation example

AST

[x := Id true,

While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,
LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

5G vy,

JP 3,

HLT]



Compilation example

AST

[x := Id true,
While randchoice

[If randchoice
-- THEN

[x := Co (I 2)]
-- ELSE

[y := Id x]

Bytecode

[INIT,
LG true,
SG x,
LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

5G y,

JP 3,

HLT]



Compilation example

AST
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While randchoice
[If randchoice

-- THEN
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[y := Id x]
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Compilation example

AST

[x := Id true,
While randchoice
[If randchoice
-- THEN
[x := Co (I 2)]
-- ELSE
[y := Id x]

Bytecode

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

Jp 3,
HLT]
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redi :: Inst -> (Map Id Const, Loc)
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Virtual Machine

» Easily implemented using a set of reduction rules:

redi :: Inst -> (Map Id Const, Loc)
-> (Map Id Const, Loc)

» For example:

(env <+> (tos,c), pc+l)

redi (LG x) (env, pc) (env <+> (tos, env!x), pc+l)
redi (SG x) (env, pc) (env <+> (x,env!tos), pc+1)
redi (JP t) (env, _) = (env, t)

redi (LC c¢) (env, pc)



Interpretation example

[INIT,

LC (I 3),
LC (S "n"),
S5G g,

MF [INITF,
LC (I 4), eny = “
SG g,
RET],

SG f,

CF f,

LG f,

HLT]
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SG g,
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CF £,
LG £,
HLT]
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LC (I 4),
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Interpretation example

[INIT,

LC (I 3),

LC (S "h"),

56 g,

MF [INITF,
LC (I 4), env = [tos :< function... >, f :<
SG¢ g, function... >, g : 4]
RET],

SG £,

CF £,

LG f,

HLT]
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at location Loc”



A flow-sensitive type inference algorithm

Types of variables are dependent on location.

» Therefore, type mappings (Map Id Type) are associated with
program locations (Loc).

Our type inferencer infers two mappings for every location:
infer :: Program -> (Map Loc Mapping, Map Loc Mapping)
We refer to the left mapping as p (present):
> “The possible types of variables after executing the instruction
at location Loc”
We refer to the right mapping as £ (future):

> “The possible types that variables will be used as, at locations
accessible from Loc, Loc inclusive”



A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.
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A flow-sensitive type inference algorithm

The p mapping is formed mainly by a forward analysis:

» Control flow joins introduce union types — since the execution
could have come from either way.

The £ mapping is formed mainly by a backwards analysis:

» Control-flow splits introduce union types — since we cannot
statically say where the execution would proceed.

Function types are made up of two mappings:

» side-effects - types of all variables after invoking the function.
Corresponds to p mapping.

» constraints - types of all variables for the function to succeed.
Corresponds to £ mapping.

Algorithm is based on low-level dynamically-typed bytecode.
At runtime, the source is no longer available.



(Part of) our type definitions

data Type = Int | Str | Pr | Bool | NoneType
Undef

Uncons

Err

|
|
|
| Fn Mapping Mapping

Concrete types: Runtime values can only have a concrete type.



(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err
Fn Mapping Mapping

The type of a variable that has not been defined and initialised is
Undef: can only appear in the P environment.



(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
I
|

Err
Fn Mapping Mapping

The type of a variable in the F environment is Uncons if this
variable is not read



(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err

Fn Mapping Mapping

Represents a type error



(Part of) our type definitions

Int | Str | Pr | Bool | NoneType
Undef

data Type =
|
| Uncons
|
|

Err
Fn Mapping Mapping

a function, constraints on existing variables are expressed in the
first mapping while side-effects on types are represented in the
second mapping.
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Typing rules

Reduction rules match on instructions, transforming an
environment into another:

type Mapping = Map Id Type
type Env = (Mapping, Mapping)
red :: Inst -> Env -> Env

» The p mapping given to red is the p mapping from the
previous location in the program.

» The f mapping given to red is the f mapping from the next
location in the program.

» If next or previous location is more than one location, the
mappings are joined into one mapping, introducing union
types.
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red (LC ¢) (p,f) =
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red (LG x) (p,f) =
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gT gets the type of an identifier from a type mapping



Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
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f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)

toTypeMap transforms a Id-Value map to Ild-Type map
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Rules

red (LC ¢) (p,f) =
(p <+> (tos, typeof c), f <+> (tos, Uncons))
red (LG x) (p,f) =
(p <+> (tos, gT p x),
f <+> (x,gT £ tos) <+> (tos,Uncons))
red (SG x) (p,f) =
(p <+> (%, gT p tos),
f <+> (tos, gT f x) <+> (x,Uncons))
red (INIT) (_,f) =
(toTypeMap initBindings <+> (ALL,Undef),f)
red (INITF) (_,f) = (defaultFnMap, f)
red (RET) (p,-) = (p, defaultFnMap)
red (HLT) (p,-) = (p, Map.fromList [(ALL,Uncons)])

defaultFnMap containts the default types for all variables
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More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =

where typs=infer pr

infer returns all present and future types for all variables for all
locations for a particular program



More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =
(p <+> (tos, Fn (1st typs ! 0) (fst typs ! (length pr -1))),
£)
where typs=infer pr

infer returns all present and future types for all variables for all
locations for a particular program



More rules

red (JP n) env = env
red (JIF n) (p,f) = (p, £ <+> (tos, Bool))
red (MF pr) (p,f) =
(p <+> (tos, Fn (1st typs ! 0) (fst typs ! (length pr -1))),
f)
where typs=infer pr
red (CF fn) (p,f) =
(pp,Map.fromList [(k,meetType (gT f k) (gT £ff k))
| k <- allids f ff])
where (pp,ff)=apply (p,f) (gT p fn)

meetType performs an intersection of two types
apply introduces contstraints and side effects of a given function
to a given environment



Type inference example with loops

[INIT,

LG true,

SG x,

LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]
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Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool
SG x, -- x:Bool
LC None,

CF randbool,
JIF 15,

LC None,

CF randbool,
JIF 12,

LC (I 2),

SG x,

JP 14,

LG x,

SG vy,

JP 3,

HLT]



Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool
SG x, -- x:Bool
LC None, -- TOS:NoneType, randbool: Fn (TO0S:NoneType->Bool)
CF randbool,
JIF 15,
LC None,
CF randbool,
JIF 12,
LC (I 2),
SG x,
JP 14,
LG x,
SG vy,
JP 3,
HLT]



Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG
SG
LC
CF

true, -- TO0S:Bool
X, -- x:Bool

None, -- TOS:NoneType, randbool:

randbool, -- TOS:Bool, x:Bool

JIF 15,

LC
CF

None,
randbool,

JIF 12,

LC
SG
JP
LG
SG
JP

(I 2),
X,
14,
X,
v
3,

HLT]

Fn (TOS:NoneType->Bool)



Type inference example with loops

[INIT, -- true:Bool, y:Uninit
LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- TO0OS:Bool, x:Bool
JIF 15, -- T0S:Bool, x:Bool
LC None,

CF randbool,

JIF 12,

LC (I 2),

SG x,

JP 14,

LG x, -- x:Bool

SG vy, -- y:Bool

JP 3,

HLT] -- TO0S:Bool, x:Bool , y:Uninit



Type inference example with loops

[INIT,

LG
SG
LC

LC

true,
X,
None,

None,

-- true:Bool, y:Uninit
-- T0S:Bool
-- x:Bool

—-- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- TO0OS:Bool, x:Bool
JIF 15,

-- T0S:Bool, x:Bool

CF randbool,
JIF 12,

LC
SG
JP
LG
SG
JP

(I 2),
X,

14,

X,

v

3,

HLT]
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Type inference example with loops

[INIT, -- true:Bool, y:Uninit

LG true, -- TO0S:Bool

SG x, -- x:Bool

LC None, -- TOS:NoneType, randbool: Fn (T0S:NoneType->Bool)
CF randbool, -- T0S:Bool, x:Bool/Int

JIF 15, -- T0S:Bool, x:Bool/Int

LC None,

CF randbool,

JIF 12,

LC (I 2), -- T0S:Int, x:Bool

SG x, -- x:Int

JP 14,

LG x, -- x:Bool/Int

SG vy, -- y:Bool/Int

JP 3,

HLT] -- TO0S:Bool, x:Bool/Int, y:Uninit/Int/Bool

F-environment is done in a similar way, but predominantly using a
backwards analysis.
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function applications that introduce different constraints to the

same variable



More types

The types described here do not really appear at runtime:

type Set0fType = Set Type
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A placeholder for types of variables that cannot be determined at

this stage



More types

The types described here do not really appear at runtime:

type Set0fType = Set Type
data Type = ...
| Union SetOfType
| Inter SetOfType
| T Id -- variable types
| Aff Type Env Id -- affected types

An effect or constraint introduced by a function of a particular
type on a variable with identifier Id, under environment Env
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g: Fn (x: Uncons -> Int)
CF f, -- environment e0O
HLT]

We evaluate £: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T
g) - ALL)) under environment 0.

ALL: (Aff (T g) _ ALL) in the p env. evaluates to x: Int
ALL: (Aff (T g) _ ALL) in the f env. evaluates to x: Uncons
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Variable/affected types and type evaluation

[INIT,
MF [INITF,
MF [INITF,
LC (I 4),
SG x,
RET],
SG g, --g: Fn (x: Uncons -> Int)
CF h,
RET],
SG f, --f: Fn (ALL: (Aff (T g) - ALL) —> (Aff (T g) _ ALL))
MF [INITF,
CF g,
RET],

SG h, --h: Fn (ALL: (Aff (T g) _ ALL) -> (Aff (T g) _ ALL))
CF f, --x: Int

CF f, --x: Int

HLT]
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Conclusion and Future work

It is very difficult (though possible) to infer anything in a
dynamically-typed langauge where everything can be re-defined at
runtime.
Once we formalise assertion insertion, we shall prove:

» Transformed program p’ never raises unexpected type errors.

» If p = p’ then original program never raises unexpected type
errors.

» If p doesn't raise any type errors, the evaluation of p and p’
are the same.

We shall also explore the use of SMT to find type errors in
dynamically-typed programs.
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