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Linear Temporal Logic

I trueness of a proposition depends on time
I times are natural numbers
I propositional logic extended with four new constructs:

�ϕ ϕ will hold at the next time
�ϕ ϕ will always hold
^ϕ ϕ will eventually hold

ϕ B ψ ϕ will hold for some time, and then
ψ will hold

I for now only � and ^:
I restricted LTL
I continuous time also possible
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Embedding into predicate logic
I temporal formula ϕ can be translated into predicate

logic formula 〈ϕ〉
I 〈ϕ〉 may contain a single free variable t that denotes

the time
I atomic propositions p correspond to predicates p̂

that take a time argument
I translation for propositional logic fragment:

〈p〉 = p̂(t) 〈ϕ ∧ ψ〉 = 〈ϕ〉 ∧ 〈ψ〉

〈>〉 = > 〈ϕ ∨ ψ〉 = 〈ϕ〉 ∨ 〈ψ〉

〈⊥〉 = ⊥ 〈ϕ→ ψ〉 = 〈ϕ〉 → 〈ψ〉

I translation for � and ^:

〈�ϕ〉 = ∀t ′ ∈ [t ,∞) . 〈ϕ〉[t ′/t ]

〈^ϕ〉 = ∃t ′ ∈ [t ,∞) . 〈ϕ〉[t ′/t ]
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Restricted LTL as a type system
I type inhabitation depends on time
I simple type system extended with two new type

constructors � and ^
I temporal type α can be translated into dependent

type 〈α〉
I 〈α〉 may contain a single-free variable t that denotes

the time
I translation for � and ^:

〈�α〉 = Πt ′ ∈ [t ,∞) . 〈α〉[t ′/t ]

〈^α〉 = Σt ′ ∈ [t ,∞) . 〈α〉[t ′/t ]

I concepts from Functional Reactive Programming (FRP):
� behaviors
^ events

I restricted LTL corresponds to a strongly typed form
of FRP

I t denotes start times of behaviors and events
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Basics
I categorical models should be CCCCs:

I LTL extends propositional logic
I FRP extends simply-typed λ-calculus

I components of a categorical model:
objects propositions/types

morphisms time-independent proofs/functions:

f : α→ β ⇒ f : Πt . 〈α〉 → 〈 β〉

I � and ^ are (endo)functors:

f : α→ β

�f : �α→ �β

f : α→ β

^f : ^α→ ^β

I start time consistency is ensured:

� : (Πt . 〈α〉 → 〈 β〉)→ (Πt . 〈�α〉 → 〈�β〉)

^ : (Πt . 〈α〉 → 〈 β〉)→ (Πt . 〈^α〉 → 〈^β〉)
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Operations on behaviors
I � is a comonad:

head : �α→ α

tails : �α→ ��α

I � is a strong cartesian functor:

units : 1→ �1

zip : �α × �β→ �(α × β)

I � is not an applicative functor:
I lifting of pure values would have to be possible:

const : α→ �α

I would break start time consistency:

const : Πt . 〈α〉 → Πt ′ ∈ [t ,∞) . 〈α〉[t ′/t ]

I however, this is possible:
f : 1→ α

�f ◦ units : 1→ �α
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Operations on events
I ^ is a monad:

now : α→ ^α

join : ^^α→ ^α

I ^ is not a strong monad:
I time shifting of values would have to be possible:

shift : α × ^β→ ^(α × β)

I would break start time consistency:

shift : Πt . 〈α〉 × 〈^β〉 → Σt ′ ∈ [t ,∞) . 〈α〉[t ′/t ] × 〈 β〉[t ′/t ]

I however, ^ is �-strong:

age : �α × ^β→ ^(�α × β)

I sampling can be derived:

sample : �α × ^β→ ^(α × β)

sample = ^(head × id) ◦ age
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From S4 to restricted LTL
I until now, we have categorical models for CS4/IS4
I no big surprise:

I classically, restricted LTL is a specialization of S4
I intuitionistically, it is too

I classical S4 and restricted LTL differ in their restrictions
on the accessibility relation:

S4 reflexive order
restr. LTL total reflexive order

I add a further operation that ensures totality of time:

race : ^α × ^β→ ^(α × β + α × ^β + ^α × β)

I possible outcomes of time comparison represented
by the different alternatives:

= α × β

< α × ^β

> ^α × β
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B-LTL and its corresponding FRP dialect
I translation of B-formulas into predicate logic formulas:

〈ϕBψ〉 = ∃t ′ ∈ (t ,∞) . (∀t ′′ ∈ [t , t ′) . 〈ϕ〉[t ′′/t ])∧ 〈ψ〉[t ′/t ]

I B as a type constructor of FRP:

〈αBβ〉 = Σt ′ ∈ (t ,∞) . (Πt ′′ ∈ [t , t ′) . 〈α〉[t ′′/t ])×〈 β〉[t ′/t ]
I components of a value of type α B β:

I a finite behavior with values of type α
I a terminating event with a value of type β

I introduction of weak variant of B that does not
guarantee termination

I notation:
B⊥ strong variant (B as defined above)
B> weak variant

I � and ^ now derivable:

�α = α B> 0

^β = β + 1 B⊥ β
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Applications of B-types
I B-types are useful as such:

I temperatures from some sensor that may be detached
from the computer:

R B> 1

I dialog window:
UI B> α

etc.
I B-types are useful in combination with (co)induction:

I audio signal that may switch between stereo
and mono:

νσ . (R × R) B> R B> σ

I positions of a pen that might be taken off from
the drawing area:

νσ . (R × R) B> 1 B> σ

etc.
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The B-functor
I categorical model C is a CCCC
I derive a category U from C:

Obj U

= Obj C × Obj C × {⊥,>}

hom((α1, β1,w1), (α2, β2,w2))

=

hom(α1, α2) × hom( β1, β2) if w1 6 w2

∅ otherwise

I B is a functor from U to C
I notation:

α Bw β = B(α, β,w)

I applying B to morphisms allows for several things:
I mapping of values of the behavior part
I mapping of value of the terminating event
I weakening
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Comonadic and monadic structure

I _ Bw β is a comonad:

head : α Bw β→ α

tails : α Bw β→ (α Bw β) Bw β

I β = 0 and w = > leads to comonadic structure of �
I α Bw _ is an ideal monad:

optjoin : α Bw ( β + α Bw β)→ α Bw β

I monad can be derived:

now : β→ ( β + α Bw β)

join : ( β + α Bw β) + α Bw ( β + α Bw β)→ β + α Bw β

I α = 1 and w = ⊥ leads to monadic structure of ^
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Monoidal structure

I make U a symmetric monoidal category:

(α1, β1,w1) ⊗ (α2, β2,w2) = (α1 × α2, ρ,w1 u w2)

I = (1, 0,>)

where

ρ = β1 × β2 + β1 × α2 Bw2 β2 + α1 Bw1 β1 × β2

I B is a strong symmetric monoidal functor from U to C:

merge : α1 Bw1 β1 × α2 Bw2 β2 → α1 × α2 Bw1uw2 ρ

never : 1 B> 0
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Specializations
I B is a strong symmetric monoidal functor from U to C:

merge : α1 Bw1 β1 × α2 Bw2 β2 → α1 × α2 Bw1uw2 ρ

never : 1 B> 0

where

ρ = β1 × β2 + β1 × α2 Bw2 β2 + α1 Bw1 β1 × β2

I strong cartesian functor structure of �:

β1 = β2 = 0 w1 = w2 = >

I from merge to age:

β1 = 0 w1 = >

α2 = 1 w2 = ⊥

I from merge to race:

α1 = α2 = 1 w1 = w2 = ⊥
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The inverse of merge
I the type of the terminating event:

ρ = β1 × β2 + β1 × α2 Bw2 β2 + α1 Bw1 β1 × β2

I drop information from the terminating event:

restricti : ρ→ βi + αi Bwi βi

restricti = [ι1 ◦ πi , ιi ◦ πi , ι1−i ◦ πi]

I recover the original B-values:

recoveri : α1 × α2 Bw1uw2 ρ→ αi Bwi βi

recoveri = optjoin ◦ (πi B restricti)

I combine the recovered values:

merge−1 : α1 × α2 Bw1uw2 ρ→ α1 B β1 × α2 B β2

merge−1 = 〈recover1, recover2〉
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� in LTL and FRP

I use N as the set of times
I translation of �-formulas into predicate logic formulas:

〈�ϕ〉 = 〈ϕ〉[t + 1/t ]

I � as a type constructor of FRP:

〈�α〉 = 〈α〉[t + 1/t ]

I value of type �α is a value of type α occurring
at the next time

I semantically, � is just a strong cartesian functor:

f : α→ β

�f : �α→ �β

unit : 1→ �1

pair : �α × �β→ �(α × β)
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Deriving the other constructs

I �, ^, and B derivable via induction and coinduction:

�α = νσ . α × �σ

^β = µσ . β + �σ

α B⊥ β = µσ . α × �( β + σ)

α B> β = νσ . α × �( β + σ)

I interesting exercise:
I derive all operations of B-FRP from the �-operations
I proof that the derived operations fulfill the necessary

laws
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Advanced dataflow programming

I �-FRP is a kind of dataflow language:
I streams over α:

�α

I partial streams over α:

(1 + α) × νσ . 1 B> (α × σ)

I more powerful than traditional dataflow languages:
I productive partial streams over α:

(1 + α) × νσ . 1 B⊥ (α × σ)

I streams with values of different type
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Shifting

I fby operator appends a stream to an initial value:

fby : α × �α→ �α

I needs to shift values to the future
I cannot be done implicitely, since it would break

start time consistency
I can be made possible by introducing tensorial strength:

shift : α × �β→ �(α × β)

I simpler operator is sufficient:

later : α→ �α

I � is now an applicative functor
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