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Cellular Automata (CA): definition

The d-dimensional cellular space is the infinite d-dimensional

grid Z
d of cells.

Each cell stores a finite amount of information (represented as

its state).

The cells change their states synchronously according to a

local update rule that provides the next state of a cell,

depending on the present state of the neighboring cells.



Precisely speaking, we have

• Finite state set S.

• Configurations are elements of SZ
d

, i.e., functions

Z
d −→ S assigning states to cells,

• A neighborhood vector

N = (~x1, ~x2, . . . , ~xn)

is a vector of n distinct elements of Z
d that provide the

relative offsets to neighbors.

• The neighbors of a cell at location ~x ∈ Z
d are the n cells

at locations

~x + ~xi, for i = 1, 2, . . . , n.



Typical two-dimensional neighborhoods:

c c

Von Neumann Moore

neighborhood neighborhood

{(0, 0), (±1, 0), (0,±1)} {−1, 0, 1} × {−1, 0, 1}



The local rule is a function

f : Sn −→ S

where n is the size of the neighborhood.

State f(a1, a2, . . . , an) is the new state of a cell whose n

neighbors were at states a1, a2, . . . , an one time step before.



The local update rule determines the global dynamics of the

CA: Configuration c becomes in one time step the

configuration e where, for all ~x ∈ Z
d,

e(~x) = f(c(~x + ~x1), c(~x + ~x2), . . . , c(~x + ~xn)).

The transformation

G : SZ
d

−→ SZ
d

that maps c 7→ e is the global transition function of the CA.



Curtis-Hedlund-Lyndom -theorem

It is convenient to endow SZ
d

with the product topology. The

topology is compact and induced by a metric.



Curtis-Hedlund-Lyndom -theorem

It is convenient to endow SZ
d

with the product topology. The

topology is compact and induced by a metric.

The topology is generated by the cylinder sets

Cyl(c,M) = {e ∈ SZ
d

| e(~x) = c(~x) for all ~x ∈ M}

for c ∈ SZ
d

and finite M ⊂ Z
d.

All cylinder sets are clopen, i.e. closed and open. Cylinders for

fixed finite M ⊆ Z
d form a finite partitioning of SZ

d

.



Under this topology, a sequence c1, c2, . . . of configurations

converges to c ∈ SZ
d

if and only if for all cells ~x ∈ Z
d and for

all sufficiently large i holds

ci(~x) = c(~x).

Compactness of the topology means that all infinite sequences

c1, c2, . . . of configurations have converging subsequences.



All cellular automata are continuous transformations

SZ
d

−→ SZ
d

under the topology. Indeed, locality of the update rule means

that if

c1, c2, . . .

is a converging sequence of configurations then

G(c1), G(c2), . . .

converges as well, and

lim
i→∞

G(ci) = G( lim
i→∞

ci).



The translation τ determined by vector ~r ∈ Z
d is the

transformation

SZ
d

−→ SZ
d

that maps c 7→ e where

e(~x) = c(~x − ~r) for all ~x ∈ Z
d.

(It is the CA whose local rule is the identity function and

whose neighborhood consists of −~r alone.)

Translations determined by unit coordinate vectors

(0, . . . , 0, 1, 0 . . . , 0) are called shifts



Since all cells of a CA use the same local rule, the CA

commutes with all translations:

G ◦ τ = τ ◦ G.



We have seen that all CA are continuous, translation

commuting maps SZ
d

−→ SZ
d

.

The Curtis-Hedlund- Lyndon theorem from 1969 states

that also the converse is true:

Theorem: A function G : SZ
d

−→ SZ
d

is a CA function if and

only if

(i) G is continuous, and

(ii) G commutes with translations.



• The set SZ
d

, together with the shift maps, is the

d-dimensional full shift.

• Topologically closed, shift invariant subsets of SZ
d

are

called subshifts.

• Cellular automata are the endomorphisms of the full shift.



Reversible CA

A CA is called

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.



Reversible CA

A CA is called

• injective if G is one-to-one,

• surjective if G is onto,

• bijective if G is both one-to-one and onto.

A CA G is a reversible (RCA) if there is another CA

function F that is its inverse, i.e.

G ◦ F = F ◦ G = identity function.

RCA G and F are called the inverse automata of each other.



Two-dimensional Q2R Ising model by G.Vichniac (1984) is an

example of a reversible cellular automaton.

Each cell has a spin that is directed either up or down. The

direction of a spin is swapped if and only if among the four

immediate neighbors there are exactly two cells with spin up

and two cells with spin down:



The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.
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The twist that makes the Q2R rule reversible: Color the space

as a checker-board. On even time steps only update the spins

of the white cells and on odd time steps update the spins of

the black cells.



Q2R is reversible: The same rule (applied again on squares of

the same color) reconstructs the previous generation.

Q2R rule also exhibits a local conservation law: The number

of neighbors with opposite spins remains constant over time.



Evolution of Q2R from an uneven random distribution of spins:

Initial random configuration with 8% spins up.



Evolution of Q2R from an uneven random distribution of spins:

After approx. one million steps. Notice the clustering.
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Corollary: A cellular automaton G is reversible if and only if

it is bijective.



From the Curtis-Hedlund-Lyndom -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

Proof: If G is a reversible CA function then G is by definition

bijective.

Conversely, suppose that G is a bijective CA function. Then G

has an inverse function G−1 that clearly commutes with the

shifts. The inverse function G−1 is also continuous because the

space SZ
d

is compact. It now follows from the Curtis-Hedlund-

Lyndon theorem that G−1 is a cellular automaton.



From the Curtis-Hedlund-Lyndom -theorem we get

Corollary: A cellular automaton G is reversible if and only if

it is bijective.

The point of the corollary is that in bijective CA each cell can

determine its previous state by looking at the current states in

some bounded neighborhood around them.



Wang tiles and decidability questions

Suppose we are given a CA (in terms of its local update rule)

and want to know if it is reversible or surjective ? Is there an

algorithm to decide this ? Or is there an algorithm to

determine if the dynamics of a given CA is trivial in the sense

that after a while all activity has died ?

It turns out that many such algorithmic problems are

undecidable. In some cases there is an algorithm for

one-dimensional CA while the two-dimensional case is

undecidable.

A useful tool to obtain undecidability results is the concept of

Wang tiles and the undecidable tiling problem.



A Wang tile is a unit square tile with colored edges. A tile

set T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

A B C D



A Wang tile is a unit square tile with colored edges. A tile

set T is a finite collection of such tiles. A valid tiling is an

assignment

Z
2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

For example, consider Wang tiles

A B C D



With copies of the given four tiles we can properly tile a 5 × 5

square. . .

A

B

C

D

C

A

C

B

D

C

B

D

A

C

C

B

D

C

A

C

B

A

C

D

C

. . . and since the colors on the borders match this square can

be repeated to form a valid periodic tiling of the plane.



Configuration c ∈ T Z
2

is valid inside M ⊆ Z
2 if the colors

match between any two neighboring cells, both of which are

inside region M .

If here M = Z
2, the configuration is a valid tiling of the

plane.



The set of valid tilings over T is a translation invariant,

compact subset of the configuration space T Z
2

, i.e., it is a

subshift.



The set of valid tilings over T is a translation invariant,

compact subset of the configuration space T Z
2

, i.e., it is a

subshift.

More precisely, valid tilings form a subshift of finite type

because they are defined via a finite collection of patterns that

are not allowed in any valid tiling.

Moreover, any two-dimensional subshift of finite type is

conjugate to the set of valid tilings under a suitable Wang tile

set.



A configuration c ∈ T Z
2

(doubly) periodic if there are two

linearly independent translations τ1 and τ2 that keep c

invariant:

τ1(c) = τ2(c) = c.

Then c is also invariant under some horizontal and vertical

translations.



A configuration c ∈ T Z
2

(doubly) periodic if there are two

linearly independent translations τ1 and τ2 that keep c

invariant:

τ1(c) = τ2(c) = c.

Then c is also invariant under some horizontal and vertical

translations.

Proposition: If a tile set admits a tiling that is invariant

under some non-zero translation then it admits a valid doubly

periodic tiling.



More generally, a d-dimensional configuration c ∈ SZ
d

is

(d-ways) periodic if it is invariant under d linearly

independent translations.



The tiling problem of Wang tiles is the decision problem to

determine if a given finite set of Wang tiles admits a valid

tiling of the plane.

Theorem (R.Berger 1966): The tiling problem of Wang

tiles is undecidable.
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(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.



Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

Follows from compactness: Let t1, t2, . . . be a sequence of

configurations tn ∈ T Z
2

where tn is a valid tiling inside the

(2n + 1) × (2n + 1) square centered at the origin.

By compactness, the sequence has a converging subsequence.

The limit t ∈ T Z
2

of the subsequence is clearly a valid tiling of

the plane.
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then it admits a valid tiling of the whole plane.
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then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

Follows from (1): Just try tiling larger and larger squares until

(if ever) a square is found that can not be tiled.
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Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

Reason: Just try tiling rectangles until (if ever) a valid tiling is

found where colors on the top and the bottom match, and left

and the right sides match as well.
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Observations:

(1) If T admits valid tilings inside squares of arbitrary size

then it admits a valid tiling of the whole plane.

(2) There is a semi-algorithm to recursively enumerate tile

sets that do not admit valid tilings of the plane.

(3) There is a semi-algorithm to recursively enumerate tile

sets that admit a valid periodic tiling.

(4) There exist aperiodic sets of Wang tiles. These

• admit valid tilings of the plane, but

• do not admit any periodic tiling

Follows from (2), (3) and undecidability of the tiling problem.



The tiling problem can be reduced to various decision

problems concerning (two-dimensional) cellular automata, so

that the undecidability of these problems then follows from

Berger’s result.

This is not so surprising since Wang tilings are ”static”

versions of ”dynamic” cellular automata.



Example: Let us prove that it is undecidable whether a given

two-dimensional CA G has any fixed point configurations, that

is, configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we effectively

construct a two-dimensional CA with state set T , the von

Neumann -neighborhood and a local update rule that keeps a

tile unchanged if and only if its colors match with the

neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.



Example: Let us prove that it is undecidable whether a given

two-dimensional CA G has any fixed point configurations, that

is, configurations c such that G(c) = c.

Proof: Reduction from the tiling problem. For any given

Wang tile set T (with at least two tiles) we effectively

construct a two-dimensional CA with state set T , the von

Neumann -neighborhood and a local update rule that keeps a

tile unchanged if and only if its colors match with the

neighboring tiles.

Trivially, G(c) = c if and only if c is a valid tiling.

Note: For one-dimensional CA it is decidable whether fixed

points exist. Fixed points form a subshift of finite type that

can be effectively constructed.



More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent

configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within a bounded time, that is, there is

number n such that Gn(c) is quiescent, for all c ∈ SZ
d

.



More interesting reduction: A CA is called nilpotent if all

configurations eventually evolve into the quiescent

configuration.

Observation: In a nilpotent CA all configurations must

become quiescent within a bounded time, that is, there is

number n such that Gn(c) is quiescent, for all c ∈ SZ
d

.

Proof: Suppose contrary: for every n there is a configuration

cn such that Gn(cn) is not quiescent. Then cn contains a finite

pattern pn that evolves in n steps into some non-quiescent

state. A configuration c that contains a copy of every pn never

becomes quiescent, contradicting nilpotency.



Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.



Theorem (Culik, Pachl, Yu, 1989): It is undecidable

whether a given two-dimensional CA is nilpotent.

Proof: For any given set T of Wang tiles the goal is to

construct a two-dimensional CA that is nilpotent if and only if

T does not admit a tiling.



For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,
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For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.
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For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A

C
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For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

B A D q
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• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the
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For tile set T we make the following CA:

• State set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• Von Neumann neighborhood,

• The local rule keeps state unchanged if all states in the

neighborhood are tiles and the tiling constraint is satisfied.

In all other cases the new state is q.

=⇒ If T admits a tiling c then c is a non-quiescent fixed point

of the CA. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n × n square

contains a tiling error, for some n. State q propagates, so in at

most 2n steps all cells are in state q. The CA is nilpotent.



If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which every periodic

configuration becomes eventually quiescent, but there are some

non-periodic fixed points.



If we do the previous construction for an aperiodic tile set T

we obtain a two-dimensional CA in which every periodic

configuration becomes eventually quiescent, but there are some

non-periodic fixed points.

Another interesting observation is that while in nilpotent CA

all configurations become quiescent within bounded time, that

transient time can be very long: one cannot compute any

upper bound on it as otherwise nilpotency could be effectively

checked.



NW-deterministic tiles

While tilings relate naturally to two-dimensional CA, one can

strengthen Berger’s result so that the nilpotency can be proved

undecidable for one-dimensional CA as well.

The basic idea is to view space-time diagrams of

one-dimensional CA as tilings: they are two-dimensional

subshifts of finite type.



Tile set T is NW-deterministic if no two tiles have identical

colors on their top edges and on their left edges. In a valid

tiling the left and the top neighbor of a tile uniquely determine

the tile.

For example, our sample tile set

A B C D

is NW-deterministic.



In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:
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In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:
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In any valid tiling by NW-deterministic tiles, NE-to-SW

diagonals uniquely determine the next diagonal below them.

The tiles of the next diagonal are determined locally from the

previous diagonal:
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If diagonals are interpreted as configurations of a

one-dimensional CA, valid tilings represent space-time

diagrams.
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one-dimensional CA, valid tilings represent space-time

diagrams.

More precisely, for any given NW-deterministic tile set T we

construct a one-dimensional CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),
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If diagonals are interpreted as configurations of a

one-dimensional CA, valid tilings represent space-time

diagrams.

More precisely, for any given NW-deterministic tile set T we

construct a one-dimensional CA whose

• state set is S = T ∪ {q} where q is a new symbol q 6∈ T ,

• neighborhood is (0, 1),

• local rule f : S2 −→ S is defined as follows:

– f(A,B) = C if the colors match in
A

B
C

– f(A,B) = q if A = q or B = q or no matching tile C

exists.



Claim: The CA is nilpotent if and only if T does not admit a

tiling.
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tiling.
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=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.



Claim: The CA is nilpotent if and only if T does not admit a

tiling.

Proof:

=⇒ If T admits a tiling c then diagonals of c are

configurations that never evolve into the quiescent

configuration. So the CA is not nilpotent.

⇐= If T does not admit a valid tiling then every n × n square

contains a tiling error, for some n. Hence state q is created

inside every segment of length n. Since q starts spreading once

it has been created, the whole configuration becomes

eventually quiescent.



Now we just need the following strengthening of Berger’s

theorem:

Theorem: The tiling problem is undecidable among

NW-deterministic tile sets.

and we have

Theorem: It is undecidable whether a given one-dimensional

CA (with spreading state q) is nilpotent.



NW-deterministic aperiodic tile sets exist.

If we do the previous construction using an aperiodic set then

we have an interesting one-dimensional CA:

• all periodic configurations eventually die, but

• there are non-periodic configurations that never create a

quiescent state in any cell.



NW-deterministic aperiodic tile sets exist.

If we do the previous construction using an aperiodic set then

we have an interesting one-dimensional CA:

• all periodic configurations eventually die, but

• there are non-periodic configurations that never create a

quiescent state in any cell.

As in the two-dimensional case, the transient time before a

one-dimensional nilpotent CA dies can be very long: it cannot

be bounded by any computable function.



The construction also provides the following result (due to

Culik, Hurd, Kari):

Theorem: The topological entropy of a one-dimensional CA

cannot be effectively computed, or even approximated.



The construction also provides the following result (due to

Culik, Hurd, Kari):

Theorem: The topological entropy of a one-dimensional CA

cannot be effectively computed, or even approximated.

Proof: Add to the previous construction as a second layer a

CA A with positive entropy h(A). States of the new layer are

killed whenever the tiling layer enters state q.

This CA is still nilpotent (and has zero entropy) if the tiles do

not admit a tiling, but otherwise contain all orbits of A and

hence have entropy at least as high as h(A).



Analogously we can define NE-, SW- and SE-determinism of

tile sets. A tile set is called 4-way deterministic if it is

deterministic in all four corners.

Our sample tile set is 4-way deterministic

A B C D



Analogously we can define NE-, SW- and SE-determinism of

tile sets. A tile set is called 4-way deterministic if it is

deterministic in all four corners.

Our sample tile set is 4-way deterministic

A B C D

Ville Lukkarila has shown the following:

Theorem: The tiling problem is undecidable among 4-way

deterministic tile sets.

This result provides some undecidability results for dynamics

of reversible one-dimensional CA.



Expansivity is a strong form of sensitivity to initial

conditions.

A one-dimensional reversible CA is expansive if there is a finite

observation window W ⊂ Z
2 such that

• knowing the states of the cells inside W at all times

uniquely determines the configuration.



Expansivity: there is a vertical strip in space-time whose

content uniquely identifies the entire space-time diagram:
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Expansivity: there is a vertical strip in space-time whose

content uniquely identifies the entire space-time diagram:

W

We would like to know which reversible CA are expansive.

Open problem: Is expansivity decidable ?



Let us call a one-dimensional reversible CA left-expansive if

• knowing the states of the cells x < 0 at all times uniquely

determines the configuration.



Let us call a one-dimensional reversible CA left-expansive if

• knowing the states of the cells x < 0 at all times uniquely

determines the configuration.

A reduction from the 4-way deterministic tiling problem proves

Theorem: It is undecidable if a given reversible 1D CA is

left-expansive.



A (necessarily surjective) cellular automaton is positively

expansive if there is a finite window W ⊂ Z
2 such that

• knowing the states of the cells inside W at all positive

times uniquely determines the initial configuration.

W

Open problem: Is positive expansivity decidable ?



Snakes

Snakes is a tile set with some interesting (and useful)

properties.

In addition to colored edges, these tiles also have an arrow

printed on them. The arrow is horizontal or vertical and it

points to one of the four neighbors of the tile:

Such tiles with arrows are called directed tiles.



Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:
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position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

The path may enter a loop. . .



Given a configuration (valid tiling or not!) and a starting

position, the arrows specify a path on the plane. Each position

is followed by the neighboring position indicated by the arrow

of the tile:

. . . or the path may be infinite and never return to a tile

visited before.



The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error between two tiles both of

which are on the path,
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The directed tile set Snakes has the following property: On

any configuration (valid tiling or not) and on any path that

follows the arrows one of the following two things happens:

(1) Either there is a tiling error between two tiles both of

which are on the path,

(2) or the path is a plane-filling path, that is, for every positive

integer n there exists an n× n square all of whose positions are

visited by the path.

Note that the tiling may be invalid outside path P , yet the

path is forced to snake through larger and larger squares.

Snakes also has the property that it admits a valid tiling.



The construction of Snakes is fairly complex and will be

skipped. The paths that Snakes forces when no tiling error is

encountered have the shape of the well known plane-filling

Hilbert-curve
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Applications of Snakes

First application of Snakes: An example of a two-dimensional

CA that is injective on periodic configurations but is not

injective on all configurations.

Let GP denote the restriction of CA function G into periodic

configurations.
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Among one-dimensional CA the following facts hold:

G injective ⇐⇒ GP injective,

G surjective ⇐⇒ GP surjective.

Among two-dimensional CA only these implications are easy:

G injective =⇒ GP injective,

G surjective ⇐= GP surjective.

The Snake XOR CA confirms that in 2D

G injective 6⇐= GP injective.



The state set of the CA is

S = Snakes × {0, 1}.

(Each snake tile is attached a red bit.)

1



The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

0

0

0
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The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.
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The local rule checks whether the tiling is valid at the cell:

• If there is a tiling error, no change in the state.

• If the tiling is valid, the cell is active: the bit of the

neighbor next on the path is XOR’ed to the bit of the cell.

0

0

0
0

1



Snake XOR is not injective:

The following two configurations have the same successor: The

Snakes tilings of the configurations form the same valid tiling

of the plane. In one of the configurations all bits are set to 0,

and in the other configuration all bits are 1.

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.



Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.
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direction) are different in c and d.



Snake XOR is injective on periodic configurations:

Suppose there are different periodic configurations c and d

with the same successor. Since only bits may change, c and d

must have identical Snakes tiles everywhere. So they must

have different bits 0 and 1 in some position ~p1 ∈ Z
2.

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

tiling is valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

Hence we can repeat the reasoning in position ~p2.



The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path.

But this contradicts the fact that the plane filling property of

Snakes guarantees that on periodic configuration every path

encounters a tiling error.



Open problem: The implication

G surjective
?

=⇒ GP surjective

is not known.

If every configuration has a pre-image, does every periodic

configuration have a periodic pre-image ?



Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.
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T
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Second application of Snakes: It is undecidable to determine

if a given two-dimensional CA is reversible.

The proof is a reduction from the tiling problem, using the tile

set Snakes.

For any given tile set T we construct a CA with the state set

S = T × Snakes × {0, 1}.

Snakes

T

0/1



The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.
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The local rule is analogous to Snake XOR with the difference

that the correctness of the tiling is checked in both tile layers:

• If there is a tiling error then the cell is inactive.

• If both tilings are valid, the bit of the neighbor next on the

path is XOR’ed to the bit of the cell.

0

0

0
0

1



We can reason exactly as with Snake XOR, and show that

the CA is reversible if and only if the tile set T does not admit

a plane tiling:



We can reason exactly as with Snake XOR, and show that

the CA is reversible if and only if the tile set T does not admit

a plane tiling:

(=⇒) If a valid tiling of the plane exists then we can construct

two different configurations of the CA that have the same

image under G. The Snakes and the T layers of the

configurations form the same valid tilings of the plane. In one

of the configurations all bits are 0, and in the other

configuration all bits are 1.

All cells are active because the tilings are correct. This means

that all bits in both configurations become 0. So the two

configurations become identical. The CA is not injective.



(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
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(⇐=) Conversely, assume that the CA is not injective. Let c

and d be two different configurations with the same successor.

Since only bits may change, c and d must have identical

Snakes and T layers. So they must have different bits 0 and 1

in some position ~p1 ∈ Z
2.

Because c and d have identical successors:

• The cell in position ~p1 must be active, that is, the Snakes

and T tilings are both valid in position ~p1.

• The bits stored in the next position ~p2 (indicated by the

direction) are different in c and d.

Hence we can repeat the reasoning in position ~p2.



The same reasoning can be repeated over and over again. The

positions ~p1, ~p2, ~p3, . . . form a path that follows the arrows on

the tiles. There is no tiling error at any tile on this path so the

special property of Snakes forces the path to cover arbitrarily

large squares.

Hence T admits tilings of arbitrarily large squares, and

consequently a tiling of the infinite plane.



Theorem: It is undecidable whether a given two-dimensional

CA is injective.



Theorem: It is undecidable whether a given two-dimensional

CA is injective.

An analogous (but simpler!) construction can be made for the

surjectivity problem, based on the fact surjectivity is

equivalent to pre-injectivity:

Theorem: It is undecidable whether a given two-dimensional

CA is surjective.



Both problems are semi-decidable in one direction:

Injectivity is semi-decidable: Enumerate all CA G one-by

one and check if G is the inverse of the given CA. Halt once (if

ever) the inverse is found.

Non-surjectivity is semi-decidable: Enumerate all finite

patterns one-by-one and halt once (if ever) an orphan is found.



Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.



Undecidability of injectivity implies the following:

There are some reversible CA that use von Neumann

neighborhood but whose inverse automata use a very large

neighborhood: There can be no computable upper bound on

the extend of this inverse neighborhood.

Topological arguments =⇒ A finite neighborhood is

enough to determine the previous state of a cell.

Computation theory =⇒ This neighborhood may be

extremely large.
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There are non-surjective CA whose smallest orphan is very
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of the smallest orphan.



Undecidability of surjectivity implies the following:

There are non-surjective CA whose smallest orphan is very

large: There can be no computable upper bound on the extend

of the smallest orphan.

So while the smallest known orphan for Game-Of-Life is pretty

big (109 cells), this pales in comparison with some other CA.



Both reversibility and surjectivity can be easily decided among

one-dimensional CA:

Theorem (Amoroso, Patt 1972): It is decidable whether a

given one-dimensional CA is injective (or surjective).

Best algorithms are based on de Bruijn -graphs.



We know the tight bound on the extend of the one-dimensional

inverse neighborhood:

The neighborhood of a reversible CA with n states and the

radius- 1

2
neighborhood

consists of at most n − 1 consecutive cells (Czeizler, Kari).



An upper bound on the length of the smallest orphan for a

one-dimensional, radius- 1

2
, non-surjective CA with n states:

There is an orphan of length n2. (Kari, Vanier, Zeume).



A CA G is called periodic if all configurations are temporally

periodic. In this case, there is a positive integer n such that

Gn is the identity function.



In the undecidability proof for reversibility we executed XOR

along paths, and

• if tile set T does not admit a tiling then no infinite

correctly tiled path exists.
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by some constant N .



In the undecidability proof for reversibility we executed XOR

along paths, and

• if tile set T does not admit a tiling then no infinite

correctly tiled path exists.

By compactness then

• the lengths of valid paths in all configurations are bounded

by some constant N .

=⇒ the CA is not only reversible but it is even periodic.



Hence we have (G.Theyssier M.Sablik)

Theorem: It is undecidable whether a given two-dimensional

CA is periodic.

Or even

Theorem: 2D Periodic CA and non-reversible CA are

recursively inseparable.



Hence we have (G.Theyssier M.Sablik)

Theorem: It is undecidable whether a given two-dimensional

CA is periodic.

Or even

Theorem: 2D Periodic CA and non-reversible CA are

recursively inseparable.

It turn out that periodicity is also undecidable among

one-dimensional CA (Kari, Ollinger):

Theorem: It is undecidable whether a given one-dimensional

CA is periodic.



Conclusions

1D 2D

Nilpotency U U

Periodicity U U

∃ fixed point D U

Injectivity D U

Surjectivity D U

(Positive) expansivity ? N/A

One-sided expansivity U N/A


