
Decidable Second Order

Theories

G. Mints

Stanford University

after Yu. Gurevich,

Monadic Second-Order Theories

Model-theoretic logics, Springer 1985, edited

by J. Barwise, F. Feferman

May 31, 2011

1



Language. An elementary language L aug-

mented by sequence of quantified set variables

X, Y, . . ..

Atomic formulas t ∈ X.

The intended interpretation: all subsets of a

structure for L.

We consider only languages where pairing is

not definable.
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Drop first order variables.

Example. Just two binary predicate symbols

⊆,≤.

Chain = linearly ordered set.

⊆ is the usual inclusion of sets,

X ≤ Y :≡ (∃x∃yX = {x}&Y = {y}&x ≤ y)
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Automata

Σ is a finite alphabet

A Σ-automaton: A = (S, T, sin, F )

T ⊆ S ×Σ× S: the transition table

sin ∈ S, F ⊆ S: final= accepting states.

A deterministic automaton: T is a total func-

tion.

A run of A on a word σ1, . . . σl in Σ:

s1, . . . , sl

accepts: sl ∈ F .

Theorem 1 (Rabin-Scott) Indeterministic→
deterministic
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Theorem 2 There is an algorithm that, given

an alphabet Σ and a Σ-automaton A decides

whether A accepts at least one non-empty word.

Proof. Collaps to the one-letter alphabet. As-

sume A is deterministic. If n is the number of

states, A is purely periodic after some i ≤ n

states. �
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Monadic Theory of Finite Chains

⊆, SUC.

SUC(X, Y ) :≡ ∃x∃y(X = {x}&Y = {y}&y =

suc(x))

x < y :=≡

∀Z [SUC(x) ∈ Z & ∀z(z ∈ Z → SUC(z) ∈ Z)]
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A finite chain with n subsets X1, . . . , Xn: a

word Word(C, X1, . . . , Xn) of length |C| in the

alphabet Σn = {0,1}n

Suppose C = {2,3}, X1 = ∅, Xn = {2}.

X1 . . . Xn

2 0 . . . 1
3 0 . . . 0
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Theorem 3 There is an algorithm that, given
n and a Σn-automaton A, constructs a formula
φ(X1, . . . , Xn) in the monadic language of one
successor such that for every finite chain C and
any subsets X1, . . . , Xn of C we have that

C |= φ(X1, . . . , Xn)

iff A accepts Word(C, X1, . . . , Xn) .

�

Theorem 4 There is an algorithm that, given
a formula φ(X1, . . . , Xn) in the monadic lan-
guage of one successor constructs a Σn-automaton
A such that for every finite chain C and any
subsets X1, . . . , Xn of C we have that

C |= φ(X1, . . . , Xn)

iff A accepts Word(C, X1, . . . , Xn) .

�

A kind of normal form theorem.
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Theorem 5 The monadic theory of finite chains

is decidable.

Proof. Given a sentence φ, find an appropriate

automaton, check whether it accepts at least

one non-empty word.
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Monadic Theory of ω

Language: ⊆, SUC(X, Y ).

X, Y, . . . range over subsets of ω, ≤ is definable
as before.

A sequential Σ-automaton:

A = (S, T, sin, F ), F is the set of final collec-
tions of states. Non-deterministic.

A run of A on a sequence σ1, σ2 . . .

is a sequence s1, s2, . . . of states such that

(sin, σ1, s1) ∈ T and every (si, σi+1, si+1) ∈ T .

It is an accepting run if

{s : sn = s for infinitely many n} ∈ T .

A accepts a sequence if there is an accepting
run of A on this sequence.
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Theorem 6 There is an algorithm that, given

an alphabet Σ and a sequential Σ-automaton

A, constructs a deterministic sequential

Σ-automaton accepting exactly the sequences

accepted by A.

McNaughton, 1966.

Theorem 7 There is an algorithm that, given

an alphabet Σ and a sequential Σ-automaton

A, decides whether A accepts at least one se-

quence.

Proof. Again by periodicity. �
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Subsets X1, . . . Xn of ω form a sequence

SEQ(X1, . . . , Xn) in the alphabet Σn.

Theorem 8 There is an algorithm that, given

n and a Σn-automaton A, constructs a formula

φ(X1, . . . , Xn) in the monadic language of one

successor such that for any subsets X1, . . . , Xn

of ω we have that

ω |= φ(X1, . . . , Xn) iff A accepts SEQ(X1, . . . , Xn) .

�
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Theorem 9 There is an algorithm that, given

a formula φ(X1, . . . , Xn) in the monadic lan-

guage of one successor constructs a Σn-automaton

A such that for every finite chain C and any

subsets X1, . . . , Xn of ω we have that

ω |= φ(X1, . . . , Xn) iff A accepts SEQ(X1, . . . , Xn) .

�

Theorem 10 The monadic theory of ω is de-

cidable.

13



Monadic Theory of the Binary Tree: S2S.

The binary tree: the set {l, r}∗ of all words in

the alphabet {l, r}.

xl, xr are successors of x.

The monadic language of two succesors is (for-

mally) the first-order language with binary pred-

icates ⊆, Left, Right.

Left(X, Y ) :≡ X = {x}, Y = {xl} for some

word x.

The relations “x is the initial segment of y”,

“x ≺ y lexicographically” are easily expressible.

Rabin [1969] interpreted monadic theories of

3,4, etc. successors, ω successors and much

more.
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Σ-tree: a mapping V from the binary tree to

Σ.

A Σ-tree automaton A = (S, T, Tin, F )

T ⊆ S × {l, r} ×Σ× S

Tin ⊆ Σ× S: initial state table

F : the set of final collections of states.
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A game Γ(A, V ) between A and the Pathfinder

A chooses P chooses
s0 d1
s1 d2
. . . . . .

sn ∈ S, dn ∈ {l, r}

(V (e), s0) ∈ Tin,

(sn, dn+1, V (d1 . . . dn+1), sn+1) ∈ T .

Additional state FAILURE: a transition to it is

always possible, but not to any other state.

{FAILURE} is not in a final collection.
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A wins a play s0d1s1d2 . . . if

{s ∈ S : sn = s for ∞ n} ∈ F

Otherwise P wins.

A accepts a tree V if it has a winning strategy

in Γ(A, V ). Otherwise A rejects V .
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Theorem 11 There is an algorithm that, given

an alphabet Σ and a tree Σ-automaton A, de-

cides whether A accepts at least one σ-tree.

Proof. Again by periodicity. �

Subsets X1, . . . Xn of the binary tree form a

Σn-tree

TREE(X1, . . . , Xn).

Theorem 12 There is an algorithm that, given

n and a Σn-automaton A, constructs a formula

φ(X1, . . . , Xn) in the monadic language of two

successors such that for any subsets X1, . . . , Xn

of the binary tree

{l, r}∗ |= φ(X1, . . . , Xn)

iff A accepts TREE(X1, . . . , Xn) .

�
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Theorem 13 There is an algorithm that, given

a formula φ(X1, . . . , Xn) in the monadic lan-

guage of two successors constructs a Σn-automaton

A such that for any subsets X1, . . . , Xn of the

binary tree

{l, r}∗ |= φ(X1, . . . , Xn)

iff A accepts TREE(X1, . . . , Xn) .

�

Theorem 14 The monadic theory of the bi-

nary tree is decidable.

Proof. As before, but the complementation

theorem requires a complicated argument (sim-

plified by Gurevich and Harrigton) based on

Ramsey Theorem. �
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Theories decidable by interpretyation in S2S.

Many (including ω) successors.

The first-order theory of closed (and Fσ) sub-

sets of the real line;

The second-order theory of countable linearly

ordered sets;

The second-order theory of countable well-ordered

sets;

The theory of countable Boolean algebra with

quantification over ideals;

The weak second-order theory of a unary func-

tion,

etc.
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