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Language. An elementary language L aug-
mented by sequence of quantified set variables
X,Y, ...

Atomic formulas t € X.

The intended interpretation: all subsets of a
structure for L.

We consider only languages where pairing is
not definable.



Drop first order variables.

Example. Just two binary predicate symbols
C. <,

) —

Chain = linearly ordered set.

C is the usual inclusion of sets,

X <Y = (dzdyX = {2}&Y = {y}&x < y)



Automata

> is a finite alphabet

A X -automaton: A= (S,T,s;,, I")

T CS x> xS: the transition table

sin € S, FF C S final= accepting states.

A deterministic automaton: T is a total func-
tion.

A run of A on a word oq,...07 In X
S1y.-+49]

accepts: s; € F.

Theorem 1 (Rabin-Scott) Indeterministic —
deterministic



Theorem 2 Thereis an algorithm that, given
an alphabet > and a >-automaton A decides
whether A accepts at least one non-empty word.

Proof. Collaps to the one-letter alphabet. As-
sume A is deterministic. If n is the number of
states, A is purely periodic after some 1 < n

states. L]



Monadic Theory of Finite Chains
C,sucC.

SUC(X,Y) = Jxdy(X = {z2}&Y = {y}&y =
suc(x))

r<y . ==
VZ [SUC(x) € Z & Vz(z € Z — SUC(z) € Z)]



A finite chain with n subsets Xq,...,Xn: a
word Word(C, X4,...,Xy) of length |C| in the
alphabet >, = {0,1}"

Suppose C = {2,3}, X1 =0, X, = {2}.

o ... 1

0 0

2
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Theorem 3 There is an algorithm that, given
n and a > ,,-automaton A, constructs a formula
»(X1,...,Xn) in the monadic language of one
successor such that for every finite chain C' and
any subsets X1,...,Xy of C we have that

C = ¢(Xy,...,Xn)

iff A accepts Word(C,Xq,...,Xn) .

[]

Theorem 4 There is an algorithm that, given
a formula ¢(X1,...,Xy) in the monadic lan-

guage of one successor constructs a > ,-automaton

A such that for every finite chain C and any
subsets Xq1,...,Xy of C' we have that

CkE=o(Xq,...,Xn)

iff A accepts Word(C,Xq,...,Xn) .

[]

A kind of normal form theorem.



Theorem 5 The monadic theory of finite chains
is decidable.

Proof. Given a sentence ¢, find an appropriate
automaton, check whether it accepts at least
one non-empty word.



Monadic Theory of w
Language: C,SUC(X,Y).

X,Y,... range over subsets of w, < is definable
as before.

A sequential >-automaton:

A= (ST,s;,, F), F is the set of final collec-
tions of states. Non-deterministic.

A run of A on a sequence o1,05...

IS @ sequence s1,so,... of states such that
(sin,01,51) € T and every (s;,0;41,5,4+1) € T.
It is an accepting run if

{s: sp = s for infinitely many n} € T.

A accepts a sequence if there is an accepting
run of A on this sequence.
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Theorem 6 Thereis an algorithm that, given
an alphabet > and a sequential > -automaton
A, constructs a deterministic sequential

2 -automaton accepting exactly the sequences
accepted by A.

McNaughton, 1966.

Theorem 7 There is an algorithm that, given
an alphabet > and a sequential > -automaton
A, decides whether A accepts at least one se-
quence.

Proof. Again by periodicity. L]
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Subsets X1,... X, of w form a sequence
SEQ(X1,...,Xpn) in the alphabet 3,

Theorem 8 There is an algorithm that, given
n and a > p-automaton A, constructs a formula
»(X1,...,Xn) in the monadic language of one
successor such that for any subsets Xq,...,Xn
of w we have that

wE=o(Xq,...,Xn) Iff A accepts SEQ(X1,...,Xn) .

[]
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Theorem 9 There is an algorithm that, given

a formula ¢(X1,...,Xyn) in the monadic lan-
guage of one successor constructs a >_,-automaton
A such that for every finite chain C and any
subsets Xq,...,X, of w we have that

w = o(Xq,...,Xn) ifF A accepts SEQ(X1,...,Xn) .

[]

Theorem 10 T he monadic theory of w is de-
cidable.
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Monadic Theory of the Binary Tree: S2S.

The binary tree: the set {l,r}* of all words in
the alphabet {I,r}.

xl, xr are successors of x.

The monadic language of two succesors is (for-
mally) the first-order language with binary pred-
icates C, Left, Right.

Left(X,Y) = X = {z}, Y = {zl} for some
word .

The relations “z is the initial segment of 3",
“r < y lexicographically” are easily expressible.
Rabin [1969] interpreted monadic theories of
3,4, etc. successors, w successors and much
more.
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2 -tree: a mapping V from the binary tree to
> .

A X -tree automaton A= (S,1.,T;,, F)
T CSx{l,r} xX xS
T;, € 2= x S: initial state table

F: the set of final collections of states.
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A game I'(A,V) between A and the Pathfinder

A chooses P chooses
S0 dl
S1 do

Sn - S, dn & {l,?“}
(V(e),sg) € T3y,
(sn,dpy1,V(d1...dpt1),8041) €T.

Additional state FAILURE: a transition to it is
always possible, but not to any other state.

{FAILUREY} is not in a final collection.
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A wins a play spgdisidy... if

{seS: sp=sforoon} € F

Otherwise P wins.

A accepts a tree V if it has a winning strategy
in M(A,V). Otherwise A rejects V.
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Theorem 11 Thereis an algorithm that, given
an alphabet > and a tree >-automaton A, de-
cides whether A accepts at least one o-tree.

Proof. Again by periodicity. L]

Subsets Xq,...X, of the binary tree form a
2 n-tree

TREE(X1,...,Xn).

Theorem 12 Thereis an algorithm that, given
n and a > ,,-automaton A, constructs a formula
»(X1,...,Xyn) in the monadic language of two
successors such that for any subsets X4, ...,Xn
of the binary tree

{l,’l“}* = ¢(X1,...,Xn)

iff A accepts TREE(Xq,...,Xn) .
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Theorem 13 Thereis an algorithm that, given

a formula ¢(X1,...,Xyn) in the monadic lan-
guage of two successors constructs a > ,-automaton
A such that for any subsets Xq,...,Xy of the
binary tree

{l,r}" = o(X1,...,Xn)

iff A accepts TREE(X1,...,Xn) .

[]

Theorem 14 The monadic theory of the bi-
nary tree is decidable.

Proof. As before, but the complementation
theorem requires a complicated argument (sim-
plified by Gurevich and Harrigton) based on
Ramsey Theorem. []
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Theories decidable by interpretyation in S2S.

Many (including w) successors.

The first-order theory of closed (and Fy) sub-
sets of the real line;

The second-order theory of countable linearly
ordered sets;

T he second-order theory of countable well-ordered
sets;

The theory of countable Boolean algebra with
quantification over ideals;

T he weak second-order theory of a unary func-
tion,

etc.
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