Decidable Second Order Theories

G. Mints Stanford University after Yu. Gurevich, Monadic Second-Order Theories Model-theoretic logics, Springer 1985, edited by J. Barwise, F. Feferman

May 31, 2011

1

Language. An elementary language L augmented by sequence of quantified set variables X, Y, \ldots

Atomic formulas $t \in X$.

The intended interpretation: all subsets of a structure for L.

We consider only languages where pairing is not definable.

Drop first order variables.

Example. Just two binary predicate symbols \subseteq, \leq .

Chain = linearly ordered set.

 \subseteq is the usual inclusion of sets,

 $X \le Y :\equiv (\exists x \exists y X = \{x\} \& Y = \{y\} \& x \le y)$

Automata

 $\boldsymbol{\Sigma}$ is a finite alphabet

A Σ -automaton: $A = (S, T, s_{in}, F)$

 $T \subseteq S \times \Sigma \times S$: the transition table

 $s_{in} \in S$, $F \subseteq S$: final= accepting states.

A deterministic automaton: T is a total function.

A run of A on a word $\sigma_1, \ldots, \sigma_l$ in Σ :

 s_1,\ldots,s_l

accepts: $s_l \in F$.

Theorem 1 (Rabin-Scott) *Indeterministic* → *deterministic*

Theorem 2 There is an algorithm that, given an alphabet Σ and a Σ -automaton A decides whether A accepts at least one non-empty word.

Proof. Collaps to the one-letter alphabet. Assume A is deterministic. If n is the number of states, A is purely periodic after some $i \leq n$ states. \Box Monadic Theory of Finite Chains

 \subseteq , SUC.

 $SUC(X,Y) :\equiv \exists x \exists y (X = \{x\} \& Y = \{y\} \& y = suc(x))$

 $x < y := \equiv$

 $\forall Z \ [SUC(x) \in Z \& \forall z (z \in Z \rightarrow SUC(z) \in Z)]$

A finite chain with n subsets X_1, \ldots, X_n : a word $Word(C, X_1, \ldots, X_n)$ of length |C| in the alphabet $\Sigma_n = \{0, 1\}^n$

Suppose $C = \{2, 3\}, X_1 = \emptyset, X_n = \{2\}.$ $X_1 \dots X_n$ $2 \quad 0 \quad \dots \quad 1$ $3 \quad 0 \quad \dots \quad 0$ **Theorem 3** There is an algorithm that, given n and a Σ_n -automaton A, constructs a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of one successor such that for every finite chain C and any subsets X_1, \ldots, X_n of C we have that

 $C \models \phi(X_1, \ldots, X_n)$

iff A accepts $Word(C, X_1, \ldots, X_n)$.

Theorem 4 There is an algorithm that, given a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of one successor constructs a Σ_n -automaton A such that for every finite chain C and any subsets X_1, \ldots, X_n of C we have that

 $C \models \phi(X_1, \ldots, X_n)$

iff A accepts $Word(C, X_1, \ldots, X_n)$.

A kind of normal form theorem.

Theorem 5 *The monadic theory of finite chains is decidable.*

Proof. Given a sentence ϕ , find an appropriate automaton, check whether it accepts at least one non-empty word.

Monadic Theory of ω

Language: \subseteq , SUC(X, Y).

 X, Y, \ldots range over subsets of ω , \leq is definable as before.

A sequential Σ -automaton:

 $A = (S, T, s_{in}, F)$, F is the set of final collections of states. Non-deterministic.

A run of A on a sequence $\sigma_1, \sigma_2 \dots$

is a sequence s_1, s_2, \ldots of states such that

 $(s_{in}, \sigma_1, s_1) \in T$ and every $(s_i, \sigma_{i+1}, s_{i+1}) \in T$.

It is an accepting run if

 $\{s: s_n = s \text{ for infinitely many } n\} \in T.$

A accepts a sequence if there is an accepting run of A on this sequence.

Theorem 6 There is an algorithm that, given an alphabet Σ and a sequential Σ -automaton A, constructs a deterministic sequential

 Σ -automaton accepting exactly the sequences accepted by A.

McNaughton, 1966.

Theorem 7 There is an algorithm that, given an alphabet Σ and a sequential Σ -automaton A, decides whether A accepts at least one sequence.

Proof. Again by periodicity.

Subsets $X_1, \ldots X_n$ of ω form a sequence

 $SEQ(X_1,\ldots,X_n)$ in the alphabet Σ_n .

Theorem 8 There is an algorithm that, given n and a Σ_n -automaton A, constructs a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of one successor such that for any subsets X_1, \ldots, X_n of ω we have that

 $\omega \models \phi(X_1, \ldots, X_n)$ iff A accepts $SEQ(X_1, \ldots, X_n)$.

Theorem 9 There is an algorithm that, given a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of one successor constructs a Σ_n -automaton A such that for every finite chain C and any subsets X_1, \ldots, X_n of ω we have that

 $\omega \models \phi(X_1, \ldots, X_n)$ iff A accepts $SEQ(X_1, \ldots, X_n)$.

Theorem 10 The monadic theory of ω is decidable.

Monadic Theory of the Binary Tree: S2S.

The binary tree: the set $\{l, r\}^*$ of all words in the alphabet $\{l, r\}$.

xl, xr are successors of x.

The monadic language of two succesors is (formally) the first-order language with binary predicates \subseteq , Left, Right.

 $Left(X,Y) :\equiv X = \{x\}, Y = \{xl\}$ for some word x.

The relations "x is the initial segment of y", " $x \prec y$ lexicographically" are easily expressible. Rabin [1969] interpreted monadic theories of 3,4, etc. successors, ω successors and much more. Σ -tree: a mapping V from the binary tree to Σ .

A Σ -tree automaton $A = (S, T, T_{in}, F)$

 $T \subseteq S \times \{l, r\} \times \mathbf{\Sigma} \times S$

 $T_{in} \subseteq \Sigma \times S$: initial state table

F: the set of final collections of states.

A game $\Gamma(A, V)$ between A and the Pathfinder A chooses P chooses $s_0 \qquad d_1$ $s_1 \qquad d_2$ $\dots \qquad \dots$ $s_n \in S, \ d_n \in \{l, r\}$ $(V(e), s_0) \in T_{in},$

 $(s_n, d_{n+1}, V(d_1 \dots d_{n+1}), s_{n+1}) \in T.$

Additional state FAILURE: a transition to it is always possible, but not to any other state.

{FAILURE} is not in a final collection.

A wins a play $s_0d_1s_1d_2\ldots$ if

$$\{s \in S : s_n = s \text{ for } \infty n\} \in F$$

Otherwise P wins.

A accepts a tree V if it has a winning strategy in $\Gamma(A, V)$. Otherwise A rejects V.

Theorem 11 There is an algorithm that, given an alphabet Σ and a tree Σ -automaton A, decides whether A accepts at least one σ -tree.

Proof. Again by periodicity. \Box

Subsets $X_1, \ldots X_n$ of the binary tree form a Σ_n -tree

 $TREE(X_1,\ldots,X_n).$

Theorem 12 There is an algorithm that, given n and a Σ_n -automaton A, constructs a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of two successors such that for any subsets X_1, \ldots, X_n of the binary tree

$$\{l,r\}^* \models \phi(X_1,\ldots,X_n)$$

iff A accepts $TREE(X_1, \ldots, X_n)$.

Theorem 13 There is an algorithm that, given a formula $\phi(X_1, \ldots, X_n)$ in the monadic language of two successors constructs a Σ_n -automaton A such that for any subsets X_1, \ldots, X_n of the binary tree

$$\{l,r\}^* \models \phi(X_1,\ldots,X_n)$$

iff A accepts $TREE(X_1,\ldots,X_n)$.

Theorem 14 The monadic theory of the binary tree is decidable.

Proof. As before, but the complementation theorem requires a complicated argument (simplified by Gurevich and Harrigton) based on Ramsey Theorem. \Box

Theories decidable by interpretyation in S2S.

Many (including ω) successors.

The first-order theory of closed (and F_{σ}) subsets of the real line;

The second-order theory of countable linearly ordered sets;

The second-order theory of countable well-ordered sets;

The theory of countable Boolean algebra with quantification over ideals;

The weak second-order theory of a unary function,

etc.