
Pragmatic integration of model driven engineering
and formal methods for safety critical systems

design

Marc Pantel and many others

IRIT - ACADIE — ENSEEIHT - INPT - Université de Toulouse

Institute of Cybernetics Institute — Tallinn University of Technology
Parrot exchange — January the 20th 2011

Marc Pantel Pragmatic integration of MDE and FM 1/78

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 2/78

Safe MDE concerns

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 3/78

Safe MDE concerns

Safe MDE concerns

Main purpose: Safety critical systems
Main approach: formal specification and verification
Problems: expressiveness, decidability, completeness, consistency

Marc Pantel Pragmatic integration of MDE and FM 4/78

Safe MDE concerns

Safe MDE concerns II

Proposals: Raise abstraction
Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users
with a simple formal embedding
with automatic verification tools
with usefull validation and verification results
that are accepted by certification authorities

Needs:
methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness
links with certification/qualification

Marc Pantel Pragmatic integration of MDE and FM 5/78

Safe MDE concerns

Safe MDE concerns II

Proposals: Raise abstraction
Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users
with a simple formal embedding
with automatic verification tools
with usefull validation and verification results
that are accepted by certification authorities

Needs:
methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness
links with certification/qualification

Marc Pantel Pragmatic integration of MDE and FM 5/78

Safe MDE concerns

Related past projects

RNTL COTRE: Transformation to verification languages
ACI FIACRE: Intermediate verification language
ITEA GeneAuto: Qualified Simulink/Stateflow to C code generator
TUT and IB-Krates partners
ITEA ES_PASS: Static analysis for Product insurance
ITEA SPICES: AADL behavioral annex
ANR OpenEmbedd: AADL to FIACRE verification chain (Kermeta based)
CNES (French Space Agency) AutoJava: profiled UML to RTSJ code
generator

Marc Pantel Pragmatic integration of MDE and FM 6/78

Safe MDE concerns

Related current projects

FUI TOPCASED: Metamodels semantics, Model animators, Verification
chains based on model transformations
ANR SPaCIFY: GeneAuto + AADL = Synoptic <-> Polychrony (Kermeta
based)
ANR iTemis: SOA/SCA verification
FRAE quarteFt: model transformation based on Java/TOM for AADL to
FIACRE
ITEA2 OPEES: Formal methods and Certification authorities
JTI ARTEMIS CESAR: V & V view for safety critical components.

Marc Pantel Pragmatic integration of MDE and FM 7/78

Certification and Qualification

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 8/78

Certification and Qualification

A bit of wording

Requirement: What the end user expects from a system
High level: focus on end users needs (user provided)

Translate profiled UML to RTSJ; C to PowerPC
Generate test inputs and expected outputs from a system specification
Prove the absence of runtime errors
Compute a precise estimation of WCET
Schedule activities

Low level: focus on technical solutions (developer provided)
Relies on abstract interpretation for properties estimation
on graph coloring for register allocation
on linear programming for task scheduling
Generates a C function for each Simulink atomic sub-system
a RTSJ class for each UML class

Traceability links between various requirements, design and implementation
choices

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording

Requirement: What the end user expects from a system
High level: focus on end users needs (user provided)

Translate profiled UML to RTSJ; C to PowerPC
Generate test inputs and expected outputs from a system specification
Prove the absence of runtime errors
Compute a precise estimation of WCET
Schedule activities

Low level: focus on technical solutions (developer provided)
Relies on abstract interpretation for properties estimation
on graph coloring for register allocation
on linear programming for task scheduling
Generates a C function for each Simulink atomic sub-system
a RTSJ class for each UML class

Traceability links between various requirements, design and implementation
choices

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording

Requirement: What the end user expects from a system
High level: focus on end users needs (user provided)

Translate profiled UML to RTSJ; C to PowerPC
Generate test inputs and expected outputs from a system specification
Prove the absence of runtime errors
Compute a precise estimation of WCET
Schedule activities

Low level: focus on technical solutions (developer provided)
Relies on abstract interpretation for properties estimation
on graph coloring for register allocation
on linear programming for task scheduling
Generates a C function for each Simulink atomic sub-system
a RTSJ class for each UML class

Traceability links between various requirements, design and implementation
choices

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording II

Verification: System fulfills its requirements explicit specification
Validation: System fulfills its requirements implicit human needs
Certification: System (and its development) follows standards (DO-178,
IEC-61508, ISO-26262, . . .)
Qualification: Tools for system development follows standards
Certification and qualification: System context related

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

A bit of wording II

Verification: System fulfills its requirements explicit specification
Validation: System fulfills its requirements implicit human needs
Certification: System (and its development) follows standards (DO-178,
IEC-61508, ISO-26262, . . .)
Qualification: Tools for system development follows standards
Certification and qualification: System context related

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

A bit of wording II

Verification: System fulfills its requirements explicit specification
Validation: System fulfills its requirements implicit human needs
Certification: System (and its development) follows standards (DO-178,
IEC-61508, ISO-26262, . . .)
Qualification: Tools for system development follows standards
Certification and qualification: System context related

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

Software in aeronautics: Design Assurance Level (A down to E)
Most constraining standards up to now
accepted by other standards (automotive, space, . . .)
Main concern: Safety of passengers
Main purpose: Provide confidence in the system and its development
Key issue: Choose the strategy and technologies that will minimize risks
(no restriction)
Process and test-centered approach

Definition of a precise process (development/verification)
MCDC test coverage
truth-table lines of sub-expressions in conditions
Asymmetry with independence argument: several implementation by
different teams, with different tools, . . .

Marc Pantel Pragmatic integration of MDE and FM 11/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

Software in aeronautics: Design Assurance Level (A down to E)
Most constraining standards up to now
accepted by other standards (automotive, space, . . .)
Main concern: Safety of passengers
Main purpose: Provide confidence in the system and its development
Key issue: Choose the strategy and technologies that will minimize risks
(no restriction)
Process and test-centered approach

Definition of a precise process (development/verification)
MCDC test coverage
truth-table lines of sub-expressions in conditions
Asymmetry with independence argument: several implementation by
different teams, with different tools, . . .

Marc Pantel Pragmatic integration of MDE and FM 11/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

Software in aeronautics: Design Assurance Level (A down to E)
Most constraining standards up to now
accepted by other standards (automotive, space, . . .)
Main concern: Safety of passengers
Main purpose: Provide confidence in the system and its development
Key issue: Choose the strategy and technologies that will minimize risks
(no restriction)
Process and test-centered approach

Definition of a precise process (development/verification)
MCDC test coverage
truth-table lines of sub-expressions in conditions
Asymmetry with independence argument: several implementation by
different teams, with different tools, . . .

Marc Pantel Pragmatic integration of MDE and FM 11/78

Certification and Qualification

DO-178B/ED-12B standards: Qualification

Development tools: Tools whose output is part of airborne software and
thus can introduce errors (same constraints as the developed system).
Verification tools: Tools that cannot introduce errors, but may fail to detect
them (much softer constraints: black box V & V).
No proof of error absence category

Marc Pantel Pragmatic integration of MDE and FM 12/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

Introduce detailed Tool Qualification Level (1 downto 5)
Criteria 1: A tool whose output is part of the resulting software and thus
could insert an error (TQL-1 for DAL A).
Criteria 2: A tool that automates verification process(es) and thus could
fail to detect an error, and whose output is used to justify the elimination
or reduction of:

verification process(es) other than that automated by the tool (TQL-4 for DAL
A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3: A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

Introduce detailed Tool Qualification Level (1 downto 5)
Criteria 1: A tool whose output is part of the resulting software and thus
could insert an error (TQL-1 for DAL A).
Criteria 2: A tool that automates verification process(es) and thus could
fail to detect an error, and whose output is used to justify the elimination
or reduction of:

verification process(es) other than that automated by the tool (TQL-4 for DAL
A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3: A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

Introduce detailed Tool Qualification Level (1 downto 5)
Criteria 1: A tool whose output is part of the resulting software and thus
could insert an error (TQL-1 for DAL A).
Criteria 2: A tool that automates verification process(es) and thus could
fail to detect an error, and whose output is used to justify the elimination
or reduction of:

verification process(es) other than that automated by the tool (TQL-4 for DAL
A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3: A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

Introduce detailed Tool Qualification Level (1 downto 5)
Criteria 1: A tool whose output is part of the resulting software and thus
could insert an error (TQL-1 for DAL A).
Criteria 2: A tool that automates verification process(es) and thus could
fail to detect an error, and whose output is used to justify the elimination
or reduction of:

verification process(es) other than that automated by the tool (TQL-4 for DAL
A),
or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3: A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

Common documents

Phase 1: Cooperative process definition:
Plan for software aspects of certification (PSAC)
Development plan (SDP)
Verification plan (SVP)
Configuration management plan (SCMP)
Quality assurance plan (SQAP)
Tool qualification plan

Marc Pantel Pragmatic integration of MDE and FM 14/78

Certification and Qualification

Common documents (qualification case)

Phase 2: Process application verification
User requirements
Tool architecture (elementary tools and their assembly)
Tool requirements: Can be refined user requirements or derived
requirements (linked to technology choices, should be avoided or strongly
justified)
Development and verification results (each elementary tools)
Traceability links
Verification results (user level)

Marc Pantel Pragmatic integration of MDE and FM 15/78

Certification and Qualification

Some comments

Standards were designed for systems not tools:
Adaptation required
MCDC not mandatory for tools,
but similar arguments might be required
Traceability of all artefacts in the development, relate requirements,
design and implementation choices
Purpose is to provide confidence
Both cooperative and coercive approach
Any verification technology can be used,
from proofreading to automatic proof
if confidence is given
Choose the strategy and technologies that will best reduce risks

Marc Pantel Pragmatic integration of MDE and FM 16/78

Certification and Qualification

Some comments

Standards were designed for systems not tools:
Adaptation required
MCDC not mandatory for tools,
but similar arguments might be required
Traceability of all artefacts in the development, relate requirements,
design and implementation choices
Purpose is to provide confidence
Both cooperative and coercive approach
Any verification technology can be used,
from proofreading to automatic proof
if confidence is given
Choose the strategy and technologies that will best reduce risks

Marc Pantel Pragmatic integration of MDE and FM 16/78

Certification and Qualification

Some comments II

Must be applied as soon as possible (cost reduction)
Small is beautiful (simplicity is the key)
Certification authorities need to understand the technologies
Cross-experiments are mandatory (classical w.r.t. formal methods)

Marc Pantel Pragmatic integration of MDE and FM 17/78

Certification and Qualification

Some comments II

Must be applied as soon as possible (cost reduction)
Small is beautiful (simplicity is the key)
Certification authorities need to understand the technologies
Cross-experiments are mandatory (classical w.r.t. formal methods)

Marc Pantel Pragmatic integration of MDE and FM 17/78

Application to Code generation tools

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 18/78

Application to Code generation tools

Transformation verification technologies

Verification subject:
Transformation: done once, no verification at use, white box, very high cost
Transformation application: done at each use, black box, easier, complex
error management

Classical technologies:
Document independant proofreading (requirements, specification,
implementation)
Test

Unit, Integration, Functional, Deployment level
Requirement based test coverage
Source code test coverage
Structural coverage, Decision coverage,
Multiple Condition Decision Coverage (MCDC)

Marc Pantel Pragmatic integration of MDE and FM 19/78

Application to Code generation tools

Transformation verification technologies II

Formal technologies (require formal specification):
Automated test generation
Model checking (abstraction of the system)
Static analysis (abstraction of the language)
Automated proof
Assisted (human in the loop) proof

Transformation case
Transformation specification: Structural/Behavioral
Proof of transformation correctness
Links with certification/qualification

Marc Pantel Pragmatic integration of MDE and FM 20/78

Application to Code generation tools

Classical development and verification process

Tool development, verification and qualification plans
User requirements
Tool requirements (human proofreading)
Test plan (requirements based coverage, code coverage verification)
Implementation and test application

Marc Pantel Pragmatic integration of MDE and FM 21/78

Application to Code generation tools

GeneAuto experiment: Proof assistant based

Derived from the classical process, validated by french certification
bodies
Formal specification using Coq of tool requirements, implementation and
correctness
Proofreading verification of requirements specification
Automated verification of specification correctness
Extraction of OCaML source implementation
Proofreading verification of extracted OCaML source
Integration of OCaML implementation with Java/XML implementation
(communication through simple text files with regular grammars)
Proofreading verification of OCaML/Java wrappers (simple regular
grammar parsing)
Test-based verification of user requirements conformance

Marc Pantel Pragmatic integration of MDE and FM 22/78

Application to Code generation tools

GeneAuto Code Generator Architecture

Split into independent modules (easier V & V and qualification)

Marc Pantel Pragmatic integration of MDE and FM 23/78

Application to Code generation tools

Integration

Elementary Tool

 Ocaml

Code

Ocam
l W

rapper

XML
Inputs

Inputs

 Outputs Logs

XML
Outputs

Java Front-end

Elementary
Tool

Specification

Theorems
&

Proofs

Design
& proof

Elementary Tool

Automatic
Extraction

Elem
entary Tool

Marc Pantel Pragmatic integration of MDE and FM 24/78

Application to Code generation tools

An example: User requirements R-CG-040

F6 – Determine execution order of functional model blocks
The execution order generated by the ACG must be as close as possible
to that in Simulink and it shall be possible to visualise the execution order
Same scheduling as Simulink is required to ensure that generated code
conforms to Simulink simulations.
Refinement

F6.1 Sort blocks based on data-flow constraints
F6.2 Refine the order according to control flow constraints
F6.3 Sort blocks with partial ordering according to priority from the input
model.
F6.4 Sort blocks that are still partially ordered according to their graphical
position in the input model

Marc Pantel Pragmatic integration of MDE and FM 25/78

Application to Code generation tools

The same one in Coq

Marc Pantel Pragmatic integration of MDE and FM 26/78

Application to Code generation tools

Open questions ?

What are:

User requirement for a transformation/verification ?
Tool requirement for a transformation/verification ?
Formal specification for a transformation/verification ?
Test coverage for a transformation/verification ?
Test oracle for a transformation/verification ?
Qualification constraint for transformation/verification languages ?
Best strategy for tool verification (once vs at each use) ?

Marc Pantel Pragmatic integration of MDE and FM 27/78

Application to Code generation tools

GeneAuto feedbacks

From the certification perspective: Very good but...
Still some work on qualification of the proof assistant tools

Proof verifier
Program extractor

Complex management of input/output

From the developer perspective:
High dependence to the technologies
Very high cost to use the technology
Not easy to subcontract
Scalability not ensured
Bad separation between semantics-based verification and
requirements-based specification
Hard to assess development time

On the use of Java: How to provide confidence in the libraries ?

Marc Pantel Pragmatic integration of MDE and FM 28/78

Application to Code generation tools

Going further: CompCert use experiment

CompCert: C to PowerPC optimising code generator developed at INRIA
by Xavier Leroy
Ricardo Bedin-França PhD thesis with Airbus (advisor Marc Pantel):
Improve certified code efficiency

Metrics: WCET, Code and memory size, Cache and memory accesses
Improvements of the various phases from models to embedded binary code
New verification process using formal methods
First CompCert experiments: -12% WCET, -25% code size, -72% cache
read, -65% cadre write
Design of a CompCert dedicated verification process
Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)
Improve SCADE block scheduling to reduce memory accesses (signal
liveness)
Design of a whole development cycle verification process
with tools qualification

Marc Pantel Pragmatic integration of MDE and FM 29/78

Application to Code generation tools

Going further: CompCert use experiment

CompCert: C to PowerPC optimising code generator developed at INRIA
by Xavier Leroy
Ricardo Bedin-França PhD thesis with Airbus (advisor Marc Pantel):
Improve certified code efficiency

Metrics: WCET, Code and memory size, Cache and memory accesses
Improvements of the various phases from models to embedded binary code
New verification process using formal methods
First CompCert experiments: -12% WCET, -25% code size, -72% cache
read, -65% cadre write
Design of a CompCert dedicated verification process
Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)
Improve SCADE block scheduling to reduce memory accesses (signal
liveness)
Design of a whole development cycle verification process
with tools qualification

Marc Pantel Pragmatic integration of MDE and FM 29/78

Application to Code generation tools

Proposal: Mixed approach

Separate specification verification from implementation verification
Define explicitly semantics link metamodel (relation between source and
target)
Specify transformation as properties of the links
Implementation verification (mostly syntactic/static semantics)

Implementation must generate both target and links
Implementation verification checks properties on generated links links

Specification verification: Prove the dynamic semantics equivalence
between source and target in a trace link
Rely on the specific of the operational semantics of the source and target
languages
Andres Toom PhD work (advisors : Tarmo Uustalu and Marc Pantel)

Marc Pantel Pragmatic integration of MDE and FM 30/78

Application to Code generation tools

Proposal: Deductive approach

Another kind of separation between specification and implementation
verification
Rely on Hoare logic kind of axiomatic semantics
Specify the different construct of the language using pre/post conditions,
invariants and variants
Generate the code and the corresponding assertions
Use deductive static analysers like frama-C to prove the correctness
Use different kind of logics depending on the correction criteria
Verify the correctness of the Hoare specification with respect to the
operational semantics
Might also rely on the previous links to ease the proof
Soon to be started Arnaud Dieumegard PhD work with Airbus (advisor :
Marc Pantel)

Marc Pantel Pragmatic integration of MDE and FM 31/78

Application to Code generation tools

Early feedbacks

Separation of concerns:
Industrial partners: Specification, Implementation, Implementation
verification (mainly syntactic)
Academic partners: Specification verification (semantics)

Very good subcontracting capabilities
Almost no technology constraints on the industrial partner (classical
technologies)
Good scalability
Easy to analyse syntactic error reports
Enables to modify generated code and links
Parallel work between syntactic and semantics concerns

Marc Pantel Pragmatic integration of MDE and FM 32/78

Application to Code generation tools

Work in progress

Positive first experiments on simple use cases from GeneAuto
But requires some grayboxing (expose parts of the internals)

Flattening of statecharts
Either very complex specification (doing the flattening)
Or express the fixpoint nature of implementation (in the specification)

Require full scale experiments
Require exchange with certification authorities
Require qualified syntactic verification tool (OCL-like, but simpler)
Require explicit relations between syntactic and semantics work
Require explicit description of semantics in metamodels

Marc Pantel Pragmatic integration of MDE and FM 33/78

Application to Static analysis tools

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 34/78

Application to Static analysis tools

Static analysis tools

Several kind of tools
Qualitative and quantitative properties
Fixed or user defined properties
Semantic abstraction or Proof technologies

Common aspects: Common pre-qualification
Product (source of binary code) reader: fully common ?
Configuration (properties, . . .) reader: partly common
Result writer and browser: partly common ?

Split the verification tool in a sequence of elementary activities
Common ones (pre-qualification could be shared)
Technology specific ones
Easier to specify, to validate and to verify
Can be physical or virtual (produce intermediate results even in a single tool)

Marc Pantel Pragmatic integration of MDE and FM 35/78

Application to Static analysis tools

Required activities

Specify user requirements
Specify tool architecture (elementary tools and their assembly)
Specify tool level requirements (elementary tools and their assembly)
Specify functional test cases and results
Choose verification strategy:

Tool verification or Result verification
Integration and unit tests (eventually with test generators and oracles)
Proof reading of tool source or test results
Formal verification of the verification tool itself (i.e. Coq in Coq, Compcert in
Coq, . . .)

Marc Pantel Pragmatic integration of MDE and FM 36/78

Application to Static analysis tools

Abstraction kind

Translate to non standard semantics
Compute recursive equations
Compute fixpoint of equations

Fixpoint algorithm
Abstract domains and operators
Widening, narrowing

Check that properties are satisfied on the abstract values
Produce user friendly feedback (related to product and its standard
semantics)

Marc Pantel Pragmatic integration of MDE and FM 37/78

Application to Static analysis tools

Deductive kind

Produce proof obligations (weakest precondition, verification condition,
. . .)
Check the satisfaction of proof obligations

Proof term rewriting to simpler language
Split to different sub-languages (pure logic, arithmetic, . . .)
Apply heuristics to produce a proof term
Check the correctness of the proof term
Produce failure feedback or proof certificate (related to product and its
standard semantics)

Produce user friendly feedback

Marc Pantel Pragmatic integration of MDE and FM 38/78

Application to Static analysis tools

Potential strategy: Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters
Reader and writer:

Cross-reading
Introduce dual reader/writer: check composition is identity
Asymmetric implementation: Several independent implementations and
results comparison

Code generation and transformation can be formally specified and
verified:

Formal tool requirements: foreach source construct, what are the generated
targets and the links with the source
Syntactic verification: properties of the trace links given as tool requirements
Semantic verification: validation of the technology

User-friendly feedback: Code generation based on trace links

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters
Reader and writer:

Cross-reading
Introduce dual reader/writer: check composition is identity
Asymmetric implementation: Several independent implementations and
results comparison

Code generation and transformation can be formally specified and
verified:

Formal tool requirements: foreach source construct, what are the generated
targets and the links with the source
Syntactic verification: properties of the trace links given as tool requirements
Semantic verification: validation of the technology

User-friendly feedback: Code generation based on trace links

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters
Reader and writer:

Cross-reading
Introduce dual reader/writer: check composition is identity
Asymmetric implementation: Several independent implementations and
results comparison

Code generation and transformation can be formally specified and
verified:

Formal tool requirements: foreach source construct, what are the generated
targets and the links with the source
Syntactic verification: properties of the trace links given as tool requirements
Semantic verification: validation of the technology

User-friendly feedback: Code generation based on trace links

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Common parts

Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters
Reader and writer:

Cross-reading
Introduce dual reader/writer: check composition is identity
Asymmetric implementation: Several independent implementations and
results comparison

Code generation and transformation can be formally specified and
verified:

Formal tool requirements: foreach source construct, what are the generated
targets and the links with the source
Syntactic verification: properties of the trace links given as tool requirements
Semantic verification: validation of the technology

User-friendly feedback: Code generation based on trace links

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Abstraction kind

Non-standard semantics and recursive equation production are similar to
code generation

Semantic verification: monotony at the equations-level
Semantic verification: soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification: soundness of the abstraction

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

Non-standard semantics and recursive equation production are similar to
code generation

Semantic verification: monotony at the equations-level
Semantic verification: soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification: soundness of the abstraction

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

Non-standard semantics and recursive equation production are similar to
code generation

Semantic verification: monotony at the equations-level
Semantic verification: soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification: soundness of the abstraction

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

Non-standard semantics and recursive equation production are similar to
code generation

Semantic verification: monotony at the equations-level
Semantic verification: soundness of the abstraction

No verification on the fixpoint computation
Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, α ◦ γ, widening, narrowing, monotony, . . .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)
Related to code generation
Semantic verification: soundness of the abstraction

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Deductive kind

Proof obligation computation is a kind of code generation
Semantic verification: correctness of the axiomatic semantics

Satisfaction of the proof obligations:
No verification on proof certificate generation
Verification of the certificate itself (much simpler than some heuristic-based
automatic prover)
Term rewriting can be considered as code generation (endogenous)
Curry-Howard type checking can be verified in a similar way
Rely on Coq In Coq, Isabelle in Isabelle, . . .

Marc Pantel Pragmatic integration of MDE and FM 41/78

Application to Static analysis tools

What about validation of the technologies ?

Mainly scientific work and a lot of publications
Brings confidence but paperwork is not enough
Mechanized is better but still not enough
Functional user level tests still mandatory currently
Mixed system verification experiments (both tests and static analysis)
Reverse analysis of existing systems

Marc Pantel Pragmatic integration of MDE and FM 42/78

Application to Static analysis tools

Synthesis

Technical exchange with certification authorities mandatory
Cross experiments and reverse engineering experiments mandatory
Verification strategy must be designed early to choose the right
architecture and trace information
Semi-formal (even formal) requirements must be written as soon as
possible

Marc Pantel Pragmatic integration of MDE and FM 43/78

The Executable DSML metamodeling pattern

Plan

1 Safe MDE concerns

2 Certification and Qualification

3 Application to Code generation tools

4 Application to Static analysis tools

5 The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM 44/78

The Executable DSML metamodeling pattern

Adding a new DSML to the TOPCASED platform
Classical MDE technologies

Abstract
Syntax

Concrete
Syntax Semantics

Domain

DSML definition

WorkDefinition

name: String

WorkSequence

kind: WorkSequenceKind

<<enumeration>>
WorkSequenceKind

finishToStart

finishToFinish

startToStart

startToFinish

1
predecessor

linkToSuccessor

0..*

successor
1

 0..*

linkToPredecessor

Process

name: String

Guidance

content: String

workSequences
0..*

workDefinitions
0..*

0..*
guidances

0..* guidances

SimplePDL metamodel
Editor

Generator

SimplePDL Editor

<<conformsTo>>

Conception

RédactionDoc Développement RédactionTest
finishToFinish

finishToFinish

startToStart
finishToStart

startToStart

SimplePDL model

Marc Pantel Pragmatic integration of MDE and FM 45/78

The Executable DSML metamodeling pattern

Needs for an execution semantics

What about the dynamic semantics of a DSML?
Needs for model animation

Does the model behave as expected?

Needs for model verification
Does some property hold on a model?

Two main techniques to express behavioral semantics:

MyDSML

Metamodel

Rules

endogenous
transformation

MyDSML

Metamodel

FormalDomain

Data

Rules

exogenous
transformation

Marc Pantel Pragmatic integration of MDE and FM 46/78

The Executable DSML metamodeling pattern

Metamodel Extensions
Basic meta-model

Marc Pantel Pragmatic integration of MDE and FM 47/78

The Executable DSML metamodeling pattern

Metamodel Extensions
Capture execution state

Process
name: EString

Guidance
detail: EString

Activity
name: EString
progress: EInt

Precedes
kind: PrecedenceKind

0..*1

0..*1

0..* activities

ExecutionContext

1

Marc Pantel Pragmatic integration of MDE and FM 48/78

The Executable DSML metamodeling pattern

Metamodel Extensions
Scenario model definition

Process
name: EString

Guidance
detail: EString

Activity
name: EString
progress: EInt

Precedes
kind: PrecedenceKind

0..*1

0..*1

0..* activities

Event

Stop Progress
value: EInt

Start

1
target

ExecutionContext

1

1

Marc Pantel Pragmatic integration of MDE and FM 49/78

The Executable DSML metamodeling pattern

Metamodel Extensions
Scenario model definition

Process
name: EString

Guidance
detail: EString

Activity
name: EString
progress: EInt

Precedes
kind: PrecedenceKind

0..*1

0..*1

0..* activities

Event

Stop Progress
value: EInt

Start

1
target

Scenario

 {ordered}
0..* events

ExecutionContext

1 1

Marc Pantel Pragmatic integration of MDE and FM 50/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

Trace Management
MetaModel

TM3

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

<<import>>

Composed of 4 metamodels

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

Trace Management
MetaModel

TM3

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

<<import>>

Activity

Domain Definition MetaModel:
“classical” metamodel

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

Trace Management
MetaModel

TM3

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

<<import>>

Activity

Activity
state: ActivityState

States Definition MetaModel:
runtime information

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

Trace Management
MetaModel

TM3

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

<<import>>

Activity

Activity
state: ActivityState

Activity

Event

ActivityEvent
1

Events Definition MetaModel:
events inducing changes on SDMM (might be virtual)

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

Trace Management
MetaModel

TM3

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

<<import>>

Activity

Activity
state: ActivityState

Activity

Event

ActivityEvent
1

Trace

* {ordered}
Event

kind: EventKind

Trace Management MetaModel:
DSML independent MM for scenarios and traces

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

Trace Management
MetaModel

TM3

<<import>>

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

reactionOnEv1()
...
reactionOnEvN()

Semantics2

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

reactionOnEv1()
...
reactionOnEvN()

Semantics

reactionOnEv1()
...
reactionOnEvN()

Semantics1

Trace Management
MetaModel

TM3

<<import>>

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

reactionOnEv1()
...
reactionOnEvN()

Semantics2

Action Languages

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

reactionOnEv1()
...
reactionOnEvN()

Semantics

reactionOnEv1()
...
reactionOnEvN()

Semantics1

Trace Management
MetaModel

TM3

<<import>>

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

reactionOnEv1()
...
reactionOnEvN()

Semantics2

Action Languages

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

reactionOnEv1()
...
reactionOnEvN()

Semantics

reactionOnEv1()
...
reactionOnEvN()

Semantics1

Trace Management
MetaModel

TM3

<<import>>

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

reactionOnEv1()
...
reactionOnEvN()

Semantics2

Action Languages

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

reactionOnEv1()
...
reactionOnEvN()

Semantics

reactionOnEv1()
...
reactionOnEvN()

Semantics1

Trace Management
MetaModel

TM3

<<import>>

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

reactionOnEv1()
...
reactionOnEvN()

Semantics2

Action Languages

Events Definition
MetaModel

EDMM

Domain Definition
MetaModel

DDMM

States Definition
MetaModel

SDMM

<<merge>><<merge>>

<<merge>>

reactionOnEv1()
...
reactionOnEvN()

Semantics

reactionOnEv1()
...
reactionOnEvN()

Semantics1

Animator

Editor

Scenario
Builder

Trace Management
MetaModel

TM3

<<import>>

Simulation Engine &
Control Panel

Marc Pantel Pragmatic integration of MDE and FM 52/78

The Executable DSML metamodeling pattern

Architecture of TOPCASED Animators

Trace
(from TM3)

Scenario
(from TM3)

* 1

RuntimeEvent
(from TM3)

date: Integer
kind: RuntimeEventKind

SimplePDL RuntimeEvent

event() : Event (from DDMM)

cause

0..1

context Scenario inv :
self.runtimeEvent->forAll(re | re.kind = #exogenous)

Driver

Agenda
1

1

*
{ordered}

* *{ordered} {ordered}

SimplePDL Interpreter

<<interface>>
Interpreter

<<enumeration>>
RuntimeEventKind
endogenous
exogenous

run(re : RuntimeEvent) : Event[*]

1

*

SimplePDL-free
execution
semantics

SimplePDL-specific
execution
semantics

step()

add(e:Event)
currentEvent():Event

Marc Pantel Pragmatic integration of MDE and FM 53/78

The Executable DSML metamodeling pattern

SIMPLEPDL Simulator

Marc Pantel Pragmatic integration of MDE and FM 54/78

The Executable DSML metamodeling pattern

UML2 StateChart Simulator (TOPCASED 2)

Palette

Editor

Outline

Tree View

Ecore

fireable

transition

current state

Eclipse

Topcased UML State Machines Graphical Animator

Explorer

Execution Engine

Control Panel

Graphical Concrete Syntax

with decorations from SDMM

Scenario Builder

as dialog boxes

when right clicking

Marc Pantel Pragmatic integration of MDE and FM 55/78

The Executable DSML metamodeling pattern

Multiple Semantics Definition

Defining a model animator implies to:
implement the Interpreter interface and define the run method.
test the Event argument to run the right reaction
=⇒ error prone (events may be missed)

Solution: Apply the Visitor pattern
Visitor interface and a dispatch method are generated from the EDMM
Benefits: eases the definition a related semantics

Commonalities may be grouped in an abstract superclass.
A new semantics may be defined as a specialization of an existing one.

Visitor pattern would also be useful for the SDMM.
But transformation languages such as ATL, SmartQVT or Kermeta
achieve the same purpose through aspects.

Marc Pantel Pragmatic integration of MDE and FM 56/78

The Executable DSML metamodeling pattern

Architecture of the generated code

Marc Pantel Pragmatic integration of MDE and FM 57/78

The Executable DSML metamodeling pattern

Architecture of the generated code

irit

Generative Tools and Extensions to the Animator’s Core Multiple Semantics Definition

Architecture of the generated code

Pantel et al. (IRIT) Model Animation in TopCased ECMFA – June 17th, 2010 19 / 24
Marc Pantel Pragmatic integration of MDE and FM 58/78

The Executable DSML metamodeling pattern

Improvement of the Model Graphical Visualization

definition of GMF decorations on the editor graphical elements
relying on EMF notifications to update graphical decorations

Marc Pantel Pragmatic integration of MDE and FM 59/78

The Executable DSML metamodeling pattern

Controllers for Event Creation

automatic generation based on EDMM

Marc Pantel Pragmatic integration of MDE and FM 60/78

The Executable DSML metamodeling pattern

Refactoring of existing TOPCASED Animators
The UML State Machines Animator

Half a day has been enough to existing TOPCASED animators (UML and SAM)

Palette

Editor

Outline

Tree View

Ecore

fireable

transition

current state

Eclipse

Topcased UML State Machines Graphical Animator

Explorer

Execution Engine

Control Panel

Graphical Concrete Syntax

with decorations from SDMM

Scenario Builder

as dialog boxes

when right clicking

Marc Pantel Pragmatic integration of MDE and FM 61/78

The Executable DSML metamodeling pattern

TOPCASED proposal (through case study)

Abstract
Syntax

Concrete
Syntax

Semantics

DSL definition

SimplePDL metamodel

Editor
Generator

PDL Editor

Process

.net

Properties

.ltl

Tina

ATL

<<instanceOf>>

PDL2PN

.atl

Conception

RedactionDoc Development RedactionTest

nishToFinish

startToStartnishToStart startToStart

nishToFinish

PDL model

Marc Pantel Pragmatic integration of MDE and FM 62/78

The Executable DSML metamodeling pattern

Principles applied to SimplePDL using Petri nets

ATL
(M2T)

Tina

xSPEM
.ecore

PetriNet
.ecore

myProcess
.xspem

myProcess
.PetriNet

xSPEM2
PetriNet

.atl

myProcess
.net

<<conformsTo>>
<<conformsTo>>

ATL
(M2M)

Tina.tcs

TCS

properties
.ltl

TOCL
.ecore

properties
.tocl

<<conformsTo>>

<<use>>

TOCL2
LTL
.atl

<<dependOn>>

DDMM: Petri net
SDMM: Petri net marking
EDMM: bisimulation proof

Marc Pantel Pragmatic integration of MDE and FM 63/78

The Executable DSML metamodeling pattern

What do we want to check ?

resource constraints
computers
manpower

timing constraints
minimum achievement time
maximum achievement time

causality constraints
startToStart
startToFinish
finishToStart
finishToFinish

. . .

for some execution
or for all executions

Marc Pantel Pragmatic integration of MDE and FM 64/78

The Executable DSML metamodeling pattern

What do we want to check ?

resource constraints
computers
manpower

timing constraints
minimum achievement time
maximum achievement time

causality constraints
startToStart
startToFinish
finishToStart
finishToFinish

. . .

for some execution
or for all executions

Marc Pantel Pragmatic integration of MDE and FM 64/78

The Executable DSML metamodeling pattern

Some SimplePDL-expert properties

For all executions

every WD must start and then finish
once a WD is finished, it remains so
resource and causality constraints must hold

For some execution

every WD must take between min and max time units to complete
the overall process is able to finish

Marc Pantel Pragmatic integration of MDE and FM 65/78

The Executable DSML metamodeling pattern

A sample run
Illustrating operational semantics

t = 0: WDs are notStarted

t = 1: A starts
t = 3: B starts
t = 4: A completes
t = 5: C starts
t = 7: B completes
t = 8: C completes

 <<Process>> P

min_time = 5

max_time = 11

 <<WorkDefinition>> A

state = finishedOk
min_time = 2
max_time = 4

 <<WorkDefinition>> B

state = finishedOk
min_time = 2
max_time = 3

 <<WorkDefinition>> C

state = finishedOk
min_time = 1
max_time = 4

startToStart

finishtToStart finishToFinish

Marc Pantel Pragmatic integration of MDE and FM 66/78

The Executable DSML metamodeling pattern

The Temporal Object Contraint Language

TOCL (Gogolla & al., 2002) embeds

the Object Constraint Language for spatial relations
the Linear Temporal Logic for time relations

TOCL is used

to express fine behavioral spec (next , existsNext , always, sometime, . . .)
about some execution or all executions

Some properties of WD alone

∀w , (w .state = notStarted ∧ sometime w .state = inProgress)

∀w ,always (w .state = inProgress⇒ sometime w .state ∈
{finishedOk,tooEarly,tooLate})
∀w ,always (w .state = finishedOk⇒ always w .state = finishedOk)

¬∃w ,always w .state 6= finishedOk
Marc Pantel Pragmatic integration of MDE and FM 67/78

The Executable DSML metamodeling pattern

Expressing WorkDefinition Semantics through Petri
Nets
Encoding states, time and resource constraints:

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[5,5]

[6,6]

[0,0]

timeB

timeC

4

 <<WorkDefinition>>
Design

state = finishedOk

min_time = 5
max_time = 11

 <<Resource>>
Machine

occurenceNb = 4

2

2

2

Marc Pantel Pragmatic integration of MDE and FM 68/78

The Executable DSML metamodeling pattern

Expressing WorkDefinition Semantics through Petri
Nets
Finally, we add causality constraints:

 <<Process>> P

min_time = 5

max_time = 11

 <<WorkDefinition>> A

state = notStarted
min_time = 2
max_time = 4

 <<WorkDefinition>> B

state = notStarted
min_time = 2
max_time = 3

 <<WorkDefinition>> C

state = notStarted
min_time = 1
max_time = 4

startToStart

finishtToStart finishToFinish

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[2,2]

[2,2]

[0,0]

timeB

timeC

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[1,1]

[3,3]

[0,0]

timeB

timeC

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[2,2]

[1,1]

[0,0]

timeB

timeC

Marc Pantel Pragmatic integration of MDE and FM 69/78

The Executable DSML metamodeling pattern

A sample run
Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

t = 0: WD is notStarted

t = 1: WD starts
t = 6: WD is now on time
t = 7: WD completes on time

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[5,5]

[6,6]

[0,0]

timeB

timeC

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run
Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

t = 0: WD is notStarted
t = 1: WD starts

t = 6: WD is now on time
t = 7: WD completes on time

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[5,5]

[6,6]

[0,0]

timeB

timeC

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run
Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

t = 0: WD is notStarted
t = 1: WD starts
t = 6: WD is now on time

t = 7: WD completes on time

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[5,5]

[6,6]

[0,0]

timeB

timeC

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run
Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

t = 0: WD is notStarted
t = 1: WD starts
t = 6: WD is now on time
t = 7: WD completes on time

tooLate tooEarly

finished

started

notStarted

timeA

inProgress

[5,5]

[6,6]

[0,0]

timeB

timeC

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

Some features of our translation

Nice properties

functional pattern-matching ATL program
structural (a WD is a net & a WD.state is a marking)
modular (a constraint is also a net)
incremental (a constraint may be plugged in & out)
traceable

Target language comes equipped: http://www.laas.fr/tina/

nd (NetDraw) : editor and simulator of temporal Petri nets
tina : scanner of temporal Petri nets state spaces
selt: model-checker for the temporal logic SE−LTL (State/Event LTL),
with counter-example generation

Marc Pantel Pragmatic integration of MDE and FM 71/78

http://www.laas.fr/tina/

The Executable DSML metamodeling pattern

Global scheme

SimplePDL

.ecore
SimplePDL

BNF

.txt

MyProcess

<<conformsTo>> M2T

<<conformsTo>> <<conformsTo>><<conformsTo>>

Tina

Résultats

.scn

<<conformsTo>>

.SimplePDL

MyProcess
T2M

T2M

MyFailure
.SimplePDL

<<conformsTo>>

MyFailure
.PetriNet

<<conformsTo>>

M2T

M2M

Tina

BNF

PetriNet

.ecore

proprietes

.ltl

.PetriNet

MyProcess MyProcess

.net

LTL

BNF

Marc Pantel Pragmatic integration of MDE and FM 72/78

The Executable DSML metamodeling pattern

Formal expression with TOCL

context Process inv :
sometime a c t i v i t i e s −> f o r a l l (a | a . s t a t e = # f i n i s h e d) ;

More abstract expression

context Process inv :
sometime a c t i v i t i e s −> f o r a l l (a | a . i sF in i shed ()) ;

Consequences

In the semantics DSML extensions, think query more than state
Define an ATL module gathering the methods (helpers) that defines :

the names given to places and transitions (∗_started, A_start, etc.)
the implantation of the queries related to the encoding in the formal language

Marc Pantel Pragmatic integration of MDE and FM 73/78

The Executable DSML metamodeling pattern

Automatic transformation of TOCL to LTL

Marc Pantel Pragmatic integration of MDE and FM 74/78

The Executable DSML metamodeling pattern

Property driven approach

1 Identify the properties of interest for the user
(that allows to answer the questions he is asking)

2 Specify the minimal execution semantics
using a translation to a formal language

3 Propose a property description language: Temporal OCL
Properties expressed on the extended DSML (requests and events)

4 Implement a translational semantics by making concrete choices
and provide the requests

5 Translate automatically the properties to the target language
6 Use the model checking tools on the target technical space
7 Bring the results back to the DSML

Marc Pantel Pragmatic integration of MDE and FM 75/78

The Executable DSML metamodeling pattern

General method for defining an executable DSML

1 Define the Abstract Syntax (using a Property-driven approach)
1 Define the DDMM
2 List the properties of interest
3 Define the SDMM
4 Define the EDMM

2 Define the reference semantics
3 Define an operational semantics for the simulator
4 Define a translational semantics for the verification
5 Ensure the consistency of the different semantics (bisimulation proofs)

Marc Pantel Pragmatic integration of MDE and FM 76/78

The Executable DSML metamodeling pattern

Formal framework for metamodeling

Abstract Syntax
Definition
(for V&V)

FinishToStart

Model Verification
by Model-checking

Model Simulation
by Animation

Executable DSML
Formalisation

Purpose: Qualify V&V tools to facilitate certification.
Principle: Formalize the reference behavioral semantics and then
⇒ generate operational semantics (animators)
⇒ validate translational semantics (verification)

Means:
Formalization of MDE concepts (a first attempt based on Coq)
Definition of an endogenous transformation language (not yet done)

Marc Pantel Pragmatic integration of MDE and FM 77/78

The Executable DSML metamodeling pattern

Conclusion

Formal Framework
formalisation of EMOF has been done using Coq

including promotion and conformsTo operators

future work: define a minimal endogenous language to define the reference
semantics
future work: generate operational semantics
future work: help in proving translational semantics (bisimulation)

Models@runtime: application domain for behavioral semantics definition

ongoing work
definition of DSML to describe self-* distributed systems.

Marc Pantel Pragmatic integration of MDE and FM 78/78

	Safe MDE concerns
	Certification and Qualification
	Application to Code generation tools
	Application to Static analysis tools
	The Executable DSML metamodeling pattern

