Pragmatic integration of model driven engineering
and formal methods for safety critical systems
design

Marc Pantel and many others
IRIT - ACADIE — ENSEEIHT - INPT - Université de Toulouse

Institute of Cybernetics Institute — Tallinn University of Technology
Parrot exchange — January the 20th 2011

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 1/78

Plan

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

Marc Pantel Pragmatic integration of MDE and FM

A@ADIE

2/78

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

ACADIE
«O0>» «F»>» « Tr» « Q>

it
v
it

Safe MDE concerns

Safe MDE concerns

m Main purpose: Safety critical systems
m Main approach: formal specification and verification
m Problems: expressiveness, decidability, completeness, consistency

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 4/78

Safe MDE concerns

Safe MDE concerns Il

m Proposals: Raise abstraction

m Higher level programming languages and frameworks
m Domain specific (modeling) languages

easy to access for end users

with a simple formal embedding

with automatic verification tools

with usefull validation and verification results
that are accepted by certification authorities

Marc Pantel Pragmatic integration of MDE and FM

oot
ACADIE

5/78

Safe MDE concerns

Safe MDE concerns Il

m Needs:

m methods and tools to ease their development

m algebraic and logic theoretical fondations

m proof of transformation and verification correctness
m links with certification/qualification

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 5/78

Safe MDE concerns

Related past projects

m RNTL COTRE: Transformation to verification languages
m ACI FIACRE: Intermediate verification language

m ITEA GeneAuto: Qualified Simulink/Stateflow to C code generator
TUT and IB-Krates partners

m ITEA ES_PASS: Static analysis for Product insurance
m |TEA SPICES: AADL behavioral annex
m ANR OpenEmbedd: AADL to FIACRE verification chain (Kermeta based)

m CNES (French Space Agency) Autodava: profiled UML to RTSJ code
generator

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 6/78

Safe MDE concerns

Related current projects

m FUI TOPCASED: Metamodels semantics, Model animators, Verification
chains based on model transformations

m ANR SPaCIFY: GeneAuto + AADL = Synoptic <-> Polychrony (Kermeta
based)

m ANR iTemis: SOA/SCA verification

m FRAE quarteFt: model transformation based on Java/TOM for AADL to
FIACRE

m ITEA2 OPEES: Formal methods and Certification authorities
m JTI ARTEMIS CESAR: V & V view for safety critical components.

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 7178

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

ACADIE
«O0>» «F»>» « Tr» « Q>

it
v
it

Certification and Qualification

A bit of wording

m Requirement: What the end user expects from a system

m High level: focus on end users needs (user provided)

H Translate profiled UML to RTSJ; C to PowerPC

B Generate test inputs and expected outputs from a system specification
B Prove the absence of runtime errors

B Compute a precise estimation of WCET

m Schedule activities

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording

m Requirement: What the end user expects from a system

m Low level: focus on technical solutions (developer provided)

Relies on abstract interpretation for properties estimation

on graph coloring for register allocation

on linear programming for task scheduling

Generates a C function for each Simulink atomic sub-system
a RTSJ class for each UML class

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording

m Requirement: What the end user expects from a system

m Traceability links between various requirements, design and implementation
choices

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 9/78

Certification and Qualification

A bit of wording

m Verification: System fulfills its requirements explicit specification
m Validation: System fulfills its requirements implicit human needs

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

A bit of wording

m Certification: System (and its development) follows standards (DO-178,
IEC-61508, ISO-26262, ...)

m Qualification: Tools for system development follows standards

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

A bit of wording

m Certification and qualification: System context related

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 10/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

m Software in aeronautics: Design Assurance Level (A down to E)

m Most constraining standards up to now
accepted by other standards (automotive, space, ...)

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 11/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

m Main concern: Safety of passengers
m Main purpose: Provide confidence in the system and its development

m Key issue: Choose the strategy and technologies that will minimize risks
(no restriction)

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 11/78

Certification and Qualification

DO-178B/ED-12B standards: Certification

m Process and test-centered approach

m Definition of a precise process (development/verification)

m MCDC test coverage
truth-table lines of sub-expressions in conditions

m Asymmetry with independence argument: several implementation by
different teams, with different tools, ...

Marc Pantel Pragmatic integration of MDE and FM

™
ACADIE

11/78

Certification and Qualification

DO-178B/ED-12B standards: Qualification

m Development tools: Tools whose output is part of airborne software and
thus can introduce errors (same constraints as the developed system).

m Verification tools: Tools that cannot introduce errors, but may fail to detect
them (much softer constraints: black box V & V).

m No proof of error absence category

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 12/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

m Introduce detailed Tool Qualification Level (1 downto 5)

m Criteria 1: A tool whose output is part of the resulting software and thus
could insert an error (TQL-1 for DAL A).

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

m Introduce detailed Tool Qualification Level (1 downto 5)

m Criteria 2: A tool that automates verification process(es) and thus could
fail to detect an error, and whose output is used to justify the elimination
or reduction of:

m verification process(es) other than that automated by the tool (TQL-4 for DAL
A),

m or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

m Introduce detailed Tool Qualification Level (1 downto 5)

m Criteria 3: A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

DO-178C/ED-12C standards: Qualification

m Introduce detailed Tool Qualification Level (1 downto 5)

m Still no proof of error absence category (might be TQL-2 for DAL A).
AE?ADIE

Marc Pantel Pragmatic integration of MDE and FM 13/78

Certification and Qualification

Common documents

m Phase 1: Cooperative process definition:

m Plan for software aspects of certification (PSAC)
m Development plan (SDP)

m Verification plan (SVP)

m Configuration management plan (SCMP)

m Quality assurance plan (SQAP)

m Tool qualification plan

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 14/78

Certification and Qualification

Common documents (qualification case)

m Phase 2: Process application verification

m User requirements

m Tool architecture (elementary tools and their assembly)

m Tool requirements: Can be refined user requirements or derived
requirements (linked to technology choices, should be avoided or strongly
justified)

m Development and verification results (each elementary tools)

m Traceability links

m Verification results (user level)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 15/78

Certification and Qualification

Some comments

m Standards were designed for systems not tools:
Adaptation required

m MCDC not mandatory for tools,
but similar arguments might be required

m Traceability of all artefacts in the development, relate requirements,
design and implementation choices

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 16/78

Certification and Qualification

Some comments

m Purpose is to provide confidence
m Both cooperative and coercive approach

m Any verification technology can be used,
from proofreading to automatic proof
if confidence is given

m Choose the strategy and technologies that will best reduce risks

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 16/78

Certification and Qualification

Some comments |l

m Must be applied as soon as possible (cost reduction)
m Small is beautiful (simplicity is the key)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 17/78

Certification and Qualification

Some comments |l

m Certification authorities need to understand the technologies
m Cross-experiments are mandatory (classical w.r.t. formal methods)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 17/78

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

ACADIE
«O0>» «F»>» « Tr» « Q>

it
v
it

Application to Code generation tools

Transformation verification technologies

m Verification subject:

m Transformation: done once, no verification at use, white box, very high cost
m Transformation application: done at each use, black box, easier, complex
error management

m Classical technologies:

m Document independant proofreading (requirements, specification,
implementation)
m Test
H Unit, Integration, Functional, Deployment level
B Requirement based test coverage
B Source code test coverage
B Structural coverage, Decision coverage,
Multiple Condition Decision Coverage (MCDC)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 19/78

Application to Code generation tools

Transformation verification technologies Il

m Formal technologies (require formal specification):

m Automated test generation

m Model checking (abstraction of the system)
m Static analysis (abstraction of the language)
m Automated proof

Assisted (human in the loop) proof

m Transformation case

m Transformation specification: Structural/Behavioral
m Proof of transformation correctness
m Links with certification/qualification

Marc Pantel Pragmatic integration of MDE and FM

oot
ACADIE

20/78

Application to Code generation tools

Classical development and verification process

m Tool development, verification and qualification plans

m User requirements

m Tool requirements (human proofreading)

m Test plan (requirements based coverage, code coverage verification)
m Implementation and test application

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 21/78

Application to Code generation tools

GeneAuto experiment: Proof assistant based

m Derived from the classical process, validated by french certification
bodies

m Formal specification using Coq of tool requirements, implementation and
correctness

m Proofreading verification of requirements specification
m Automated verification of specification correctness

m Extraction of OCaML source implementation

m Proofreading verification of extracted OCaML source

m Integration of OCaML implementation with Java/XML implementation
(communication through simple text files with regular grammars)

m Proofreading verification of OCaML/Java wrappers (simple regular
grammar parsing)

m Test-based verification of user requirements conformance

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 22/78

Application to Code generation tools

GeneAuto Code Generator Architecture

Split into independent modules (easier V & V and qualification)

Simulink/
Stateflow
models

Simulink

Stateflow

;|

Code Model C code
Scicos Block Sequencer l ‘::) Generator E:) [>
Importer
GA System mndel GA System model GA Code Model
o

(%’ ' Adacode '
Scicos GeneAuto Deraun Library . Printer
models

Users Library

Marc Pantel Pragmatic integration of MDE and FM

Ada code

ACADIE

23/78

Application to Code generation tools
Integration

Elementary

Tool
Specification

Automatic
Theorems Extraction
&

100 Kieyuswiajg

Jaddeip [weag
pus-juoid eaep

Proofs

|Outputs Logs!
Design |

& proof
XML
Outputs

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 24/78

Application to Code generation tools

An example: User requirements R-CG-040

m F6 — Determine execution order of functional model blocks
The execution order generated by the ACG must be as close as possible
to that in Simulink and it shall be possible to visualise the execution order
Same scheduling as Simulink is required to ensure that generated code
conforms to Simulink simulations.
m Refinement
m F6.1 Sort blocks based on data-flow constraints
m F6.2 Refine the order according to control flow constraints
m F6.3 Sort blocks with partial ordering according to priority from the input
model.
m F6.4 Sort blocks that are still partially ordered according to their graphical
position in the input model

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 25/78

Application to Code generation tools

The same one in Coq

Definition correct execution order dataflow

(m: ModelType) (s: SequencedModelType) : Prop :=
forall (d:nat), (0<d) /\ (d <= m.signalsNumber) ->
((s.signalKind = DataSignal) ->
(-~ (isControlled s.src m)) ->
(~ (isControlled s.dst m)) ->
(s.src.BlockKind = CombinatorialBlock) ->
(s.dst.BlockKind = CombinatorialBlock) ->
let (Position posSrc) = (s.sequencedBlocks d.src) in
let (Position posDst) (s.sequencedBlocks d.dst) in

posSrc < posDst.

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 26/78

Application to Code generation tools

Open questions ?

What are:

m User requirement for a transformation/verification ?

m Tool requirement for a transformation/verification ?

m Formal specification for a transformation/verification ?

m Test coverage for a transformation/verification ?

m Test oracle for a transformation/verification ?

m Qualification constraint for transformation/verification languages ?
m Best strategy for tool verification (once vs at each use) ?

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 27/78

Application to Code generation tools

GeneAuto feedbacks

m From the certification perspective: Very good but...

m Still some work on qualification of the proof assistant tools

| Proof verifier
B Program extractor

m Complex management of input/output
m From the developer perspective:

High dependence to the technologies

Very high cost to use the technology

Not easy to subcontract

Scalability not ensured

Bad separation between semantics-based verification and
requirements-based specification

m Hard to assess development time

m On the use of Java: How to provide confidence in the libraries ?
A?ADIE

Marc Pantel Pragmatic integration of MDE and FM 28/78

Application to Code generation tools

Going further: CompCert use experiment

m CompCert: C to PowerPC optimising code generator developed at INRIA
by Xavier Leroy

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 29/78

Application to Code generation tools

Going further: CompCert use experiment

m Ricardo Bedin-Franga PhD thesis with Airbus (advisor Marc Pantel):
Improve certified code efficiency

m Metrics: WCET, Code and memory size, Cache and memory accesses

m Improvements of the various phases from models to embedded binary code

m New verification process using formal methods

m First CompCert experiments: -12% WCET, -25% code size, -72% cache

read, -65% cadre write

Design of a CompCert dedicated verification process

m Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)

m Improve SCADE block scheduling to reduce memory accesses (signal
liveness)

m Design of a whole development cycle verification process
with tools qualification

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 29/78

Application to Code generation tools

Proposal: Mixed approach

m Separate specification verification from implementation verification

m Define explicitly semantics link metamodel (relation between source and
target)

m Specify transformation as properties of the links

m Implementation verification (mostly syntactic/static semantics)

m Implementation must generate both target and links
m Implementation verification checks properties on generated links links

m Specification verification: Prove the dynamic semantics equivalence
between source and target in a trace link

m Rely on the specific of the operational semantics of the source and target
languages

m Andres Toom PhD work (advisors : Tarmo Uustalu and Marc Pantel)

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 30/78

Application to Code generation tools

Proposal: Deductive approach

m Another kind of separation between specification and implementation
verification

m Rely on Hoare logic kind of axiomatic semantics

m Specify the different construct of the language using pre/post conditions,
invariants and variants

m Generate the code and the corresponding assertions
m Use deductive static analysers like frama-C to prove the correctness
m Use different kind of logics depending on the correction criteria

m Verify the correctness of the Hoare specification with respect to the
operational semantics

m Might also rely on the previous links to ease the proof

m Soon to be started Arnaud Dieumegard PhD work with Airbus (advisor :
Marc Pantel)

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 31/78

Application to Code generation tools

Early feedbacks

m Separation of concerns:

m Industrial partners: Specification, Implementation, Implementation
verification (mainly syntactic)
m Academic partners: Specification verification (semantics)

m Very good subcontracting capabilities

m Almost no technology constraints on the industrial partner (classical
technologies)

m Good scalability

m Easy to analyse syntactic error reports

m Enables to modify generated code and links

m Parallel work between syntactic and semantics concerns

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 32/78

Application to Code generation tools

Work in progress

Positive first experiments on simple use cases from GeneAuto
But requires some grayboxing (expose parts of the internals)

m Flattening of statecharts
m Either very complex specification (doing the flattening)
m Or express the fixpoint nature of implementation (in the specification)

Require full scale experiments

Require exchange with certification authorities

Require qualified syntactic verification tool (OCL-like, but simpler)
Require explicit relations between syntactic and semantics work
Require explicit description of semantics in metamodels

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 33/78

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

ACADIE
«O0>» «F»>» « Tr» « Q>

it
v
it

Application to Static analysis tools

Static analysis tools

m Several kind of tools

m Qualitative and quantitative properties
m Fixed or user defined properties
m Semantic abstraction or Proof technologies

m Common aspects: Common pre-qualification

m Product (source of binary code) reader: fully common ?
m Configuration (properties, ...) reader: partly common
m Result writer and browser: partly common ?

m Split the verification tool in a sequence of elementary activities

m Common ones (pre-qualification could be shared)

m Technology specific ones

m Easier to specify, to validate and to verify

m Can be physical or virtual (produce intermediate results even in a single tool)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 35/78

Application to Static analysis tools

Required activities

m Specify user requirements

m Specify tool architecture (elementary tools and their assembly)

m Specify tool level requirements (elementary tools and their assembly)
m Specify functional test cases and results

m Choose verification strategy:

m Tool verification or Result verification

m Integration and unit tests (eventually with test generators and oracles)

m Proof reading of tool source or test results

m Formal verification of the verification tool itself (i.e. Coq in Coqg, Compcert in
Coq, ...)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 36/78

Application to Static analysis tools

Abstraction kind

m Translate to non standard semantics
m Compute recursive equations
m Compute fixpoint of equations

m Fixpoint algorithm
m Abstract domains and operators
m Widening, narrowing

m Check that properties are satisfied on the abstract values

m Produce user friendly feedback (related to product and its standard
semantics)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 37/78

Application to Static analysis tools

Deductive kind

m Produce proof obligations (weakest precondition, verification condition,
L)
m Check the satisfaction of proof obligations
m Proof term rewriting to simpler language
m Split to different sub-languages (pure logic, arithmetic, .. .)
m Apply heuristics to produce a proof term
m Check the correctness of the proof term
m Produce failure feedback or proof certificate (related to product and its
standard semantics)

m Produce user friendly feedback

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 38/78

Application to Static analysis tools

Potential strategy: Common parts

m Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Marc Pantel Pragmatic integration of MDE and FM

™
ACADIE

39/78

Application to Static analysis tools

Potential strategy: Common parts

m Reader and writer:

m Cross-reading

m Introduce dual reader/writer: check composition is identity

m Asymmetric implementation: Several independent implementations and
results comparison

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Common parts

m Code generation and transformation can be formally specified and
verified:

m Formal tool requirements: foreach source construct, what are the generated
targets and the links with the source

m Syntactic verification: properties of the trace links given as tool requirements

m Semantic verification: validation of the technology

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Common parts

m User-friendly feedback: Code generation based on trace links
AéADIE

Marc Pantel Pragmatic integration of MDE and FM 39/78

Application to Static analysis tools

Potential strategy: Abstraction kind

m Non-standard semantics and recursive equation production are similar to
code generation

m Semantic verification: monotony at the equations-level
m Semantic verification: soundness of the abstraction

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

m No verification on the fixpoint computation

m Verification of the result (if least solution is not required)
m A qualified (much simpler) verification tool is then required

Marc Pantel Pragmatic integration of MDE and FM

™
ACADIE

40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

m Verification of the properties of the abstract domains (join, meet,
operators, « o 7, widening, narrowing, monotony, .. .)

m Proof reading
m Automated test generation with oracles
m Formal specification and proof

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Abstraction kind

m Property checks (based on abstract property generation)

m Related to code generation
m Semantic verification: soundness of the abstraction -
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 40/78

Application to Static analysis tools

Potential strategy: Deductive kind

m Proof obligation computation is a kind of code generation
m Semantic verification: correctness of the axiomatic semantics
m Satisfaction of the proof obligations:

m No verification on proof certificate generation

m Verification of the certificate itself (much simpler than some heuristic-based
automatic prover)

m Term rewriting can be considered as code generation (endogenous)

m Curry-Howard type checking can be verified in a similar way

m Rely on Coq In Coq, Isabelle in Isabelle, ...

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 41/78

Application to Static analysis tools

What about validation of the technologies ?

Mainly scientific work and a lot of publications

Brings confidence but paperwork is not enough

Mechanized is better but still not enough

Functional user level tests still mandatory currently

Mixed system verification experiments (both tests and static analysis)
Reverse analysis of existing systems

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 42/78

Application to Static analysis tools

Synthesis

m Technical exchange with certification authorities mandatory
m Cross experiments and reverse engineering experiments mandatory

m Verification strategy must be designed early to choose the right
architecture and trace information

m Semi-formal (even formal) requirements must be written as soon as
possible

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 43/78

Safe MDE concerns

Certification and Qualification
Application to Code generation tools
Application to Static analysis tools

The Executable DSML metamodeling pattern

ACADIE
«O0>» «F»>» « Tr» « Q>

it
v
it

The Executable DSML metamodeling pattern

Adding a new DSML to the TOPCASED platform

Classical MDE technologies

/

>

Editor
Generator

[Wiyprocess paial &1

guidances

MyProcess paid
Ty Select

L arauee

Nodes
WorkDefintion

Guidance

Ginks__#

WorkSequence
Guidancelink

SimplePDL Editor

€« — - — -

Process

———————&|name: String

workDefinitions workSequences
0." linkToSuccessor 0."
\WorkD 0. Wor
name: String successor 0" lind: WorkSequenceKind
link
[<<enumeration>> |
0.* Y guidances i
[_Guidance | eTor
ot St finishToFinish
startToStart
startToFinish

SimplePDL metamodel

|

9
<<confarmsTo>>

finishToFinish

RédactionDoc. Développement

RedactionTest
finishToFinisf

SimplePDL model

Marc Pantel

< _ DSML definition

Abstract
Syntax

e

Pragmatic integration of MDE and FM

45/78

The Executable DSML metamodeling pattern

Needs for an execution semantics

m What about the dynamic semantics of a DSML?
m Needs for model animation

m Does the model behave as expected?
m Needs for model verification

m Does some property hold on a model?

Two main techniques to express behavioral semantics:

exogenous
transformation
MyDSML MyDSML ‘ormalDomain
y /.\\
Metamo endogenous Metamodel Data

transformation

i

Rules

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 46/78

The Executable DSML metamodeling pattern

Metamodel Extensions

Basic meta-model

(2 Process
= name : EString
process
0..% | activities 1 g.:*
(2 Activity after previous (3 Precedes
T name : EString 7 kind : PrecedenceKind
r El * t
annotatedEiement|1.. gefore qui e
guidance| 0..* i PrecedenceKind
O Clidance - pk_start_start
= 3 — pk_finish_start
&, detail : EStrin
b g = pk_finish_finish
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 47/78

The Executable DSML metamodeling pattern

Metamodel Extensions

Capture execution state

ExecutionContext |
L

1
Process

= |activities
0. 0.*

o 1
| Activity
name: EString kind: PrecedenceKind

progress: Elnt |4 0.*

detail: EString

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 48/78

The Executable DSML metamodeling pattern

Metamodel Extensions

Scenario model definition

_ | ExecutionContext |
< .

1
Process

1 .
* |activities
0. 0.r

v 1
[Event e s
1 name: EString kind: PrecedenceKind
A A 0..

progress: Elnt |4
T e ' [Guidancs |
| Start I | Stop | | Progress |

| |value:Elnt |

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 49/78

The Executable DSML metamodeling pattern

Metamodel Extensions

Scenario model definition

| ExecutionContext |
. .

1

1
Scenario Process
4
0..* |activities

{ordered}
0..* |events Activi 1 0..*
Event target | Activity Precedes
name: EString — -
1 K kind: PrecedenceKind
progress: Eint |4 0.*

| [Guidance |
[Progress |

] [value:EInt |

Stop

Start

ACADIE

50/78

Marc Pantel Pragmatic integration of MDE and FM

The Executable DSML metamodeling pattern

Architecture for an executable DSML

™3

Trace Management
MetaModel

<<import>>

EDMM

Events Definition
MetaModel

SDMM

<<merge>>

<<merge>> <<merge>>

Composed of 4 metamodels

States Definition
MetaModel

DDMM

Domain Definition
MetaModel

Marc Pantel Pragmatic integration of MDE and FM

joof

A

'ADIE

51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

™3

Trace Management
MetaModel

<ir mport>>
EDMM SDMM
Events Definition | _ _ _=dmerge>> | States Definition
MetaModel MetaModel
<<\rnerg_e>> <fmerge;;

Domain Definition
MetaModel

Domain Definition MetaModel:
“classical” metamodel

Marc Pantel Pragmatic integration of MDE and FM

jeof

A

'ADIE

51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

™3

Trace Management
MetaModel

d
<<import>> !m\e ActivityState
EDMM SDMM

Events Definition <<merge>> States Definfudn
MetaModel MetaModel

Domain Definition
MetaModel

States Definition MetaModel: Bk
runtime information

Marc Pantel Pragmatic integration of MDE and FM 51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

™3

Trace Management

<<import>>

Events Definition | _ _ _ <smerge>>
MetaModel

State: ActvityState

SDMM

States Definfdn
MetaModel

DDMM

Activity

Domain Definition
MetaModel

Events Definition MetaModel:

|

events inducing changes on SDMM (might be virtual)

Marc Pantel Pragmatic integration of MDE and FM

joof

A

'ADIE

51/78

The Executable DSML metamodeling pattern

Architecture for an executable DSML

—_—
* Tordered
Event |
ind: EventKin

™3 O

Trace Management

MetaModel
. 2
<<import>> Jstate: ActivityState
SDMM
Events Definiton | _ _ _<<merge>> > States Definfugn
MetaModel MetaModel

Domain Definition
MetaModel

Trace Management MetaModel: B
DSML independent MM for scenarios and traces

Marc Pantel Pragmatic integration of MDE and FM

51/78

The Executable DSML metamodeling pattern

Main principles for model simulation

™3

Trace Management
MetaModel

7

<<import>>

EDMM

SDMM

Events Definition
MetaModel

<<merge>>
>

States Definition
MetaModel

Marc Pantel

<<merge>>

/
<<merge>>

DDMM 3

Domain Definition
MetaMode!

Pragmatic integration of MDE and FM

ACADIE

52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Semantics

reactionOnEv1()

reactionONEVN()

™3

Trace Management
MetaModel

4

<<import>>

EDMM

SDMM

Semantics1

Semantics2

reactionOnEv1()

.r;actionOnEvN()

reactionOnEv1()

.réaciionOnEvN()

Marc Pantel

Events Definition
MetaModel

1
<smerge>>_| States Definition
MetaModel

~ /
<<merge>> <<merge>>

DDMM £

Domain Definition
MetaMode!

Pragmatic integration of MDE and FM

ACADIE

52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Semantics

reactionOnEv1()

reactionOnEVN()

c

reactionOnEv1() ||reactionOnEv1()

reactionOnEVN() | |reactionOnEVN()

™3

Trace Management
MetaModel

7

<<import>>

EDMM

SDMM

Events Definition
MetaModel

1
<smerge>>_| States Definition
MetaModel

~ /
<<merge>> <<merge>>

DDMM £

Domain Definition
MetaModel

Marc Pantel Pragmatic integration of MDE and FM

ACADIE

52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Semantics

reactionOnEv1()

.réactionOnEvN()

™3

Trace Management
MetaMode!

7

<<import>>

EDMM

SDMM

MetaModel
/1

1
Events Definition <<me'ge>>_| States Definition

MetaModel

|

Action Languages

c

reactionOnEv1() |[reactionOn

0

reactionOnEVN() | [reactionOnEVN()

N ,
<<merge>> <<merge>>

DDMM £

Domain Definition
MetaMode!

Marc Pantel Pragmatic integration of MDE and FM

ACADIE

52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Semantics

reactionOnEv1()

;'éactionOnEvN(}

Semantics1 Semantics2 ¢

reactionOnEv1() | [reactionOnEv1()

reactionOnEVN() | [reactionOnEVN()

™3
Trace Management
MetaModel
7
<<import>>
EDMM SDMM
Events Definition <5Tejgfz>9 States Definition
MetaModel MetaModel
11
[DS ,
<<merge>> <<merge>>
"4 <
DDMM
Domain Definition
MetaModel
Marc Pantel Pragmatic integration of MDE and FM

ACADIE

52/78

The Executable DSML metamodeling pattern

Main principles for model simulation

Scenario
Builder

Simulation Engine &
Control Panel

=

™3

Trace Management
MetaModel

reactionOnEv1() ||[reactionOnEvT()

reactionOnEVN() | [reactionOnEVN()

Marc Pantel

€3 7
EDMM SDMM P -
Events Definition | <<merge>>_| States Definition
MetaModel MetaModel
N v
Semantics [S &

Samerge>s 5 <<merges>
reactionOnEv1() Lﬁ
" DDMM S

<
reactionONEVN() Action Languages &~
Domain Definition
MetaModel
1 i C

Pragmatic integration of MDE and FM

ACADIE

52/78

SimplePDL-free
execution
semantics

SimplePDL-specific
execution
semantics

The Executable DSML metamodeling pattern

Architecture of TOPCASED Animators

exogenous)

<<enumeration>> context Scenario inv :
RuntimeEventKind self.runtimeEvent->forAll(re | re.kind = #
endogenous AN
exogenous .
Driver Trace * 1| Scenario
step() (from TM3) (from TM3)
f
Agenda 1
[add(e:Event) {ordered\ + «/ {ordered}
1 : . <
currentEvent():Event {ordered) RuntimeEvent cause
<<interface>> (from TM3) 0.1
Interpreter date: Integer
run(re : RuntimeEvent) : Event[*] kind: RuntimeEventKind

1
SimplePDL Interpreter

Marc Pantel

g

SimplePDL RuntimeEvent

event() : Event (from DDMM)

Pragmatic integration of MDE and FM

ACADIE

53/78

The Executable DSML metamodeling pattern

SIMPLEPDL Simulator

r3- Q- ¥
5 ‘> a|v

g =5[> DuparmeoLpad 5

= = CIEIEECIR ¥
By Diattee 1y seet pom.
B project B Morquee [
@ Dogumme?DLps || GObees 2 F
O Dlogomme?DLp88 | WeskOdtioion Srocesimg

4 Work Sequence Co .

Marc Pantel

o StarDlmpl

TemsinseWoimpi0___}
ChangeiSTheshoktigi0_y)
ChangebSThesheimgi0_,)

DecresseDLosdimel 1) _|

DecresseDLoadimpl 0)_|
DecressewDLosdimp! 1) _y|
DecressewDLoadime! 1) _|
DecressenDLoadimpl 1) _y|
IncreaseWDLoadim)|
IncreaseWDLodimp! 0)__}

: IncreaseWDLoadimp! 1)_y|
Arimation Debug View)
Load consumed: 10

Load estimated 15
Sute - ©

%%

o 5 =

Pragmatic integration of MDE and FM

The Executable DSML metamodeling pattern

UML2 StateChart Simulator (TOPCASED 2)

m
fle Edt pavigate Search Projec

2QUT B Mol Animator yinds

Help

Q- |- e o | *
= Vava - . .
e L e (Topcased UML State Machines Graphical Animator JE
e
= - imulation uml urnldi
T - \:q: state machine] Scenario Builder
Eclipse ot *— as dialog boxes
& object o Praudostatel when right clicking
Explorer Grst belett
@ TastGuard2 samdynamic waa| Falette EVT_Alselfopt> 0] EvT_Alselfcpre=10]
e ——_— o 2 B = (3 Composite State |
= = & Submachine Stale
=0uline ® | ®comestionpointrsferen,
& Pseudostates
® initial
@ Deep History
@ Shallow History
3 oin
& Fork

= Connections
@ Eornal Tansition
% Local Tansition

q:‘::::m) Graphical Concrete Syntax
otk with decorations from SDMM

hd = Class)
5 sPropemy> BN || proporties T simulation Gonifal view 25 =B
b C*<state Machine> R
o Control View
' <signal Event: EVT_A 3 N
b @ <instance spectications | | Execution Engine <

2 Class Diagram Ho name <] > Control Panel L]
jE—— L)

Intaractive Simulation D&

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 55/78

The Executable DSML metamodeling pattern

Multiple Semantics Definition

m Defining a model animator implies to:

m implement the Interpreter interface and define the run method.
m test the Event argument to run the right reaction
— error prone (events may be missed)

m Solution: Apply the Visitor pattern
Visitor interface and a dispatch method are generated from the EDMM
m Benefits: eases the definition a related semantics

m Commonalities may be grouped in an abstract superclass.
m A new semantics may be defined as a specialization of an existing one.

m Visitor pattern would also be useful for the SDMM.
But transformation languages such as ATL, SmartQVT or Kermeta
achieve the same purpose through aspects.

™
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 56/78

The Executable DSML metamodeling pattern

Architecture of the generated code

——

—

scenario

<cinterface>>
Scenar

<sinterface>>
Trace
—

—

simplepdlevent

<sinterface>>
Event

engine

<sinterface>>
Driver

<cinterface>>
gend: 1

1

semantics

<sinterface>>
Interpreter

+ step(pSImEvent : SimEven) : List<SimEvent

- fleNarme : String

+ step(simEvent : SimEven) List<SimEvent>

—

<<interface=> <sinterface>>
emanti Dispatcher

+ dispatch(simEvent : SimEvent, semantics : Sernantics) void

simplogfisomantics. i

t Semantics

ispatcher

+ run(simEvent
+ run(simEvent

StartProcess) - void + dispatch(simEvent : SimEvent, semantics : Semantics) : voig

t Semantics

i
SuspendiProcess) : void
o

+ run
+ run(simEvent

+ run(simEvent

Startwo) - void
SuspenaWo) - voie
IncreaseWOLoa) : voicd
DecreaseWDLoad) - void
TerminateWs) : void
CaneelWD) void

+ run(simEvent
+ un

| I void
commandRun(simEvent : SimEvent) void

Marc Pantel

Pragmatic integration of MDE and FM

ACADIE

57/78

The Executable DSML metamodeling pattern

=<imarface==
Interpreter

+ S SimEvent) | L it

Interpreterimpl

- fileMame : String

Architecture of the generated code

SEImans

\‘/- gemantics

\I/V dispatcher

+ steplgimEvent: SimEvent) : List=SimEvent=

o —

=<interface== ==interfaces=
Semantics Dispatcher
+ dispatchisimEvent | SimEvent, woe!

simplepdlsemantics
'

'

+ runisimEvent | StarProcess) | void
+ Han(simEvent | SuspendProcess) T vold

+ dispatch{simEvent

SimEwent, semantics | Semantics) : void

+ runisimEvent . Te a2
.

i StartWo) ©void

+ runisimEvent : SuspendWD) - void

+ runisimEvent - increaseWiload) . void

+ run(simEvent | DecreaseWOLoad) | void

+ runisimEvent : Terminate WD) © void

+ runisimEvent : CancelWi) - vold

+ runisimEvent | ChangeWSThreshold) | void

ce: voief

pay

Marc Pantel

Pragmatic integration of MDE and FM

ACADIE

58/78

The Executable DSML metamodeling pattern

Improvement of the Model Graphical Visualization

m definition of GMF decorations on the editor graphical elements
m relying on EMF notifications to update graphlcal decorations

e spective - =
Ele Edt Navigate Search Project Seripts SmamQuT Model Animator Run Windew Help
i RS SOl AR

tive| (S5Rasource

Restsjexample0 L simplapdidi

=0 §outline 2

% 3 8 D@0
Iy Select MWord Definition Diagram : #1/ bus
+ { marquee
Note
= Objects @ |- = =
WorkDefnton] oAb rtiors
ork Befiton i'l =
= Comnactions © Twsehoit 70 g
work seauence | [" ! v ¢ Procesz Py
Load Consumed ; 100.0% Load Consumed : 71.0% + Work Definition WorkDefnition1
——— jof + Work Defniion werkoefinion
; 4 work Dafivtion WerkDefintion3
Threshold: 25% o ity
T hToFiish

+ Work Sequence WorkSequencel
+ Work Saquence ViorkSequence?
< Work Saquence VorkSaquance3
@ word Definition Diagram bus

b 12 Addtional Resaurces
Thrashokt: 30

1

5 proparties (i3 Project Explorer 13 Simulation Control View 2

=
Cantrol view

<

-

Interactive Simulation 1

ACADIE
Marc Pantel

Pragmatic integration of MDE and FM 59/78

The Executable DSML metamodeling pattern

Controllers for Event Creation

m automatic generation based on EDMM

Fe Edt Neuigsts Seach Project Scrpts Sar

ele |a-|e s | % |
o ([Er Start Event WD b
2 Projeet Bxplrer =0 bus.sirvpld T stan vork Dsfcion event:
= B e —
gt o Dyselact [
Py Civaraen | | (© sespendubrkdfiion svent
| S Dot
Terminate Event WO
b e chiscts - et
3 bus scensrio erk Defitie S5 Terminate vierk Defintion Even
P l ‘ S Terminate verk Deintion Event W
1 bus simplepd] & Conections | 4
@ bussimplepd_ dagram work Sequen{ CaNCol EvoTt WD
- bus simplepdldi $G conavor
@ bus.smplepdldynarmic
& canscnsiia Incrasse Event WO
@ corsimplepdl 5 = -
g ' e ncr s o Consumed ok Darition Event

Bicoosemsons | & ¥ =8 [
Oscrases Event w0

5 outl.. @ BTes.. | MBud.. = O
Octlo it Wikse [Eud ‘_.n,wﬂLm:mumeammagnw e

b % Process P1 (0} Enish cancel

b 12 ddtional Resourcas P

Control view

= e
=
B
e A@ADIE

Marc Pantel Pragmatic integration of MDE and FM

60/78

The Executable DSML metamodeling pattern

Refactoring of existing TOPCASED Animators

The UML State Machines Animator

PCASED animators (UML and SAM)

=

Half a day has been enough to existing To

Fle Edt Navigste Search Project Scrpts SmanQUT Fun Madel Anmater Window Helo

=5 Q- |a e s 5
© b sl @es i Topcased UML State Machines Graphical Animator }E

=8 O Testuardu

% Navigator| # Topeasad Nav.
Jation um Idi

St state machine | Scenario Builder
as dialog boxes
when right clicking

& TestGuard scenario

Peaudostatol

EvT_Afsel cpe>10] EVT Alsell.cnt<= 10]

3 Subrnachine State

2 conpectionPointAeferen.
= pseudostates 2

© sl

@ Deep History

@ Shallow Histary

i join

“Brork
~ E=
& Connections -
_ @ earnal Tansition
& Local Tansition

omment © /
& Comment Graphical Concrete Syntax -m
£ Chenmrs Lok with decorations from SDMM__}_.._.__. ’
%
5, # Constraint Link
1 propertes (D4 simuation Conteol i 23 -=
(Control View
el Everts EVT_A
3 stance Specification> £
7l Class Diagram to name <] > . R
L — ACADIE

Interactive Simulation

Marc Pantel Pragmatic integration of MDE and FM 61/78

The Executable DSML metamodeling pattern

TOPCASED proposal (through case study)

© process
= et

DSL definition

Abstract

R
— fmanTet s

Editor
Generator

Concrete
Syntax

* SimplePDL mgtamaél
_--" 7'\’ ’
[- :

K Seect <

Errr—|
WorkDefinition
Guidance

[Links -
WorkSequence
GuidanceLink

I
<<instanceOf>>

1

1

Properties
finishToFinish M

startToSiar finishToStart starToStart

PDL Editor

Devel

Process
PDL model

Marc Pantel Pragmatic integration of MDE and FM

62/78

The Executable DSML metamodeling pattern

Principles applied to SimplePDL using Petri nets

DDMM: Petri net
SDMM: Petri net marking
EDMM: bisimulation proof

TOCL XxSPEM O PetriNet
.ecore .ecore O .ecore

i

TCS

<<conformsTo>>
| 3
Tina.tcs

To>> To>> (M2M)

XxSPEM2
PetriNet

1
1
| myProcess myProcess
! -PetriNet .net
<<depe§1d0n>>
i Tina

o ATL

|
21 properties
TOCL2 tl
LTL

.atl

ot

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 63/78

The Executable DSML metamodeling pattern

What do we want to check ?

B resource constraints

m computers
®m manpower

m timing constraints

® minimum achievement time
® maximum achievement time

m causality constraints

m startToStart

m startToFinish
m finishToStart
m finishToFinish

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 64/78

The Executable DSML metamodeling pattern

What do we want to check ?

B resource constraints

m computers
®m manpower

m timing constraints

® minimum achievement time
® maximum achievement time

m causality constraints

m startToStart

m startToFinish
m finishToStart
m finishToFinish

m ...

m for some execution

m or for all executions
=
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 64/78

The Executable DSML metamodeling pattern

Some SimplePDL-expert properties

For all executions

m every WD must start and then finish
m once a WD is finished, it remains so
B resource and causality constraints must hold

For some execution

m every WD must take between min and max time units to complete
m the overall process is able to finish

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 65/78

The Executable DSML metamodeling pattern

A sample run

lllustrating operational semantics

: B completes

: C completes

m {=0: WDs are notStarted
m t=1: Astarts

m { = 3: Bstarts

m { =4: Acompletes

m {=5: Cstarts

[

|

Marc Pantel

max_til

<<WorkDefinition>> A

<<WorkDefinition>> B

min_time = 2

max_time =3

<<Process>> P

min_time =5

min_time = 2 startToStart state = ﬁnishedOk
max_time = 4 min_time =1
max_time = 4
- 4
finishtToStart finishToFinish

state = finishedOk

me = 11

<<WorkDefinition>> C

J

Pragmatic integration of MDE and FM

ACADIE

66/78

The Executable DSML metamodeling pattern

The Temporal Object Contraint Language

TOCL (Gogolla & al., 2002) embeds

m the Object Constraint Language for spatial relations
m the Linear Temporal Logic for time relations

TOCL is used

m to express fine behavioral spec (next, existsNext, always, sometime, .. .)
m about some execution or all executions

Some properties of WD alone

m VYw, (w.state = notStarted A sometime w.state = inProgress)

B Yw, always (w.state = inProgress = sometime w.state €
{finishedOk, tooEarly,tooLate})

B Yw, always (w.state = £inishedOk = always w.slate = £inishedOk) .
m 3w, always w.state # finishedOk

Marc Pantel Pragmatic integration of MDE and FM 67/78

The Executable DSML metamodeling pattern

Expressing WorkDefinition Semantics through Petri
Nets

Encoding states, time and resource constraints?*

timeA

started

<<Resource>>

inProgress
timeB,

timeC
finished

state = finishedOk
min_time = 5
max_time = 11

oot
ACADIE

toolate tooEarly

Marc Pantel Pragmatic integration of MDE and FM 68/78

The Executable DSML metamodeling pattern

Expressing WorkDefinition Semantics through Petri

Nets

Finally, we add causality constraints:

min_time =5
max_time = 11

state = notStarted
min_time = 2 startToStart —>| gtate = notStarted

max_time = 4 min_time =1

max_time = 4

7
finishtToStart finishToFinish

<<WorkDefinition>> B

min_time = 2

max_time = 3

Marc Pantel

Pragmatic integration of MDE and FM

ACADIE

69/78

The Executable DSML metamodeling pattern

A sample run

Translation into Petri nets

A WD with min_time = 5 and max_time

m{=0: WDis notStarted

Marc Pantel

= 11 time units

notStarted

timeA

* I O

TnProgress
timeg,

finished

toolate tooEarly jeof

ACADIE

Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run

Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

notStarted

timeA

started

m{=0: WDis notStarted
m t=1: WD starts

TnProgress
timeg,

finished

tooLate tooEarly

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run

Translation into Petri nets

A WD with min_time = 5 and max_time = 11 time units

notStarted

@\ started

TnProgress

timeA

m{=0: WDis notStarted
m t=1: WD starts
m { =6: WD is now on time

timeg,

timeC,
finished

tooLate tooEarly

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 70/78

The Executable DSML metamodeling pattern

A sample run

Translation into Petri nets

A WD with min_time = 5 and max_time

m{=0: WDis notStarted

m {=1: WD starts

m t=6: WDis now ontime

m t =7: WD completes on time

Marc Pantel

= 11 time units

notStarted

timeA

* I O

TnProgress
timeg,

finished

tooLate tooEarly

Pragmatic integration of MDE and FM

ACADIE

70/78

The Executable DSML metamodeling pattern

Some features of our translation

Nice properties

m functional pattern-matching ATL program

m structural (a WD is a net & a WD.state is a marking)
m modular (a constraint is also a net)

m incremental (a constraint may be plugged in & out)
m traceable

Target language comes equipped: http://www.laas.fr/tina/

m nd (NetDraw) : editor and simulator of temporal Petri nets
m tina : scanner of temporal Petri nets state spaces

B selt: model-checker for the temporal logic SE—LTL (State/Event LTL),
with counter-example generation

Aenois

Marc Pantel Pragmatic integration of MDE and FM 71/78

http://www.laas.fr/tina/

The Executable DSML metamodeling pattern

Global scheme

PetriNet LTL Tina

i SimplePDL
SimplePDL ecore BNF BNF
BNF
’ 7 / j
I
! <gconfdrmsTo>> /) <<conformsTo>> /<<c0nf0rmsTo>> <gconformsTo>>
1 I / ’
<<confarmsTos>> / L / - | M2T /
! MyProcess

MyProcess
.net

Myl"rocess
SimplePD

! .PetriNet

Axt

proprietes
At

Résultats
.scn

/
<<confgrmsTo>>
/

/
<<confgrmsTo>>
/

/

MyFailure
-SimplePDL MyFailure

PetriNet

T2M

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 72/78

The Executable DSML metamodeling pattern

Formal expression with TOCL

context Process inv:
sometime activities —>forall(a | a.state = #finished);

More abstract expression

context Process inv:
sometime activities —>forall(a | a.isFinished());

Consequences

m In the semantics DSML extensions, think query more than state
m Define an ATL module gathering the methods (helpers) that defines :

m the names given to places and transitions (+_started, A_start, etc.)
m the implantation of the queries related to the encoding in the formal language

ACADIE

Marc Pantel Pragmatic integration of MDE and FM 73/78

The Executable DSML metamodeling pattern

Automatic transformation of TOCL to LTL

DSML level PetriNet level Tina level
- =,
Eherl XE@IR
-=z == - Tocl2Atl atl : : : Tacl2Ltl.atl
| Ny - HOm 2 oc[Tz]Zi

Tocl Editor

4y spoLoPNat QUT IN; PNZTINA atl

SimplePDL Editor i

Marc Pantel Pragmatic integration of MDE and FM

ouT
km.m
P
)
INA
/OTO.net

ACADIE

74/78

The Executable DSML metamodeling pattern

Property driven approach

Identify the properties of interest for the user
(that allows to answer the questions he is asking)

Specify the minimal execution semantics
using a translation to a formal language

Propose a property description language: Temporal OCL
Properties expressed on the extended DSML (requests and events)

Implement a translational semantics by making concrete choices
and provide the requests

Translate automatically the properties to the target language
A Use the model checking tools on the target technical space
Bring the results back to the DSML

Marc Pantel Pragmatic integration of MDE and FM

™
ACADIE

75/78

The Executable DSML metamodeling pattern

General method for defining an executable DSML

Define the Abstract Syntax (using a Property-driven approach)

Define the DDMM
List the properties of interest
Define the SDMM
Define the EDMM

Define the reference semantics

Define an operational semantics for the simulator

Define a translational semantics for the verification

Ensure the consistency of the different semantics (bisimulation proofs)

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 76/78

The Executable DSML metamodeling pattern

Formal framework for metamodeling

Abstract Syntax
Definition
(for V&V)

Executable DSML
Formalisation

Model Simulation Model Verification
by Animation by Model-checking

m Purpose: Qualify V&V tools to facilitate certification.

m Principle: Formalize the reference behavioral semantics and then
= generate operational semantics (animators)
= validate translational semantics (verification)

m Means:

m Formalization of MDE concepts (a first attempt based on Coq)
m Definition of an endogenous transformation language (not yet done) R

Marc Pantel Pragmatic integration of MDE and FM 7778

The Executable DSML metamodeling pattern

Conclusion

m Formal Framework
m formalisation of EMOF has been done using Coq
H including promotion and conformsTo operators
m future work: define a minimal endogenous language to define the reference
semantics
m future work: generate operational semantics
m future work: help in proving translational semantics (bisimulation)

m Models@runtime: application domain for behavioral semantics definition

®m ongoing work
m definition of DSML to describe self-* distributed systems.

oot
ACADIE

Marc Pantel Pragmatic integration of MDE and FM 78/78

	Safe MDE concerns
	Certification and Qualification
	Application to Code generation tools
	Application to Static analysis tools
	The Executable DSML metamodeling pattern

