Coinductive Graph Representation

Celia Picard

IRIT - UPS
Team : ACADIE
Thesis advisor: Ralph Matthes

12/05/2011

Outline

(9) Graph Representation

2 A More Liberal Bisimulation Relation on Graph
(3) Related Work and Conclusions

ACADIE

The Problem
 A first representation

Context: certified model transformations (Coq)
Aim: representing metamodels as graphs and graphs using coinductive types (to directly represent navigability in loops)
First attempt: constructor (coinductive):
mk_G : nat \rightarrow (list Graph) \rightarrow Graph
Examples:
Finite graph:
Finite_Graph = mk_G 0 [mk_G 1 [Finite_Graph]]

Infinite graph: Infinite_Graph ${ }_{n}=$ $m k _G n\left[I n f i n i t e _G r a p h_{n+1}\right]$

The Problem

Guard condition

An example

We would like to define the function (with f of type nat \rightarrow nat): applyF2G $f\left(m k _G n I\right)=m k _G(f n)($ map $($ applyF2G $f) I)$ but... forbidden!

Explanation: Coq's guard condition
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

The Problem

Guard condition

An example

We would like to define the function (with f of type nat \rightarrow nat):

$$
\text { applyF2G } f\left(m k _G n I\right)=m k _G(f n)(\operatorname{map}(\operatorname{applyF2G} f) I)
$$

but... forbidden!
Explanation: Coq's guard condition
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

The Problem

Guard condition

An example

We would like to define the function (with f of type nat \rightarrow nat):

$$
\text { applyF2G } f\left(m k _G n I\right)=m k _G(f n)(\operatorname{map}(\operatorname{applyF2G} f) I)
$$

but... forbidden!
Explanation: Coq's guard condition
Objective: ensure that we can get more information on the structure in a finite amount of time (productivity rule). Restrictive solution offered by Coq: a corecursive call must always be a constructor argument.

Why is it a problem?
The definition above actually is semantically correct!

The Solution: ilist

The idea

Using functions instead of inductive types to represent lists
Example for the list [10; 22;5]

First problem : represent a set of n elements

ACADIE

The Solution: ilist

Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate
Solution: we represent a family of sets parameterized by the number of their elements.
We use a common solution (Altenkirch, McBride \& McKinna):
Fin of type nat \rightarrow Set with 2 constructors:

$$
\begin{array}{ll}
\text { first } & (k: n a t): \\
\operatorname{succ} & (k: n a t): \\
\text { Fin }(k+1) \\
\text { Fin } k \rightarrow \operatorname{Fin}(k+1)
\end{array}
$$

Lemmas:

- $\forall n$, card $\{i \mid i:$ Fin $n\}=n$ (not formalizable in Coq)
- $\forall n m, n=m \Leftrightarrow$ Fin $n=$ Fin m

The Solution: ilist

ilist implementation

Implementation

The function : ilistn (T : Set) $(n$: nat $)=$ Fin $n \rightarrow T$
The ilist : ilist $(T: S e t)=\Sigma(n: n a t)$. ilistn $T n$
Lemma : There is a bijection between ilist and list.
where Igti and fcti are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin (Igti l_{1}) to type Fin (Igti l_{2})
\square
Replacement for map: imap $f I=\langle($ Igti $I),(f \circ($ fcti $I))$ Universal quantification: iall $T P I: P r o p=\forall i, P($ fcti $\mid i)$

The Solution: ilist

ilist implementation

Implementation

The function : ilistn (T : Set) $(n$: nat $)=$ Fin $n \rightarrow T$
The ilist : ilist $(T: S e t)=\Sigma(n: n a t)$. ilistn $T n$
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

$\forall I_{1} I_{2}$: ilist T, ilist_rel $R I_{1} I_{2} \Leftrightarrow$ $\forall h: \operatorname{Igti} I_{1}=\operatorname{lgti} I_{2} \rightarrow\left(\forall i:\right.$ Fin $\left(\operatorname{lgti} I_{1}\right), R\left(\right.$ fcti $\left.I_{1} i\right)\left(\right.$ fcti $\left.\left.I_{2} i_{h}^{\prime}\right)\right)$ where Igti and fcti are projections on ilist, R is a relation on T and i_{h}^{\prime} is i, converted from type Fin (Igti I_{1}) to type Fin (Igti I_{2})
\square Universal quantification: iall T P

The Solution: ilist

ilist implementation

Implementation

The function : ilistn (T : Set) $(n$: nat $)=$ Fin $n \rightarrow T$
The ilist : ilist $(T: S e t)=\Sigma(n: n a t)$. ilistn $T n$
Lemma : There is a bijection between ilist and list.

```
An equivalence on ilist
\(\forall I_{1} I_{2}\) : ilist \(T\), ilist_rel \(R I_{1} I_{2} \Leftrightarrow\)
\(\forall h:\) Igti \(I_{1}=\) Igti \(I_{2} \rightarrow\left(\forall i:\right.\) Fin \(\left(\right.\) Igti \(\left.I_{1}\right), R\left(\right.\) fcti \(\left.\left.I_{1} i\right)\left(f c t i I_{2} i_{h}^{\prime}\right)\right)\) where Igti and fcti are projections on ilist, R is a relation on T and \(i_{h}^{\prime}\) is \(i\), converted from type Fin (Igti \(I_{1}\) ) to type Fin (Igti \(I_{2}\) )
```


Tools

Replacement for map: imap $f I=\langle($ lgti $I),(f \circ($ fcti $I))\rangle$ Universal quantification: iall TPI: Prop $=\forall i, P(f c t i l i)$

New Graph Representation

Definition of Graph

```
Graph and applyF2G (coinductive)
Graph : mk_G : nat \(\rightarrow\) (ilist Graph) \(\rightarrow\) Graph applyF2G: applyF2G \(f\left(m k \_G r a p h n I\right)=m k \_G(f n)(\) imap \((\) applyF2G \(f) I)\)
```


Equivalence on Graph

Geq bisimulation relation on Graph
$\forall g_{1} g_{2}$: Graph, Geq $g_{1} g_{2} \Leftrightarrow$ label $g_{1}=$ label $g_{2} \wedge$ ilist_rel Geq (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$ where label and sons are the projections on Graph

Universal quantification on Graph
$\forall P, \forall g, G _a l l ~ P g \Leftrightarrow P g \wedge$ iall (G_all $\left.P\right)($ sons $g)$

New Graph Representation

Finiteness

Notion of finiteness

List membership of an element of Graph:
P_ finite (Ig : list Graph) ($g:$ Graph $):=\exists y, y \in \lg \wedge$ Geq $g y$
Finiteness : $\forall g$, G_finite $g \Leftrightarrow \exists l g$, $G _$all (P _ finite \lg) g
Redefinition of the examples from the beginning

Proofs of finiteness

G_ finite Finite_Graph: rather easy proof
$\forall n, \neg G_{-}$finite Infinite_Graph : we use unbounded labels labels and \#sons bounded \Rightarrow proofs of infiniteness much harder

A Representation of a Wider Class of Graphs

We would like to represent graphs like this one:

ACADIE

A Representation of a Wider Class of Graphs

Solution: fictitious nodes.

AllGraph using Graph: AllGraph $T:=$ Graph (option T)

Multiplicity Representation

Presentation

Final goal: represent big metamodels and perform transformations on them
Partial goal: represent multiplicities Solution: extend ilist to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition:
$\forall($ inf : nat) (sup : option nat) (i : nat),
$[$ sup $=$ Some $s] i \geq \inf \wedge i \leq s \quad[$ sup $=$ None $] i \geq$ inf

ilistMult

ilistnMult T inf sup $n:=\{i:$ ilistn $T n \mid$ PropMult inf sup $n\}$ ilistMult T inf sup $:=\Sigma(n$: nat).ilistnMult T inf sup n

Need for a more Liberal Relation on Graph

The problem

These pairs of graphs are not bisimulated through Geq:

Solution

- Define a new equivalence relation on ilist for permutations
- Define a new equivalence relation on Graph using the previous equivalence on ilist and taking into account rotations

ACADIE

Capturing Permutations on ilist

Permutations on ilist with decidability

The idea

$$
\forall t, \operatorname{card}\left\{i \mid R\left(\text { fcti } I_{1} i\right) t\right\}=\operatorname{card}\left\{i \mid R\left(\text { fcti } I_{2} i\right) t\right\}
$$

But not possible in Coq because there is no card operation

> Implementation: counting elements
> $\forall I_{1} I_{2}$, ilist_perm_occ where (nb_occ $t I)$) gives the number of occurences of t in I.

The problem
ilist_perm_occ needs decidability. Cannot be assumed for Geq.

Capturing Permutations on ilist

Inductive definition of permutations on ilist

$$
\begin{aligned}
& \forall I_{1} I_{2} \text {, ilist_perm } l_{1} I_{1} I_{2} \\
& \Leftrightarrow\left\{\begin{array}{l}
\text { lgti } l_{1}=\operatorname{lgti} I_{2}=0 \\
\exists i_{1} i_{2}, R\left(\text { fcti } I_{1} i_{1}\right)\left(\text { fcti } I_{2} i_{2}\right) \wedge
\end{array}\right. \\
& \text { ilist_perm }{ }_{R}\left(\text { removeElement } l_{1} i_{1}\right)\left(\text { removeElement } l_{2} i_{2}\right) \\
& \text { Igti } I_{1}=\operatorname{Igti} I_{2} \wedge\left(\forall i_{1}, \exists i_{2}, R\left(f c t i I_{1} i_{1}\right)\left(\text { fcti } I_{2} i_{2}\right)\right. \\
& \left.\wedge \text { ilist_perm }{ }_{R}\left(\text { removeElement } I_{1} i_{1}\right)\left(\text { removeElement } I_{2} i_{2}\right)\right)
\end{aligned}
$$

where removeElement I i removes the $i^{\text {th }}$ element of l.
The proof of equivalence is not straightforward since one definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to prove on one than on the other and vice versa.

A Relation On Graph Using ilist_perm

An unsuccessful attempt

Definition of GPerm (coinductive)

$\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$
$R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ ilist_perm GPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$
The problem: proof that GPerm preserves reflexivity
Lemma: $\forall R, R$ reflexive $\Rightarrow \forall g$, GPerm $_{R} g g$ Proof (by coinduction): We must prove that $\underbrace{R(\text { label g) }(\text { label g) })}_{\text {ok }} \wedge \underbrace{\text { ilist_perm }_{\text {GPerm }}(\text { sons } g)(\text { sons g) })}_{\text {has to be inductive }}$

A Relation On Graph Using ilist_perm

An impredicative definition

> The impredicative definition: implementation of GPerm $g_{1} g_{2}$
> $\exists \mathcal{R},\left(\forall g_{1}^{\prime} g_{2}^{\prime}, \mathcal{R} g_{1}^{\prime} g_{2}^{\prime} \Rightarrow R\left(\right.\right.$ label $\left.g_{1}^{\prime}\right)\left(\right.$ label $\left.g_{2}^{\prime}\right) \wedge$
> ilist_perm $\mathcal{R}_{\mathcal{R}}\left(\right.$ sons $\left.g_{1}^{\prime}\right)\left(\right.$ sons $\left.\left.g_{2}^{\prime}\right)\right) \wedge \mathcal{R} g_{1} g_{2}$
> where variable \mathcal{R} ranges over relations on Graph T

Tools and definitions

Coinduction principle: $\left(\forall g_{1} g_{2}, \mathcal{R} g_{1} g_{2} \Rightarrow\right.$ $R\left(\right.$ label $\left.g_{1}\right)$ (label $\left.g_{2}\right) \wedge$ ilist_perm $\mathcal{R}_{\mathcal{R}}$ (sons g_{1}) (sons $\left.\left.g_{2}\right)\right) \Rightarrow$ $\forall g_{1} g_{2}, \mathcal{R} g_{1} g_{2} \Rightarrow$ GPerm $_{R} g_{1} g_{2}$ Unfolding principle: $\forall g_{1} g_{2}, G P e r m_{R} g_{1} g_{2} \Rightarrow$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ ilist_perm GPerm $_{R}$ (sons $\left.g_{1}\right)$ (sons g_{2}) Constructor: $\forall g_{1} g_{2}, R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ ilist_perm GPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) \Rightarrow$ GPerm $_{R} g_{1} g_{2}$

A Relation On Graph Using ilist_perm

 Mendler-style definitionDefinition (coinductive)
$\forall g_{1} g_{2}$, GPermMendler $R_{R} g_{1} g_{2} \Leftrightarrow \forall X, X \subset$ GPermMendler $_{R} \wedge$ $R\left(\right.$ label $\left.g_{1}\right)\left(\right.$ label $\left.g_{2}\right) \wedge$ ilist_perm ${ }_{X}$ (sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$

Properties

- Equivalent to GPerm
- Preserves equivalence

Using inductive trees to observe coinductive graphs until a certain depth.
\Rightarrow no more mixing of inductive and coinductive types

Observed until depth 5

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Definitions

TreeG (inductive): mk_TreeG: $T \rightarrow$ ilist $(\operatorname{Tree} G T) \rightarrow$ TreeG T
TPerm (inductive): $\forall t_{1} t_{2}$, TPerm $_{R} t_{1} t_{2} \Leftrightarrow$
$R\left(\right.$ labelT $\left.t_{1}\right)\left(\right.$ labelT $\left.t_{2}\right) \wedge$ ilist_perm TPerm $_{R}\left(\right.$ sonsT $\left.t_{1}\right)\left(\right.$ sonsT $\left.t_{2}\right)$
Graph2TreeG:
Graph2TreeG : $\forall T$, nat \rightarrow Graph $T \rightarrow$ TreeG T
Graph2TreeG $T 0 \mathrm{~g}:=m k _T r e e G($ label $g) \mathbb{d}$
Graph2TreeG $T(n+1)\left(m k _G r a p h t\right):=$ mk_TreeG t (imap (Graph2TreeG n) I)
$\equiv_{R, n}: \forall n g_{1} g_{2}, g_{1} \equiv_{R, n} g_{2} \Leftrightarrow$
TPerm $_{R}$ (Graph2TreeG $n g_{1}$) (Graph2TreeG $n g_{2}$)
GTPerm: $\forall g_{1} g_{2},\left(\right.$ GTPerm $\left._{R} g_{1} g_{2} \Leftrightarrow \forall n, g_{1} \equiv_{R, n} g_{2}\right)$
The theorem

$$
\forall g_{1} g_{2}, \text { GPerm }_{R} g_{1} g_{2} \Leftrightarrow \text { GTPerm }_{R} g_{1} g_{2}
$$

Proof[Direction \Rightarrow] easy (induction on n)[Direction \Leftarrow] proved using the lemma:
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)
The theorem
$\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
The auxiliary lemma $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)$ (sons g_{2})

Proof of the lemma

Main problem: problem of continuity. The unfolding gives:
$\forall g_{1} g_{2},\left(\forall n, g_{1} \equiv_{R, n} g_{2}\right) \Rightarrow$ ilist_perm $\cap_{\cap_{n} E_{R, n}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right)$
\Rightarrow we have to "fix" a permutation $\forall n$.

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)
The theorem

$$
\forall g_{1} g_{2}, \text { GPerm }_{R} g_{1} g_{2} \Leftrightarrow \text { GTPerm }_{R} g_{1} g_{2}
$$

The auxiliary lemma $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)
The theorem
$\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
The auxiliary lemma $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

\Rightarrow use of infinite pigeonhole principle
Need to manipulate permutations \Rightarrow certificates:
cert_type 0 := unit
cert_type $(n+1):=($ Fin $(n+1) \times \operatorname{Fin}(n+1)) \times$ cert_type n

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
 $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma
$\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)$ (sons g_{2})

Proof of the lemma

And we "include" them in ilist_perm:
$\forall I_{1} I_{2} H_{\text {lgti }}$ C, ilist_perm_cert $I_{1} I_{1} I_{2} H_{\text {lgti }} C \Leftrightarrow$

$$
\left(\operatorname{lgti} l_{1}=0\right.
$$

or

$$
\exists \exists i_{1} i_{2} c^{\prime}, R\left(\text { fcti } i_{1} i_{1}\right)\left(\text { fcti } i_{2} i_{2}\right) \wedge " c=\left(\left(i_{1}, i_{2}\right), c^{\prime}\right) " \wedge
$$

ilist_perm_cert ${ }_{R}\left(\right.$ removeElement $\left.l_{1} i_{1}\right)$
(removeElement $\left.I_{2} i_{2}\right) H_{l \text { lgtic }}^{\prime} c^{\prime}$
(equivalent to ilist_perm) / notion of continuity

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
 $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$
 The auxiliary lemma $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)$ (sons g_{2})

Proof of the lemma

We prove:

$\forall n \exists c$: cert_type (lgti (sons $\left.g_{1}\right)$),
ilist_perm_cert $\equiv_{R, n}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l \text { lti }} C\left(H_{1}\right)$
Axiom of functional choice $\Rightarrow \phi$:
$\forall n$, ilist_perm_cert $\overline{E R, n}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{\text {lgti }}(\phi n)\left(H_{2}\right)$
Infinite pigeonhole principle \Rightarrow the "good" permutation c_{0} such that: $\forall n \exists n^{\prime}, n^{\prime} \geq n \wedge \phi n^{\prime}=c_{0}\left(H_{3}\right)$.

A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
 $\forall g_{1} g_{2}$, GPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GTPerm $_{R} g_{1} g_{2}$

The auxiliary lemma $\forall g_{1} g_{2}$, GTPerm $_{R} g_{1} g_{2} \Rightarrow$ ilist_perm GTPerm $_{R}$ (sons g_{1}) (sons g_{2})

Proof of the lemma

Using ilist_perm equivalent to ilist_perm_cert, goal becomes: ilist_perm_cert GTPerm $_{R}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{\text {lgti }} c_{0}$ Continuity: $\forall n$, ilist_perm_cert $E_{E_{, n}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l \text { lgti }} C_{0}$ Using H_{2} and H_{3} : $\forall n \exists n^{\prime}, n^{\prime} \geq n \wedge$ ilist_perm_cert ${\overline{\bar{F}_{R, n^{\prime}}}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l \text { lgti }} c_{0}$ $\equiv_{R, n^{\prime}} \subset \equiv_{R, n} \Rightarrow \forall n$, ilist_perm_cert $\bar{\equiv}_{\bar{R}_{, n}}\left(\right.$ sons $\left.g_{1}\right)\left(\right.$ sons $\left.g_{2}\right) H_{l \text { lgti }} C_{0}$

The Final Relation Over Graph

The idea

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_{1} \subset g_{2} \wedge g_{2} \subset g_{1}$
- Only for a "general" view:

The Final Relation Over Graph

Definitions

Inclusion

General definition (inductive):
$\forall g_{\text {in }} g_{\text {out }}$, Gin $_{R_{G}}^{*} g_{\text {in }} g_{\text {out }} \Leftrightarrow\left\{\begin{array}{l}R_{G} g_{\text {in }} g_{\text {out }} \\ \left.\exists i, G i n G_{R_{G}}^{*} g_{\text {in }}\left(\text { fcti (sons } g_{\text {out }}\right) \text { or }\right)\end{array}\right.$
Instantiation: $\operatorname{Gin} \mathrm{FP}_{R}:=\operatorname{Gin}_{G_{G P e r m}^{R}}^{*}$

The final relation (coinductive)

$\forall g_{1} g_{2}$, GeqPerm $_{R} g_{1} g_{2} \Leftrightarrow$ GinGP $_{R} g_{1} g_{2} \wedge$ GinGP $_{R} g_{2} g_{1}$ Preserves equivalence

Related Work

Guardedness issues

- Bertot and Komendantskaya: same approach with streams
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: general solution using category theory
- Danielsson: experimental solution to the problem in Agda (add constructors for each problematic function)
- Nakata and Uustalu: Mendler-style definition

Graph representation

- Erwig: inductive directed graph representation. Each node is added with its successors and predecessors.

Permutations

- Contejean: treats the same problem for lists

Conclusions and Perspectives

- Done so far:
- Complete solution to overcome the guardedness condition in the case of lists
- Permutations captured for ilist
- Quite liberal equivalence relation on Graph
- Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)
- Current work:
- implementation of a small certified model transformation: finite automata minimization (done by a student)
- use of ilist (and ilistMult) in infinite triangles
- Future work : equivalence with work by Contejean
- Perspectives:
- More general solution for any inductive type
- Deepening of coinductive representation of metamodels

Conclusions and Perspectives

- Done so far:
- Complete solution to overcome the guardedness condition in the case of lists
- Permutations captured for ilist
- Quite liberal equivalence relation on Graph
- Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)
- Current work:
- implementation of a small certified model transformation: finite automata minimization (done by a student)
- use of ilist (and ilistMult) in infinite triangles
- Future work : equivalence with work by Contejean
- Perspectives:
- More general solution for any inductive type
- Deepening of coinductive representation of metamodels

Thanks for your attention. Questions ?

