Coinductive Graph Representation

Celia Picard

IRIT - UPS Team : ACADIE Thesis advisor : Ralph Matthes

12/05/2011

Conclusions

- 2 A More Liberal Bisimulation Relation on Graph
- 3 Related Work and Conclusions

A first representation

Context: certified model transformations (Coq)

Aim: representing metamodels as graphs and graphs using coinductive types (to directly represent navigability in loops)

First attempt: constructor (coinductive):

 $mk_G: nat \rightarrow (\textit{list Graph}) \rightarrow \textit{Graph}$

Examples:

Conclusions

The Problem Guard condition

An example

We would like to define the function (with *f* of type $nat \rightarrow nat$):

 $applyF2G f (mk_G n I) = mk_G (f n) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Why is it a problem?

The definition above actually is semantically correct!

Conclusions

The Problem Guard condition

An example

We would like to define the function (with *f* of type $nat \rightarrow nat$):

applyF2G f $(mk_G n I) = mk_G (f n) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Why is it a problem?

The definition above actually is semantically correct!

Conclusions

The Problem Guard condition

An example

We would like to define the function (with *f* of type $nat \rightarrow nat$):

applyF2G f $(mk_G n I) = mk_G (f n) (map (applyF2G f) I)$

but... forbidden !

Explanation: Coq's guard condition

Objective: ensure that we can get **more information** on the structure in a **finite amount of time** (**productivity** rule). Restrictive solution offered by Coq: a **corecursive call** must always be a **constructor argument**.

Why is it a problem?

The definition above actually is semantically correct!

GeqPerm 0000000000000 Conclusions

The Solution: *ilist*

Using **functions** instead of inductive types to represent lists Example for the list [10; 22; 5]

First problem : represent a set of *n* elements

Conclusions

The Solution: *ilist* Fin - a type family for finite indexed sets

Problem: represent a set of *n* elements for *n* indeterminate

Solution: we represent a family of sets parameterized by the number of their elements.

We use a common solution (Altenkirch, McBride & McKinna): *Fin* of type $nat \rightarrow Set$ with 2 constructors:

first	(<i>k</i> : <i>nat</i>) :	<i>Fin</i> $(k + 1)$
SUCC	(<i>k</i> : <i>nat</i>) :	Fin $k \rightarrow$ Fin $(k + 1)$

Lemmas :

- $\forall n, \text{ card } \{i \mid i : Fin n\} = n \text{ (not formalizable in Coq)}$
- $\forall n m, n = m \Leftrightarrow Fin n = Fin m$

GeqPerm oooooooooooo Conclusions

The Solution: *ilist*

ilist implementation

Implementation

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The ilist : ilist $(T : Set) = \Sigma(n : nat)$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on *ilist*

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel \ R \ l_1 \ l_2 \Leftrightarrow$ $\forall h : lgti \ l_1 = lgti \ l_2 \to (\forall i : Fin (lgti \ l_1), R (fcti \ l_1 \ i) (fcti \ l_2 \ i'_h))$ where *lgti* and *fcti* are projections on *ilist*, R is a relation on T and *i'_h* is *i*, converted from type *Fin* (*lgti* \ l_1) to type *Fin* (*lgti* \ l_2)

Tools

Replacement for map: *imap* $f I = \langle (lgti I), (f \circ (fcti I)) \rangle$ Universal quantification: *iall* T P I: *Prop* = $\forall i, P$ (*fcti I i*) Conclusions

The Solution: *ilist*

ilist implementation

Implementation

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The ilist : ilist $(T : Set) = \Sigma(n : nat)$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on *ilist*

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel \ R \ l_1 \ l_2 \Leftrightarrow$ $\forall h : lgti \ l_1 = lgti \ l_2 \to (\forall i : Fin (lgti \ l_1), R (fcti \ l_1 \ i) (fcti \ l_2 \ i'_h))$ where *lgti* and *fcti* are projections on *ilist*, R is a relation on T and *i'_h* is *i*, converted from type *Fin* (*lgti* \ l_1) to type *Fin* (*lgti* \ l_2)

Tools

Conclusions

The Solution: *ilist*

ilist implementation

Implementation

The function : *ilistn* (T : Set) (n : nat) = Fin $n \rightarrow T$

The ilist : ilist $(T : Set) = \Sigma(n : nat)$.ilistn T n

Lemma : There is a bijection between *ilist* and *list*.

An equivalence on *ilist*

 $\forall l_1 \ l_2 : ilist \ T, ilist_rel \ R \ l_1 \ l_2 \Leftrightarrow$ $\forall h : lgti \ l_1 = lgti \ l_2 \to (\forall i : Fin (lgti \ l_1), R (fcti \ l_1 \ i) (fcti \ l_2 \ i'_h))$ where *lgti* and *fcti* are projections on *ilist*, R is a relation on T and *i'_h* is *i*, converted from type *Fin* (*lgti* \ l_1) to type *Fin* (*lgti* \ l_2)

Tools

Replacement for map: *imap* $f I = \langle (Igti I), (f \circ (fcti I)) \rangle$ Universal quantification: *iall* T P I: *Prop* = $\forall i, P (fcti I i)$

Conclusions

New Graph Representation Definition of Graph

Graph and applyF2G (coinductive)

Graph : mk_G : $nat \rightarrow (ilist Graph) \rightarrow Graph$ applyF2G : applyF2G f ($mk_Graph n I$) = $mk_G(f n)$ (imap (applyF2G f) I)

Equivalence on Graph

Geq bisimulation relation on *Graph* $\forall g_1 \ g_2 : Graph, \ Geq \ g_1 \ g_2 \Leftrightarrow$ *label* $g_1 = label \ g_2 \land ilist_rel \ Geq \ (sons \ g_1) \ (sons \ g_2)$ where*label*and*sons*are the projections on*Graph*

Universal quantification on Graph

 $\forall P, \forall g, G_all P g \Leftrightarrow P g \land iall (G_all P) (sons g)$

Conclusions

New Graph Representation

Notion of finiteness

List membership of an element of *Graph*: *P_* finite (lg : list Graph) (g : Graph) := $\exists y, y \in lg \land Geq g y$ Finiteness : $\forall g, G_{finite} g \Leftrightarrow \exists lg, G_{all} (P_{finite} lg) g$

Redefinition of the examples from the beginning

Finite_Graph := mk_Graph 0 [[mk_Graph 1 [[Finite_Graph]]]]

 $\sum_{n \in \mathbb{N}} Infinite_Graph_n := mk_Graph n [Infinite_Graph_{n+1}]$

Proofs of finiteness

2

G_ finite Finite_Graph: rather easy proof $\forall n, \neg G_$ finite Infinite_Graph_n: we use unbounded labels labels and #sons bounded \Rightarrow proofs of infiniteness much harder

Conclusions

A Representation of a Wider Class of Graphs

We would like to represent graphs like this one:

Conclusions

A Representation of a Wider Class of Graphs

Solution: fictitious nodes.

AllGraph using Graph: AllGraph T := Graph (option T)

Conclusions

Multiplicity Representation

Presentation

Final goal: represent big metamodels and perform transformations on them Partial goal: represent multiplicities Solution: extend *ilist* to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition: $\forall (inf : nat) (sup : option nat) (i : nat),$ $[sup = Some s] i \ge inf \land i \le s$ $[sup = None] i \ge inf$

ilistMult

ilistnMult T inf sup $n := \{i : ilistn T n | PropMult inf sup n\}$ ilistMult T inf sup $:= \Sigma(n : nat).ilistnMult T inf sup n$

Conclusions

Need for a more Liberal Relation on Graph

Solution

- Define a new equivalence relation on *ilist* for permutations
- Define a new equivalence relation on *Graph* using the previous equivalence on *ilist* and taking into account rotations

GeqPerm

Conclusions

Capturing Permutations on *ilist* Permutations on *ilist* with decidability

The idea

 $\forall t, card \{i \mid R (fcti \ l_1 \ i) \ t\} = card \{i \mid R (fcti \ l_2 \ i) \ t\}$

But not possible in Coq because there is no card operation

Implementation: counting elements

 $\forall l_1 l_2$, *ilist_perm_occ*_{R_d} $l_1 l_2 \Leftrightarrow \forall t$, *nb_occ*_{R_d} $t l_1 = nb_occ_{R_d} t l_2$ where (*nb_occ* t l) gives the number of occurences of t in l.

The problem

ilist_perm_occ needs decidability. Cannot be assumed for *Geq*.

Conclusions

Capturing Permutations on *ilist* Inductive definition of permutations on *ilist*

 $\forall l_1 \ l_2, \ ilist_perm_R \ l_1 \ l_2$ $\Rightarrow \begin{cases} lgti \ l_1 = lgti \ l_2 = 0 & \text{or} \\ \exists \ i_1 \ i_2, R \ (fcti \ l_1 \ i_1) \ (fcti \ l_2 \ i_2) \land \\ ilist_perm_R \ (removeElement \ l_1 \ i_1) \ (removeElement \ l_2 \ i_2) \end{cases}$ $\Rightarrow \begin{cases} lgti \ l_1 = lgti \ l_2 \land (\forall i_1, \exists i_2, R \ (fcti \ l_1 \ i_1) \ (fcti \ l_2 \ i_2) \land \\ \land \ ilist_perm_R \ (removeElement \ l_1 \ i_1) \ (removeElement \ l_2 \ i_2) \end{cases}$

where *removeElement I i* removes the *i*th element of *I*.

The proof of equivalence is not straightforward since one definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to prove on one than on the other and vice versa.

GeqPerm

Conclusions

A Relation On Graph Using ilist_perm An unsuccessful attempt

Definition of *GPerm* (coinductive)

 $\forall g_1 g_2, GPerm_R g_1 g_2 \Leftrightarrow R (label g_1) (label g_2) \land ilist_perm_{GPerm_R} (sons g_1) (sons g_2)$

The problem: proof that GPerm preserves reflexivity

Lemma: $\forall R, R \text{ reflexive} \Rightarrow \forall g, GPerm_R g g$ Proof (by coinduction): We must prove that $R (label g) (label g) \land \underbrace{list_perm_{GPerm_R} (sons g) (sons g)}_{\text{ok}}$ has to be inductive

GeqPerm

Conclusions

A Relation On *Graph* Using *ilist_perm* An impredicative definition

The impredicative definition: implementation of $GPerm_R g_1 g_2$

$$\exists \mathcal{R}, \ \left(\forall \ g_1' \ g_2', \ \mathcal{R} \ g_1' \ g_2' \Rightarrow R \ (label \ g_1') \ (label \ g_2') \ \land \right.$$

ilist_perm $_{\mathcal{R}}$ (sons g_1') (sons g_2')) $\land \ \mathcal{R} \ g_1 \ g_2$

where variable \mathcal{R} ranges over relations on Graph T

Tools and definitions

 $\begin{array}{ll} \mbox{Coinduction principle:} & (\forall \ g_1 \ g_2, \ \mathcal{R} \ g_1 \ g_2 \Rightarrow \\ & R \ (label \ g_1) \ (label \ g_2) \land ilist_perm_{\mathcal{R}} \ (sons \ g_1) \ (sons \ g_2)) \Rightarrow \\ & \forall \ g_1 \ g_2, \ \mathcal{R} \ g_1 \ g_2 \Rightarrow GPerm_R \ g_1 \ g_2 \\ & \mbox{Unfolding principle:} \ \forall \ g_1 \ g_2, \ GPerm_R \ g_1 \ g_2 \Rightarrow \\ & R \ (label \ g_1) \ (label \ g_2) \land ilist_perm_{GPerm_R} \ (sons \ g_1) \ (sons \ g_2) \\ & \mbox{Constructor:} \ \forall \ g_1 \ g_2, \ R \ (label \ g_1) \ (label \ g_2) \land \\ & ilist_perm_{GPerm_R} \ (sons \ g_1) \ (sons \ g_2) \\ & \Rightarrow GPerm_R \ g_1 \ g_2 \end{array}$

GeqPerm

Conclusions

A Relation On *Graph* Using *ilist_perm* Mendler-style definition

Definition (coinductive)

 $\forall g_1 g_2, GPermMendler_R g_1 g_2 \Leftrightarrow \forall X, X \subset GPermMendler_R \land R (label g_1) (label g_2) \land ilist_perm_X (sons g_1) (sons g_2)$

Properties

- Equivalent to GPerm
- Preserves equivalence

GeqPerm

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a certain depth.

 \Rightarrow no more mixing of inductive and coinductive types

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Definitions

TreeG (inductive): $mk_TreeG : T \rightarrow ilist (TreeG T) \rightarrow TreeG T$

TPerm (inductive): $\forall t_1 t_2$, *TPerm*_R $t_1 t_2 \Leftrightarrow$ *R* (*labelT* t_1) (*labelT* t_2) \land *ilist_perm*_{*TPerm*_R} (*sonsT* t_1) (*sonsT* t_2)

Graph2TreeG: Graph2TreeG : \forall T, nat \rightarrow Graph T \rightarrow TreeG T Graph2TreeG T 0 g := mk_TreeG (label g) [] Graph2TreeG T (n + 1) (mk_Graph t I) := mk_TreeG t (imap (Graph2TreeG n) I)

 $=_{R,n} : \forall n g_1 g_2, g_1 =_{R,n} g_2 \Leftrightarrow$ TPerm_R (Graph2TreeG n g₁) (Graph2TreeG n g₂)

GTPerm: $\forall g_1 g_2, (GTPerm_R g_1 g_2 \Leftrightarrow \forall n, g_1 \equiv_{R,n} g_2)$

GeqPerm

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem(1/2)

The theorem

 $\forall g_1 g_2, GPerm_R g_1 g_2 \Leftrightarrow GTPerm_R g_1 g_2$

Proof

[Direction \Rightarrow] easy (induction on n)

[Direction \Leftarrow] proved using the lemma:

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

Main problem: problem of continuity. The unfolding gives: $\forall g_1 \ g_2, (\forall n, g_1 \equiv_{R,n} g_2) \Rightarrow \textit{ilist_perm}_{\cap_n \equiv_{R,n}} (sons \ g_1) (sons \ g_2)$ \Rightarrow we have to "fix" a permutation $\forall n$.

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall g_1 g_2, GPerm_R g_1 g_2 \Leftrightarrow GTPerm_R g_1 g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

⇒ use of infinite pigeonhole principle Need to manipulate permutations ⇒ certificates: $cert_type 0 := unit$ $cert_type (n+1) := (Fin (n+1) \times Fin (n+1)) \times cert_type n$

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

And we "include" them in *ilist_perm*: $\forall l_1 l_2 H_{lgti} c, ilist_perm_cert_R l_1 l_2 H_{lgti} c \Leftrightarrow$ $\begin{cases} lgti l_1 = 0 & \text{or} \\ \exists i_1 i_2 c', R (fcti l_1 i_1) (fcti l_2 i_2) \land "c = ((i_1, i_2), c')" \land \\ ilist_perm_cert_R (removeElement l_1 i_1) & (removeElement l_2 i_2) H'_{lgti} c' \\ (equivalent to$ *ilist_perm* $) / notion of continuity \end{cases}$

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

We prove: $\forall n \exists c : cert_type (lgti (sons g_1)),$ $ilist_perm_cert_{\equiv_{R,n}} (sons g_1) (sons g_2) H_{lgti} c$ (H₁) Axiom of functional choice $\Rightarrow \phi$: $\forall n, ilist_perm_cert_{\equiv_{R,n}} (sons g_1) (sons g_2) H_{lgti} (\phi n) (H_2)$ Infinite pigeonhole principle \Rightarrow the "good" permutation c_0 such that: $\forall n \exists n', n' \ge n \land \phi n' = c_0 (H_3).$

Conclusions

A Relation On *Graph* Using *ilist_perm* An equivalent approach based on observation - Main theorem (2/2)

The theorem

 $\forall \ g_1 \ g_2, GPerm_R \ g_1 \ g_2 \Leftrightarrow GTPerm_R \ g_1 \ g_2$

The auxiliary lemma

 $\forall g_1 \ g_2, GTPerm_R \ g_1 \ g_2 \Rightarrow \textit{ilist_perm}_{GTPerm_R} (sons \ g_1) (sons \ g_2)$

Proof of the lemma

Using *ilist_perm* equivalent to *ilist_perm_cert*, goal becomes: *ilist_perm_cert*_{GTPerm_R} (sons g₁) (sons g₂) H_{lgti} c₀ Continuity: $\forall n$, *ilist_perm_cert*_{$\equiv R,n}</sub> (sons g₁) (sons g₂) H_{lgti} c₀$ Using H₂ and H₃: $<math>\forall n \exists n', n' \geq n \land ilist_perm_cert_{\equiv_{R,n'}}$ (sons g₁) (sons g₂) H_{lgti} c₀ $\equiv_{R,n'} \subset \equiv_{R,n} \Rightarrow \forall n$, *ilist_perm_cert*_{$\equiv R,n'}$ </sub> (sons g₁) (sons g₂) H_{lgti} c₀</sub>

Conclusions

The Final Relation Over Graph

- Change in the "point of view" for the observation of the graph
- Single-rooted graph \Rightarrow path from the root to all nodes
- Change in the root \Rightarrow both roots in the same cycle \Rightarrow $g_1 \subset g_2 \land g_2 \subset g_1$
- Only for a "general" view:

GeqPerm

Conclusions

The Final Relation Over Graph Definitions

Inclusion

General definition (inductive): $\forall g_{in} \ g_{out}, GinG^*_{R_G} \ g_{in} \ g_{out} \Leftrightarrow \begin{cases} R_G \ g_{in} \ g_{out} & or \\ \exists i, GinG^*_{R_G} \ g_{in} \ (fcti \ (sons \ g_{out}) \ i) \end{cases}$

Instantiation: $GinGP_R := GinG^*_{GPerm_R}$

The final relation (coinductive)

 $\forall g_1 g_2, GeqPerm_R g_1 g_2 \Leftrightarrow GinGP_R g_1 g_2 \land GinGP_R g_2 g_1$ Preserves equivalence

Related Work

Guardedness issues

- Bertot and Komendantskaya: same approach with streams
- Dams: defines everything coinductively and restricts the finite parts with properties of finiteness
- Niqui: general solution using category theory
- Danielsson: experimental solution to the problem in Agda (add constructors for each problematic function)
- Nakata and Uustalu: Mendler-style definition

Graph representation

• Erwig: inductive directed graph representation. Each node is added with its successors and predecessors.

Permutations

Contejean: treats the same problem for lists

Conclusions

Conclusions and Perspectives

- Done so far:
 - Complete solution to overcome the guardedness condition in the case of lists
 - Permutations captured for ilist
 - Quite liberal equivalence relation on Graph
 - Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)

• Current work:

- implementation of a small certified model transformation: finite automata minimization (done by a student)
- use of *ilist* (and *ilistMult*) in infinite triangles
- Future work : equivalence with work by Contejean
- Perspectives:
 - More general solution for any inductive type
 - Deepening of coinductive representation of metamodels

Thanks for your attention. Questions ?

Conclusions

Conclusions and Perspectives

- Done so far:
 - Complete solution to overcome the guardedness condition in the case of lists
 - Permutations captured for ilist
 - Quite liberal equivalence relation on Graph
 - Completely formalised in Coq (available at: www.irit.fr/~Celia.Picard/Coq/Permutations/)

• Current work:

- implementation of a small certified model transformation: finite automata minimization (done by a student)
- use of *ilist* (and *ilistMult*) in infinite triangles
- Future work : equivalence with work by Contejean
- Perspectives:
 - More general solution for any inductive type
 - Deepening of coinductive representation of metamodels

Thanks for your attention. Questions ?