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The Problem
A first representation

Context: certified model transformations (Coq)
Aim: representing metamodels as graphs and graphs using
coinductive types (to directly represent navigability in loops)
First attempt: constructor (coinductive):
mk_G : nat → (list Graph)→ Graph
Examples:

Finite graph:
Finite_Graph =

mk_G 0 [mk_G 1 [Finite_Graph]]

0

1

Infinite graph:
Infinite_Graphn =

mk_G n [Infinite_Graphn+1]

0 1 2 . . .
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The Problem
Guard condition

An example
We would like to define the function (with f of type nat → nat):

applyF2G f (mk_G n l) = mk_G (f n) (map (applyF2G f ) l)

but... forbidden !

Explanation: Coq’s guard condition

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

Why is it a problem?
The definition above actually is semantically correct!
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The Solution: ilist
The idea

Using functions instead of inductive types to represent lists

Example for the list [10 ; 22 ; 5]

p1

p2
p3

10

22

5

nat

First problem : represent a set of n elements
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The Solution: ilist
Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate

Solution: we represent a family of sets parameterized by the
number of their elements.
We use a common solution (Altenkirch, McBride & McKinna):
Fin of type nat → Set with 2 constructors:

first (k : nat) : Fin (k + 1)
succ (k : nat) : Fin k → Fin (k + 1)

Lemmas :
∀n, card {i | i : Fin n} = n (not formalizable in Coq)
∀n m, n = m⇔ Fin n = Fin m
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The Solution: ilist
ilist implementation

Implementation

The function : ilistn (T : Set) (n : nat) = Fin n→ T
The ilist : ilist (T : Set) = Σ(n : nat).ilistn T n
Lemma : There is a bijection between ilist and list .

An equivalence on ilist
∀l1 l2 : ilist T , ilist_rel R l1 l2 ⇔
∀h : lgti l1 = lgti l2 → (∀i : Fin (lgti l1),R (fcti l1 i) (fcti l2 i ′h))
where lgti and fcti are projections on ilist , R is a relation on T
and i ′h is i , converted from type Fin (lgti l1) to type Fin (lgti l2)

Tools
Replacement for map: imap f l = 〈(lgti l), (f ◦ (fcti l))〉
Universal quantification: iall T P l : Prop = ∀i ,P (fcti l i)
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New Graph Representation
Definition of Graph

Graph and applyF2G (coinductive)

Graph : mk_G : nat → (ilist Graph)→ Graph
applyF2G :
applyF2G f (mk_Graph n l) = mk_G (f n) (imap (applyF2G f ) l)

Equivalence on Graph
Geq bisimulation relation on Graph
∀g1 g2 : Graph, Geq g1 g2 ⇔
label g1 = label g2 ∧ ilist_rel Geq (sons g1) (sons g2)
where label and sons are the projections on Graph

Universal quantification on Graph

∀P, ∀g, G_all P g ⇔ P g ∧ iall (G_all P) (sons g)
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New Graph Representation
Finiteness

Notion of finiteness
List membership of an element of Graph:
P_ finite (lg : list Graph) (g : Graph) := ∃y , y ∈ lg ∧ Geq g y
Finiteness : ∀g, G_ finite g ⇔ ∃lg, G_all (P_ finite lg) g

Redefinition of the examples from the beginning

0 1
Finite_Graph := mk_Graph 0 Jmk_Graph 1 JFinite_GraphKK

0 1 2 . . . Infinite_Graphn := mk_Graph n JInfinite_Graphn+1K

Proofs of finiteness
G_ finite Finite_Graph: rather easy proof
∀n, ¬ G_ finite Infinite_Graphn: we use unbounded labels
labels and #sons bounded⇒ proofs of infiniteness much harder
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A Representation of a Wider Class of Graphs

We would like to represent graphs like this one:

0 1

2

3
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A Representation of a Wider Class of Graphs

Solution: fictitious nodes.

0 1

2

3

AllGraph using Graph: AllGraph T := Graph (option T )
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Multiplicity Representation

Presentation
Final goal: represent big metamodels and perform
transformations on them
Partial goal: represent multiplicities
Solution: extend ilist to include bounds.

PropMult
Indicates whether a natural number fits a multiplicity condition:
∀(inf : nat) (sup : option nat) (i : nat),
[sup = Some s] i ≥ inf ∧ i ≤ s [sup = None] i ≥ inf

ilistMult
ilistnMult T inf sup n := {i : ilistn T n | PropMult inf sup n}
ilistMult T inf sup := Σ(n : nat).ilistnMult T inf sup n
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Need for a more Liberal Relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

0

1 2
⇔

0

2 1

0

1
⇔

1

0

Solution
Define a new equivalence relation on ilist for permutations
Define a new equivalence relation on Graph using the
previous equivalence on ilist and taking into account
rotations
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Capturing Permutations on ilist
Permutations on ilist with decidability

The idea

∀t , card {i | R (fcti l1 i) t} = card {i | R (fcti l2 i) t}

But not possible in Coq because there is no card operation

Implementation: counting elements
∀ l1 l2, ilist_perm_occRd

l1 l2 ⇔ ∀t ,nb_occRd t l1 = nb_occRd t l2
where (nb_occ t l) gives the number of occurences of t in l .

The problem
ilist_perm_occ needs decidability. Cannot be assumed for Geq.
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Capturing Permutations on ilist
Inductive definition of permutations on ilist

∀ l1 l2, ilist_permR l1 l2

⇔


lgti l1 = lgti l2 = 0 or
∃ i1 i2,R (fcti l1 i1) (fcti l2 i2) ∧
ilist_permR (removeElement l1 i1) (removeElement l2 i2)

⇔ lgti l1 = lgti l2 ∧
(
∀i1,∃i2,R (fcti l1 i1) (fcti l2 i2)

∧ ilist_permR (removeElement l1 i1) (removeElement l2 i2)
)

where removeElement l i removes the i th element of l .

The proof of equivalence is not straightforward since one
definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to
prove on one than on the other and vice versa.
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A Relation On Graph Using ilist_perm
An unsuccessful attempt

Definition of GPerm (coinductive)
∀ g1 g2, GPermR g1 g2 ⇔
R (label g1) (label g2) ∧ ilist_permGPermR

(sons g1) (sons g2)

The problem: proof that GPerm preserves reflexivity
Lemma: ∀ R, R reflexive⇒ ∀ g, GPermR g g
Proof (by coinduction): We must prove that
R (label g) (label g)︸ ︷︷ ︸

ok

∧ ilist_permGPermR
(sons g) (sons g)︸ ︷︷ ︸

has to be inductive
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A Relation On Graph Using ilist_perm
An impredicative definition

The impredicative definition: implementation of GPermR g1 g2

∃R,
(
∀ g′1 g′2, R g′1 g′2 ⇒ R (label g′1) (label g′2) ∧

ilist_permR (sons g′1) (sons g′2)
)
∧ R g1 g2

where variable R ranges over relations on Graph T

Tools and definitions

Coinduction principle:
(
∀ g1 g2, R g1 g2 ⇒

R (label g1) (label g2) ∧ ilist_permR (sons g1) (sons g2)
)
⇒

∀ g1 g2, R g1 g2 ⇒ GPermR g1 g2
Unfolding principle: ∀ g1 g2, GPermR g1 g2 ⇒
R (label g1) (label g2) ∧ ilist_permGPermR

(sons g1) (sons g2)
Constructor: ∀ g1 g2, R (label g1) (label g2) ∧
ilist_permGPermR

(sons g1) (sons g2)⇒ GPermR g1 g2
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A Relation On Graph Using ilist_perm
Mendler-style definition

Definition (coinductive)
∀ g1 g2, GPermMendlerR g1 g2 ⇔ ∀X ,X ⊂ GPermMendlerR ∧
R (label g1) (label g2) ∧ ilist_permX (sons g1) (sons g2)

Properties
Equivalent to GPerm
Preserves equivalence
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a
certain depth.
⇒ no more mixing of inductive and coinductive types

0

1

Observed
=⇒

until depth 5

0

1

0

1

0

1
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Definitions

TreeG (inductive): mk_TreeG : T → ilist (TreeG T )→ TreeG T

TPerm (inductive): ∀ t1 t2, TPermR t1 t2 ⇔
R (labelT t1) (labelT t2)∧ ilist_permTPermR

(sonsT t1) (sonsT t2)

Graph2TreeG:
Graph2TreeG : ∀ T ,nat → Graph T → TreeG T
Graph2TreeG T 0 g := mk_TreeG (label g) JK
Graph2TreeG T (n + 1) (mk_Graph t l) :=

mk_TreeG t (imap (Graph2TreeG n) l)

≡R,n: ∀ n g1 g2,g1 ≡R,n g2 ⇔
TPermR (Graph2TreeG n g1) (Graph2TreeG n g2)

GTPerm: ∀ g1 g2, (GTPermR g1 g2 ⇔ ∀n,g1 ≡R,n g2)
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem(1/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

Proof
[Direction⇒ ] easy (induction on n)
[Direction⇐ ] proved using the lemma:

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)

Proof of the lemma

Main problem: problem of continuity. The unfolding gives:
∀g1 g2, (∀n,g1 ≡R,n g2)⇒ ilist_perm∩n≡R,n

(sons g1) (sons g2)

⇒ we have to “fix” a permutation ∀n.
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0

1 1

2 3

0

1 1

2 3
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)

Proof of the lemma

⇒ use of infinite pigeonhole principle
Need to manipulate permutations⇒ certificates:
cert_type 0 := unit
cert_type (n + 1) := (Fin (n + 1)× Fin (n + 1))× cert_type n
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)

Proof of the lemma

And we “include” them in ilist_perm:
∀ l1 l2 Hlgti c, ilist_perm_certR l1 l2 Hlgti c ⇔

lgti l1 = 0 or
∃ i1 i2 c′,R (fcti l1 i1) (fcti l2 i2) ∧ “c = ((i1, i2), c′)” ∧
ilist_perm_certR (removeElement l1 i1)

(removeElement l2 i2) H
′

lgti c′

(equivalent to ilist_perm) / notion of continuity
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)

Proof of the lemma

We prove:
∀n∃c : cert_type (lgti (sons g1)),
ilist_perm_cert≡R,n

(sons g1) (sons g2) Hlgti c (H1)

Axiom of functional choice⇒ φ:
∀n, ilist_perm_cert≡R,n

(sons g1) (sons g2) Hlgti (φ n) (H2)
Infinite pigeonhole principle ⇒ the “good” permutation c0 such
that: ∀ n ∃ n′,n′ ≥ n ∧ φ n′ = c0 (H3).
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A Relation On Graph Using ilist_perm
An equivalent approach based on observation - Main theorem (2/2)

The theorem
∀ g1 g2,GPermR g1 g2 ⇔ GTPermR g1 g2

The auxiliary lemma

∀g1 g2,GTPermR g1 g2 ⇒ ilist_permGTPermR
(sons g1) (sons g2)

Proof of the lemma

Using ilist_perm equivalent to ilist_perm_cert , goal becomes:
ilist_perm_certGTPermR

(sons g1) (sons g2) Hlgti c0

Continuity: ∀n, ilist_perm_cert≡R,n
(sons g1) (sons g2) Hlgti c0

Using H2 and H3:
∀n ∃n′,n′ ≥ n ∧ ilist_perm_cert≡R,n′

(sons g1) (sons g2) Hlgti c0

≡R,n′⊂≡R,n ⇒∀n, ilist_perm_cert≡R,n
(sons g1)(sons g2) Hlgti c0

2
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The Final Relation Over Graph
The idea

Change in the “point of view” for the observation of the
graph
Single-rooted graph⇒ path from the root to all nodes
Change in the root⇒ both roots in the same cycle⇒
g1 ⊂ g2 ∧ g2 ⊂ g1

Only for a “general” view:

1 2 3 6' 1 3 2
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The Final Relation Over Graph
Definitions

Inclusion
General definition (inductive):

∀gin gout ,GinG∗RG
gin gout ⇔

{
RG gin gout or
∃i ,GinG∗RG

gin (fcti (sons gout ) i)

Instantiation: GinGPR := GinG∗GPermR

The final relation (coinductive)
∀ g1 g2, GeqPermR g1 g2 ⇔ GinGPR g1 g2 ∧GinGPR g2 g1

Preserves equivalence

0

1 2
⇔

0

2 1

0

1
⇔

1

0
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Related Work
Guardedness issues

Bertot and Komendantskaya: same approach with streams
Dams: defines everything coinductively and restricts the
finite parts with properties of finiteness
Niqui: general solution using category theory
Danielsson: experimental solution to the problem in Agda
(add constructors for each problematic function)
Nakata and Uustalu: Mendler-style definition

Graph representation
Erwig: inductive directed graph representation. Each node
is added with its successors and predecessors.

Permutations
Contejean: treats the same problem for lists
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Conclusions and Perspectives
Done so far:

Complete solution to overcome the guardedness condition
in the case of lists
Permutations captured for ilist
Quite liberal equivalence relation on Graph
Completely formalised in Coq (available at:
www.irit.fr/~Celia.Picard/Coq/Permutations/)

Current work:
implementation of a small certified model transformation:
finite automata minimization (done by a student)
use of ilist (and ilistMult) in infinite triangles

Future work : equivalence with work by Contejean
Perspectives:

More general solution for any inductive type
Deepening of coinductive representation of metamodels

Thanks for your attention. Questions ?
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