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The Problem

A first representation

Context: certified model transformations (Coq)

Aim: representing metamodels as graphs and graphs using
coinductive types (to directly represent navigability in loops)

First attempt: constructor (coinductive):
mk_G : nat — (list Graph) — Graph

Examples:
Finite graph: Infinite graph:

F/n/te_Graph':_ Infinite_Graph,, =
mk_G 0 [mk_G 1 [Finite_Graph]] mk_G n [Infinite_Graph,,, ;]
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We would like to define the function (with f of type nat — nat):

applyF2G f (mk_G nl) = mk_G (f n) (map (applyF2G f) I)
but... forbidden !
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The Problem

Guard condition

An example
We would like to define the function (with f of type nat — nat):

applyF2G f (mk_G nl) = mk_G (f n) (map (applyF2G f) I)
but... forbidden !

Explanation: Coqg’s guard condition

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.
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The Problem

Guard condition

An example

We would like to define the function (with f of type nat — nat):
applyF2G f (mk_G nl) = mk_G (f n) (map (applyF2G f) I)

but... forbidden !

Explanation: Coq’s guard condition

Objective: ensure that we can get more information on the
structure in a finite amount of time (productivity rule).
Restrictive solution offered by Coq: a corecursive call must
always be a constructor argument.

Why is it a problem?
The definition above actually is semantically correct!
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The Solution: ilist
The idea

Using functions instead of inductive types to represent lists
Example for the list [10 ; 22 ; 5]

ooy
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The Solution: ilist

Fin - a type family for finite indexed sets

Problem: represent a set of n elements for n indeterminate

Solution: we represent a family of sets parameterized by the
number of their elements.
We use a common solution (Altenkirch, McBride & McKinna):
Fin of type nat — Set with 2 constructors:
first (k:nat): Fin(k+1)
succ (k:nat): Fink — Fin(k+1)
Lemmas :
@ Vn, card {i | i: Fin n} = n (not formalizable in Coq)

evnm, n=m<« Finn=Finm
%y
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The function : ilistn (T : Set) (n: nat) = Finn — T
The ilist : ilist (T : Set) = X(n: nat).ilistn T n
Lemma : There is a bijection between ilist and list.
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The Solution: ilist

ilist implementation

Implementation

The function : ilistn (T : Set) (n: nat) = Finn— T
The ilist : ilist (T : Set) = X(n: nat).ilistn T n
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

Vi b - ilist T,ilist_rel Rl b <

Vh:lgtily = Igti b — (Vi : Fin (Igti I), R (fcti Iy i) (fti b if,))
where [gti and fcti are projections on ilist, R is a relation on T
and i is i, converted from type Fin (Igti I1) to type Fin (Igti I)
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The Solution: ilist

ilist implementation

Implementation

The function : ilistn (T : Set) (n: nat) = Finn— T
The ilist : ilist (T : Set) = X(n: nat).ilistn T n
Lemma : There is a bijection between ilist and list.

An equivalence on ilist

Vi b - ilist T,ilist_rel Rl b <

Vh:lgtily = Igti b — (Vi : Fin (Igti I), R (fcti Iy i) (fti b if,))
where [gti and fcti are projections on ilist, R is a relation on T
and i is i, converted from type Fin (Igti I1) to type Fin (Igti I)

Tools

Replacement for map: imap f | = ((Igti 1), (f o (fcti )))
Universal quantification: iall T P | : Prop = Vi, P (fcti | i)
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New Graph Representation
Definition of Graph

Graph and applyF2G (coinductive)

Graph : mk_G : nat — (ilist Graph) — Graph

applyF2G :

applyF2G f (mk_Graph nl) = mk_G (f n) (imap (applyF2G f) )

Equivalence on Graph

Geq bisimulation relation on Graph

V91 92 : Graph, Geq g1 9> <

label g1 = label g> A ilist_rel Geq (sons g¢) (sons g»)
where label and sons are the projections on Graph

Universal quantification on Graph
VP, Vg, G allPg< Pg A iall (G_all P) (sons g)
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New Graph Representation
Finiteness
Notion of finiteness
List membership of an element of Graph:
P _finite (Ig : list Graph) (g : Graph) :=3y, y€lg N Geq g y
Finiteness : Vg, G_ finite g < 3lg, G_all (P_ finite Ig) g

Redefinition of the examples from the beginning
£ X Finite_Graph := mk_Graph 0 [mk_Graph 1 [Finite_Graph]]

0) (1

L

m é‘ ~, Infinite_Graph,, := mk_Graph n [Infinite_Graph,, 4]
N

Proofs of finiteness
G_ finite Finite_Graph: rather easy proof

Vn, — G_ finite Infinite_Graph,: we use unbounded labels
labels and #sons bounded =- proofs of infiniteness much harder
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We would like to represent graphs like this one:

e
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Solution: fictitious nodes.

AllGraph using Graph: AllGraph T := Graph (option T)

.
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Multiplicity Representation

Presentation

Final goal: represent big metamodels and perform
transformations on them

Partial goal: represent multiplicities

Solution: extend ilist to include bounds.

PropMult

Indicates whether a natural number fits a multiplicity condition:
V(inf : nat) (sup : option nat) (i : nat),
[sup=Somes]i>infAi<s [sup = None] i > inf

ilistMult
ilistnMult T inf sup n:= {i : ilistn T n | PropMult inf sup n}
ilistMult T inf sup := ¥(n : nat).ilistnMult T inf sup n
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Need for a more Liberal Relation on Graph

The problem
These pairs of graphs are not bisimulated through Geq:

Db b (o) (e

Solution
@ Define a new equivalence relation on ilist for permutations

@ Define a new equivalence relation on Graph using the
previous equivalence on ilist and taking into account
rotations

=¥ > y-
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Capturing Permutations on ilist

Permutations on ilist with decidability

The idea
Vt,card {i | R (fcti Iy i) t} = card {i | R (fcti k i) t}

But not possible in Coq because there is no card operation

Implementation: counting elements

VI b, ilist_perm_occgr ’ h b < Vt,nb_occr, th = nb_occg, th
where (nb_occ t 1) gives the number of occurences of ¢t in /.

The problem
ilist_perm_occ needs decidability. Cannot be assumed for Gegq.
100}
|| e— :)! \ )
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Capturing Permutations on ilist

Inductive definition of permutations on ilist
V' 1y b, ilist_permg ki k
lgti ly = Igti b =0 or
<< 3y, R (fCtl l l1) (foI b Ig) A
ilist_permg (removeElement Iy iy) (removeElement I i)
/gfl h = /gtl b A (VI'1,E|I'2, R (fCtl h l1) (fCtI b 12)
A ilist_permg (removeElement Iy iy) (removeElement b i)
where removeElement | i removes the i’ element of /.

The proof of equivalence is not straightforward since one
definition can be seen as a particular case of the other.

Usefulness of having two definitions: some properties easier to
prove on one than on the other and vice versa.
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A Relation On Graph Using ilist_perm

An unsuccessful attempt

Definition of GPerm (coinductive)

V' g1 g2, GPermg g1 g2 <
R (label g1) (label g2) A ilist_permegperm, (sons g1) (sons go)

v

The problem: proof that GPerm preserves reflexivity

Lemma: V R, R reflexive =V g, GPermg g g
Proof (by coinduction): We must prove that
R (label g) (label g) A ilist_permgpe.m, (sons g) (sons g)

has to be inductive

ooy
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A Relation On Graph Using ilist_perm

An impredicative definition
The impredicative definition: implementation of GPermg g1 g-
IR, (V g 95, R 9, 9> = R (label g}) (label g;) A

ilist_permy (sons g;) (sons gé)) ARGt g0
where variable R ranges over relations on Graph T

Tools and definitions

Coinduction principle: (¥ g1 g2. R g1 g> =

R (label gq) (label g») A ilist_permy (sons gy) (sons gz)) =
V9192, R g1 92 = GPermg g1 92

Unfolding principle: V g1 g», GPermg g1 g» =

R (label gq) (label go) A ilist _Permepermp, (sons g1) (sons go)
Constructor: V g1 g», R (label g1) (label g») A
ilist_permgperm,, (Sons gi) (sons go) = GPermg g1 g2

12/05/2011 Celia Picard Coinductive Graph Representation
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A Relation On Graph Using ilist_perm

Mendler-style definition

Definition (coinductive)

Y 91 go, GPermMendlerg g1 g» < VX, X C GPermMendlerg A
R (label gq) (label g») A ilist_permy (sons gi) (sons go)

Properties
@ Equivalent to GPerm
@ Preserves equivalence

ooy
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - The idea

Using inductive trees to observe coinductive graphs until a
certain depth.
= no more mixing of inductive and coinductive types

0
0 NG N
Obsigved 0
until depth 5 &)
1 L N

=010 G
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Definitions

TreeG (inductive): mk_TreeG : T — ilist (TreeG T) — TreeG T

TPerm (inductive): V t; b, TPermg ti b <
R (labelT ty) (labelT t) Ailist_permypg,y,. (sonsT ty) (sonsT tp)

GraphZ2TreeG:
Graph2TreeG : ¥V T,nat — Graph T — TreeG T

Graph2TreeG T 0 g .= mk_TreeG (label g) []
Graph2TreeG T (n+1) (mk_Graph t I) :=
mk_TreeG t (imap (Graph2TreeG n) |)

=Rn' VNG 92,01 =pn %2 <
TPermpg (Graph2TreeG n g1) (Graph2TreeG n g»)

GTPerm: v g1 g2,(GTPermg g1 92 < Vn, 91 =g.n G2)
De=0T1 /@ADE
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem(1/2)

The theorem
vV 91 g2, GPermg 91 g> < GTPermpg g1 9>

Proof
[Direction = ] easy (induction on n)
[Direction < ] proved using the lemma:

V91 92, GTPermpg g1 gz = ilist_permgrpem,, (Sons gi) (sons gz)

v
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
V91 g2, GTPermg g1 g2 = ilist_permgrpesm,, (sons gi) (sons g)

Proof of the lemma

Main problem: problem of continuity. The unfolding gives:
Vo1 92,(Vn, 91 =p.n 92) = ilist_permp, _ . (sons g1) (sons g)
= we have to “fix” a permutation Vvn.
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
Vg1 92, GTPermg g1 o = ilist_permegrperm, (SONS g1) (sons go)

v

Proof of the lemma
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
V91 92, GTPermg g1 g = ilist_permgrpem, (s0ns gi) (sons gs)

Proof of the lemma

= use of infinite pigeonhole principle
Need to manipulate permutations = certificates:
cert_type 0 := unit
cert_type (n+1) :=(Fin(n+1) x Fin(n+ 1)) x cert_type n

12/05/2011 Celia Picard Coinductive Graph Representation 21/25
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
Vg1 92, GTPermg g1 o = ilist_permegrperm, (SONS g1) (sons go)

Proof of the lemma

And we “include” them in ilist_perm:

V' Iy b Higii c, ilist_perm_certg ly I Hygi ¢ <
lgtily =0 or
diy b C/, R (fCﬁ h I1) (fCﬁ b 12) A e = ((i1,i2), C/)” AN
ilist_perm_certg (removeElement Iy iy)

(removeElement Iy ip) H,

. c
gt
(equivalent to ilist_perm) / notion of continuity
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
Vg1 92, GTPermg g1 o = ilist_permegrperm, (SONS g1) (sons go)

Proof of the lemma
We prove:

Vn3c : cert_type (lgti (sons g)),

list ¢ (F)

_perm_cert__ (sons gi) (sons gz) Higii €

Axiom of functional choice = ¢:
vn, ilist_perm_cert__ (sons gy) (sons gz) Higii (¢ n) (Hz)
Infinite pigeonhole principle = the “good” permutation ¢y such
that: Vn3n,n >nA¢n =cy(Hs).
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A Relation On Graph Using ilist_perm

An equivalent approach based on observation - Main theorem (2/2)

The theorem
V 91 92, GPermg g1 9> & GTPermg gy go

The auxiliary lemma
V91 g2, GTPermg g1 g2 = ilist_permgrpesm,, (sons gi) (sons g)

Proof of the lemma

Using ilist_perm equivalent to ilist_perm_cert, goal becomes:
ilist_perm_cert grperm, (SONS g1) (s0ns g2) Higii Co

Continuity: Vn, ilist_perm_cert__ (sons g1) (sons gz) Higii Co
Using H, and Hjs:

Vn3n',n > n A ilist _perm_cert__  (sons g) (sons gz) Hygi Co

=R,w C=R,n = Vn, ilist_perm_cert__ (sons g)(sons gz) Higi Co
' O
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The Final Relation Over Graph
The idea

@ Change in the “point of view” for the observation of the
graph

@ Single-rooted graph =- path from the root to all nodes

@ Change in the root = both roots in the same cycle =
91 Cg2/NGg2 C Gy

@ Only for a “general” view:

< N
1 —{ 2 3;ﬁ1—>3 2
N N

jco}
[A))
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The Final Relation Over Graph
Definitions
Inclusion

General definition (inductive):

. in(* . RG Gin Gout or
VGin out; GiNGig Gin Gout < {Si, GinGg,, Gin (fcti (S0NS Gout) i)

Instantiation: GinGPg := GinGgpg,,.,

The final relation (coinductive)
Y g1 92, GeqgPermg g1 92 < GinGPg g1 g N\ GinGPgr g2 94
Preserves equivalence

§ 6 6o lo
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Related Work

Guardedness issues
@ Bertot and Komendantskaya: same approach with streams

@ Dams: defines everything coinductively and restricts the
finite parts with properties of finiteness

@ Niqui: general solution using category theory

@ Danielsson: experimental solution to the problem in Agda
(add constructors for each problematic function)

@ Nakata and Uustalu: Mendler-style definition

Graph representation
@ Erwig: inductive directed graph representation. Each node
is added with its successors and predecessors.
Permutations
@ Contejean: treats the same problem for lists
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Conclusions and Perspectives

@ Done so far:
e Complete solution to overcome the guardedness condition
in the case of lists
e Permutations captured for ilist
e Quite liberal equivalence relation on Graph
e Completely formalised in Coq (available at:
www.irit.fr/~Celia.Picard/Cog/Permutations/)
@ Current work:
e implementation of a small certified model transformation:
finite automata minimization (done by a student)
e use of ilist (and ilistMult) in infinite triangles

@ Future work : equivalence with work by Contejean

@ Perspectives:

e More general solution for any inductive type
e Deepening of coinductive representation of metamodels

12/05/2011 Celia Picard Coinductive Graph Representation 25/25
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Conclusions and Perspectives

@ Done so far:
e Complete solution to overcome the guardedness condition
in the case of lists
e Permutations captured for ilist
e Quite liberal equivalence relation on Graph
e Completely formalised in Coq (available at:
www.irit.fr/~Celia.Picard/Cog/Permutations/)
@ Current work:
e implementation of a small certified model transformation:
finite automata minimization (done by a student)
e use of ilist (and ilistMult) in infinite triangles
@ Future work : equivalence with work by Contejean

@ Perspectives:

e More general solution for any inductive type
e Deepening of coinductive representation of metamodels

Thanks for your attention. Questions ?
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