Monadic translation of sequent calculus for classical logic

Luís Pinto ${ }^{1}$
Univ. Minho
Braga, Portugal

Theory Seminar at Inst. of Cybernetics
Tallinn, Estonia

2 December 2010
${ }^{1}$ Joint work with José Espírito Santo, Ralph Matthes, Koji Nakazawa

Generalities on Curry-Howard correspondence (I)

Intuitionistic implication in natural deduction and simply-typed λ-calculus are a perfect match:

Generalities on Curry-Howard correspondence (I)

Intuitionistic implication in natural deduction and simply-typed λ-calculus are a perfect match:

- assumptions A type variables x;

$$
[A]
$$

- rule

$$
\frac{\vdots}{A \supset B} \text { Intro }
$$

types abstractions $\lambda x . t$;

- rule $\frac{A \supset B \quad A}{B}$ Elim types applications tu;

Generalities on Curry-Howard correspondence (I)

Intuitionistic implication in natural deduction and simply-typed λ-calculus are a perfect match:

- assumptions A type variables x;

$$
[A]
$$

- rule

$$
\frac{\vdots}{A \supset B} \text { Intro }
$$ types abstractions λ x.t;

- rule $\frac{A \supset B \quad A}{B}$ Elim types applications tu;
- removal of a maximal formula $A \supset B$, i.e. a detour

$$
\begin{gathered}
{[A]} \\
\vdots \\
\frac{\frac{B}{A \supset B} \text { Intro } \quad A}{B} \text { Elim, }
\end{gathered}
$$

is β-reduction (normalisation).

Generalities on Curry-Howard correspondence (II)

How about extensions to sequent calculus and to classical logic?
Intuitionistic sequent calculus:

- typical rules:
\rightarrow issue: many proofs are essentially the same (differ up to permutation of inferences)

Generalities on Curry-Howard correspondence (II)

How about extensions to sequent calculus and to classical logic?
Intuitionistic sequent calculus:

- typical rules:

$$
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \supset B \vdash C} \text { Left } \quad \frac{\Gamma \vdash C \Gamma, C \vdash A}{\Gamma \vdash A} C u t
$$

- issue: many proofs are essentially the same (differ up to
pormutation of infarances)

Generalities on Curry-Howard correspondence (II)

How about extensions to sequent calculus and to classical logic?
Intuitionistic sequent calculus:

- typical rules:

$$
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \supset B \vdash C} \text { Left } \quad \frac{\Gamma \vdash C \Gamma, C \vdash A}{\Gamma \vdash A} C u t
$$

- issue: many proofs are essentially the same (differ up to permutation of inferences)

Generalities on Curry-Howard correspondence (II)

How about extensions to sequent calculus and to classical logic?
Intuitionistic sequent calculus:

- typical rules:

$$
\frac{\Gamma \vdash A \quad \Gamma, B \vdash C}{\Gamma, A \supset B \vdash C} \text { Left } \quad \frac{\Gamma \vdash C \Gamma, C \vdash A}{\Gamma \vdash A} C u t
$$

- issue: many proofs are essentially the same (differ up to permutation of inferences)
- $\bar{\lambda}$-calculus of Herbelin addresses this issue: there are two forms of sequents, one, $\Gamma \mid I: A \vdash B$, has a selected formula on LHS and types lists I := []|u:: । :

$$
\frac{\Gamma \vdash u: A \quad \Gamma \mid I: B \vdash C}{\Gamma \mid u:: I: A \supset B \vdash C} \text { Left } \quad \overline{\Gamma \mid[]: A \vdash A} A x
$$

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

- one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

\checkmark one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$

- other option is multiple-conclusion sequents as in Parigot's $\lambda \mu$:
- expressions: $t, u \quad::=x|\lambda x . t| t u \mid \mu a . c \quad$ (terms)

$$
c::=a t \quad \text { (commands) }
$$

(a is called name but also co-variable/continuation variable)

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

\checkmark one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$

- other option is multiple-conclusion sequents as in Parigot's $\lambda \mu$:
- expressions: $t, u \quad::=x|\lambda x . t| t u \mid \mu a . c \quad$ (terms)

$$
c::=a t \quad \text { (commands) }
$$

(a is called name but also co-variable/continuation variable)

- sequents: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$
(Γ resp Δ consist of declarations $x: A$ resp a $: A$)

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

- one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$
- other option is multiple-conclusion sequents as in Parigot's $\lambda \mu$:
- expressions: $t, u \quad::=x|\lambda x . t| t u \mid \mu a . c \quad$ (terms)

$$
c::=a t \quad \text { (commands) }
$$

(a is called name but also co-variable/continuation variable)

- sequents: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$
(Γ resp Δ consist of declarations $x: A$ resp a $: A$)
- typing: $\frac{\Gamma \vdash t: A \mid a: A, \Delta}{a t:(\Gamma \vdash a: A, \Delta)}$ Pass $\frac{c:(\Gamma \vdash a: A, \Delta)}{\Gamma \vdash \mu a . c: A \mid \Delta} A c t$

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

- one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$
- other option is multiple-conclusion sequents as in Parigot's $\lambda \mu$:
- expressions: $t, u \quad::=x|\lambda x . t| t u \mid \mu a . c \quad$ (terms)

$$
\text { c }::=a t \quad \text { (commands) }
$$

(a is called name but also co-variable/continuation variable)

- sequents: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$
(Γ resp Δ consist of declarations $x: A$ resp a $: A$)
- typing: $\frac{\Gamma \vdash t: A \mid a: A, \Delta}{a t:(\Gamma \vdash a: A, \Delta)}$ Pass $\frac{c:(\Gamma \vdash a: A, \Delta)}{\Gamma \vdash \mu a . c: A \mid \Delta}$ Act

Classical sequent calculus:

- Unrestricts intuitionistic sequent calculus, by allowing sequents with multiple conclusions

Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

- one option is adding $\frac{\Gamma, \neg A \vdash \perp}{\Gamma \vdash A} R A A$
- other option is multiple-conclusion sequents as in Parigot's $\lambda \mu$:
- expressions: $t, u \quad::=x|\lambda x . t| t u \mid \mu a . c \quad$ (terms)

$$
\text { c }::=a t \quad \text { (commands) }
$$

(a is called name but also co-variable/continuation variable)

- sequents: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$
(Γ resp Δ consist of declarations $x: A$ resp a $: A$)
- typing: $\frac{\Gamma \vdash t: A \mid a: A, \Delta}{a t:(\Gamma \vdash a: A, \Delta)}$ Pass $\frac{c:(\Gamma \vdash a: A, \Delta)}{\Gamma \vdash \mu a . c: A \mid \Delta}$ Act

Classical sequent calculus:

- Unrestricts intuitionistic sequent calculus, by allowing sequents with multiple conclusions
- Curien-Herbelin proposed the elegant calculus $\bar{\lambda} \mu \tilde{\mu}$ (to be detailed ahead), where dualites like cbn/cbv emerge.

cps translation of λ-calculus

The cbn case:

- Terms:

$$
\begin{aligned}
\bar{x} & =x \\
\overline{\lambda x \cdot t} & =\lambda k \cdot k(\lambda x \cdot \bar{t}) \\
\overline{t u} & =\lambda k \cdot \bar{t}(\lambda f . f \bar{u} k)
\end{aligned}
$$

- Preservation of typing:

cps translation of λ-calculus

The cbn case:

- Terms:

$$
\begin{aligned}
\bar{x} & =x \\
\overline{\lambda x \cdot t} & =\lambda k \cdot k(\lambda x \cdot \bar{t}) \\
\overline{t u} & =\lambda k \cdot \bar{t}(\lambda f . f \bar{u} k)
\end{aligned}
$$

- Types: $\bar{A}=\neg \neg A^{*}$, and $X^{*}=X,(A \supset B)^{*}=\bar{A} \supset \bar{B}$

cps translation of λ-calculus

The cbn case:

- Terms:

$$
\begin{aligned}
\bar{x} & =x \\
\overline{\lambda x \cdot t} & =\lambda k \cdot k(\lambda x \cdot \bar{t}) \\
\overline{t u} & =\lambda k \cdot \bar{t}(\lambda f . f \bar{u} k)
\end{aligned}
$$

- Types: $\bar{A}=\neg \neg A^{*}$, and $X^{*}=X,(A \supset B)^{*}=\bar{A} \supset \bar{B}$
- Preservation of typing: $\quad \frac{\Gamma \vdash t: A}{\bar{\Gamma} \vdash \bar{t}: \bar{A}}$ is admissible.

cps translation of λ-calculus

The cbn case:

- Terms:

$$
\begin{aligned}
\bar{x} & =x \\
\overline{\lambda x \cdot t} & =\lambda k \cdot k(\lambda x \cdot \bar{t}) \\
\overline{t u} & =\lambda k \cdot \bar{t}(\lambda f . f \bar{u} k)
\end{aligned}
$$

- Types: $\bar{A}=\neg \neg A^{*}$, and $X^{*}=X,(A \supset B)^{*}=\bar{A} \supset \bar{B}$
- Preservation of typing: $\quad \frac{\Gamma \vdash t: A}{\bar{\Gamma} \vdash \bar{t}: \bar{A}}$ is admissible.

Hatcliff-Danvy decomposition of cps's:

Overview of what we achieve

- $\mathrm{M} \lambda \mu$ is a new monadic language
- all maps strictly preserve reduction and allow inheritance of SN

Overview of what we achieve

- $\mathrm{M} \lambda \mu$ is a new monadic language
- all maps strictly preserve reduction and allow inheritance of SN
$\bar{\lambda} \mu \tilde{\mu}$-calculus of Curien-Herbelin
Types: $\quad A, B \quad::=X \mid A \supset B$

Typing judgements:

Γ : type context for variables (x) Δ : type context for co-variables (a)

$\bar{\lambda} \mu \tilde{\mu}$-calculus of Curien-Herbelin

Types: $\quad A, B \quad::=X \mid A \supset B$

Expressions: $\quad t::=\underbrace{x \mid \lambda x . t}_{\text {values }} \mid \mu a . c$
e $::=\underbrace{a \mid u:: e}_{\text {co-values }} \mid \tilde{\mu} x . c \quad($ co - terms $)$
$c::=\langle t \mid e\rangle \quad$ (commands)
Typing judgements:
Γ : type context for variables (x)
Δ : type context for co-variables (a)

$\bar{\lambda} \mu \tilde{\mu}$-calculus of Curien-Herbelin

Types: $\quad A, B \quad::=X \mid A \supset B$

Expressions: $\quad t::=\underbrace{x \mid \lambda x . t}_{\text {values }} \mid \mu a . c$
$e \quad::=\underbrace{a \mid u:: e}_{\text {co-values }} \mid \tilde{\mu} x . c \quad$ (co-terms)
$c::=\langle t \mid e\rangle \quad$ (commands)
Typing judgements:

$$
\Gamma \vdash t: A|\Delta \quad \Gamma| e: A \vdash \Delta \quad c:(\Gamma \vdash \Delta)
$$

Γ : type context for variables (x)
Δ : type context for co-variables (a)

Typing rules of $\bar{\lambda} \mu \tilde{\mu}$

$$
\begin{array}{lc}
\overline{\Gamma, x: A \vdash x: A \mid \Delta} R-A x & \overline{\Gamma \mid a: A \vdash a: A, \Delta} L-A x \\
\frac{\Gamma, x: A \vdash t: B \mid \Delta}{\Gamma \vdash \lambda x \cdot t: A \supset B \mid \Delta} R-\supset & \frac{\Gamma \vdash u: A|\Delta \quad \Gamma| e: B \vdash \Delta}{\Gamma \mid u:: e: A \supset B \vdash \Delta} L-\supset \\
\frac{c:(\Gamma \vdash a: A, \Delta)}{\Gamma \vdash \mu a . c: A \mid \Delta} R-S e l & \frac{c:(\Gamma, x: A \vdash \Delta)}{\Gamma \mid \tilde{\mu} x \cdot c: A \vdash \Delta} L-S e l
\end{array}
$$

$$
\frac{\Gamma \vdash t: A|\Delta \quad \Gamma| e: A \vdash \Delta}{\langle t \mid e\rangle:(\Gamma \vdash \Delta)} C u t
$$

Reduction rules of $\bar{\lambda} \mu \tilde{\mu}$

$$
\begin{aligned}
& (\beta)\langle\lambda x . t \mid u:: e\rangle \rightarrow\langle u \mid \tilde{\mu} x .\langle t \mid e\rangle\rangle \\
& (\sigma) \quad\langle t \mid \tilde{\mu} x . c\rangle \rightarrow[t / x] c \\
& (\pi) \quad\langle\mu a . c \mid e\rangle \rightarrow[e / a] c \\
& \left(\eta_{\tilde{\mu}}\right) \quad \tilde{\mu} x .\langle x \mid e\rangle \quad \rightarrow \quad e \text {, if } x \notin e \\
& \left(\eta_{\mu}\right) \quad \mu a .\langle t \mid a\rangle \rightarrow t, \text { if } a \notin t
\end{aligned}
$$

Reduction rules of $\bar{\lambda} \mu \tilde{\mu}$

$$
\begin{array}{rrll}
(\beta) & \langle\lambda x . t \mid u:: e\rangle & \rightarrow & \langle u \mid \tilde{\mu} x .\langle t \mid e\rangle\rangle \\
(\sigma) & \langle t \mid \tilde{\mu} x . c\rangle & \rightarrow & {[t / x] c} \\
(\pi) & \langle\mu a . c \mid e\rangle & \rightarrow & {[e / a] c} \\
\left(\eta_{\tilde{\mu}}\right) & \tilde{\mu} x .\langle x \mid e\rangle & \rightarrow & e, \text { if } x \notin e \\
\left(\eta_{\mu}\right) & \mu a .\langle t \mid a\rangle & \rightarrow & t, \text { if } a \notin t
\end{array}
$$

The set of rules is SN (for typed terms), but not confluent due to the critical pair:

Two confluent fragments emerge:

- call-by-value $\bar{\lambda} \mu \tilde{\mu}$: in the σ-rule t must be a value.
- call-by-name $\bar{\lambda} \mu \tilde{\mu}$: in the π-rule e must be a co-value.

Monadic meta-language of Moggi

The meta-language adds to simply typed lambda-calculus:

- Types: $A, B::=\ldots \mid M A$ (monadic types)
- Expressions: $t, u::=\ldots|\eta t| \operatorname{bind}(t, x . u)$
- Typing rules:

$$
\frac{\Gamma \vdash t: A}{\Gamma \vdash \eta t: M A} \quad \frac{\Gamma \vdash t: M A \quad \Gamma, x: A \vdash u: M B}{\Gamma \vdash \operatorname{bind}(t, x \cdot u): M B}
$$

Monadic meta-language of Moggi

The meta-language adds to simply typed lambda-calculus:

- Types: $A, B::=\ldots \mid M A$ (monadic types)
- Expressions: $t, u::=\ldots|\eta t| \operatorname{bind}(t, x . u)$
- Typing rules:

$$
\frac{\Gamma \vdash t: A}{\Gamma \vdash \eta t: M A} \quad \frac{\Gamma \vdash t: M A \quad \Gamma, x: A \vdash u: M B}{\Gamma \vdash \operatorname{bind}(t, x \cdot u): M B}
$$

- Reduction rules (equations in Moggi):

$$
\begin{aligned}
& (\sigma) \quad \operatorname{bind}(\eta t, x . u) \rightarrow[t / x] u \\
& \text { (assoc) } \operatorname{bind}(\operatorname{bind}(t, x . u), y . s) \rightarrow \operatorname{bind}(t, x \cdot \operatorname{bind}(u, y . s)) \\
& \left(\eta_{\text {bind }}\right) \quad \operatorname{bind}(t, x \cdot \eta x) \rightarrow t
\end{aligned}
$$

The reduction system is confluent and SN.

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$
Types: $\quad A, B::=X|A \supset B| M A$

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$
Types: $\quad A, B::=X|A \supset B| M A$
Expressions: $t, u \quad::=x|\lambda x . t| t u|\mu a . c| \eta t \quad$ (terms)
$c::=a t \mid \operatorname{bind}(t, x . c) \quad$ (commands)

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$
Types: $\quad A, B::=X|A \supset B| M A$
Expressions: $t, u \quad::=x|\lambda x . t| t u|\mu a . c| \eta t$ (terms)
c $::=a t \mid \operatorname{bind}(t, x . c) \quad$ (commands)
Typing judgements: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$.
Δ consists of declarations a : MA (just monadic types).

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$
Types: $\quad A, B::=X|A \supset B| M A$
Expressions: $t, u \quad::=x|\lambda x . t| t u|\mu a . c| \eta t$ (terms)

$$
c::=a t \mid \operatorname{bind}(t, x . c) \quad \text { (commands) }
$$

Typing judgements: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$.
Δ consists of declarations a : MA (just monadic types).
Some typing rules:

$$
\begin{aligned}
& \frac{\Gamma \vdash t: M A \mid a: M A, \Delta}{a t:(\Gamma \vdash a: M A, \Delta)} \text { Pass } \quad \frac{c:(\Gamma \vdash a: M A, \Delta)}{\Gamma \vdash \mu a . c: M A \mid \Delta} \text { Act } \\
& \frac{\Gamma \vdash s: A \mid \Delta}{\Gamma \vdash \eta s: M A \mid \Delta} \quad \frac{\Gamma \vdash r: M A \mid \Delta \quad c:(\Gamma, x: A \vdash \Delta)}{\operatorname{bind}(r, x . c):(\Gamma \vdash \Delta)}
\end{aligned}
$$

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$
Types: $\quad A, B::=X|A \supset B| M A$
Expressions: $t, u \quad::=x|\lambda x . t| t u|\mu a . c| \eta t$ (terms)

$$
c::=a t \mid \operatorname{bind}(t, x . c) \quad \text { (commands) }
$$

Typing judgements: $\Gamma \vdash t: A \mid \Delta$ and $c:(\Gamma \vdash \Delta)$.
Δ consists of declarations a : MA (just monadic types).
Some typing rules:

$$
\begin{array}{ll}
\frac{\Gamma \vdash t: M A \mid a: M A, \Delta}{a t:(\Gamma \vdash a: M A, \Delta)} & \text { Pass } \\
\frac{\Gamma \vdash s: A \mid \Delta}{\Gamma \vdash \eta s: M A \mid \Delta} & \frac{\Gamma \vdash r: M A \mid \Delta \quad c:(\Gamma, x: A \vdash \Delta)}{\Gamma \vdash \mu a \cdot c: M A \mid \Delta} A c t \\
\operatorname{bind}(r, x . c):(\Gamma \vdash \Delta)
\end{array}
$$

Contexts:
$C::=a[]|\operatorname{bind}([], x . c)| \operatorname{bind}(\eta[], x . c)$
$C[t]$ means fill the hole of C with t.
$[C / a] c$ means substitution in c of $a u$ by $C[u]$.

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$

Reduction rules:

$$
\begin{array}{r}
(\beta) \\
(\sigma) \\
\left(\pi_{\text {bind }}\right) \\
\left(\pi_{\text {covar }}\right) \\
\left(\eta_{\mu}\right) \\
\left(\eta_{\text {bind }}\right)
\end{array}
$$

$(\lambda x . t) u \rightarrow[u / x] t$ $\operatorname{bind}(\eta t, x . c) \rightarrow[t / x] c$
$\operatorname{bind}\left(\mu\right.$ a.c,,$\left.x . c^{\prime}\right) \rightarrow\left[\operatorname{bind}\left([], x . c^{\prime}\right) / a\right] c$

$$
b(\mu a . c) \rightarrow[b[] / a] c
$$

$$
\mu a \cdot a t \rightarrow t \quad(a \notin t)
$$

$$
\operatorname{bind}(t, x \cdot a(\eta x)) \quad \rightarrow \quad a t
$$

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$

Reduction rules:
(β)
(σ)
$\left(\pi_{\text {bind }}\right)$
$\left(\pi_{\text {covar }}\right)$
$\left(\eta_{\mu}\right)$
$\left(\eta_{\text {bind }}\right)$
(β)
$(\lambda x . t) u \rightarrow[u / x] t$
(σ)
$\operatorname{bind}(\eta t, x . c) \rightarrow[t / x] c$
$\operatorname{bind}\left(\mu a . c, x . c^{\prime}\right) \rightarrow\left[\operatorname{bind}\left([], x . c^{\prime}\right) / a\right] c$
$\left(\pi_{\text {covar }}\right)$
$\left(\eta_{\mu}\right)$
$b(\mu a . c) \rightarrow[b[] / a] c$
$\mu a \cdot a t \rightarrow t \quad(a \notin t)$
$\operatorname{bind}(t, x \cdot a(\eta x)) \rightarrow a t$

The reduction system is confluent and SN.
Relationship with Moggi's meta-language:

- The intuitionistic fragment of $\mathrm{M} \lambda_{\mu}$ arises by allowing only one co-variable.

Monadic $\lambda \mu$-calculus $\mathrm{M} \lambda \mu$

Reduction rules:

(β)	$(\lambda x . t) u$	\rightarrow	[u/x]t
(σ)	$\operatorname{bind}(\eta t, x . c)$	\rightarrow	[$t / x] c$
$\left(\pi_{\text {bind }}\right)$	$\operatorname{bind}\left(\mu\right.$ a.c, , $\times . c^{\prime}$)	\rightarrow	[bind([]$\left.\left., x . c^{\prime}\right) / \mathrm{a}\right] \mathrm{c}$
($\pi_{\text {covar }}$)	$b(\mu \mathrm{a} . \mathrm{c})$	\rightarrow	[b[]/a]c
$\left(\eta_{\mu}\right)$	$\mu \mathrm{a} . a t$	\rightarrow	$t \quad(a \notin t)$
$\left(\eta_{\text {bind }}\right)$	$\operatorname{bind}(t, x . a(\eta x))$	\rightarrow	at

The reduction system is confluent and SN.
Relationship with Moggi's meta-language:

- The intuitionistic fragment of $\mathrm{M} \lambda \mu$ arises by allowing only one co-variable.
- This fragment gives a variant of Moggi's meta-language where $\pi_{\text {bind }}$ corresponds to an eager version of assoc.

Monadic translation (.) : $\bar{\lambda} \mu \tilde{\mu} \rightarrow \mathrm{M} \lambda \mu$ (the cbn case)

Types: $\bar{A}=M A_{*}$, and $X_{*}=X,(A \supset B)_{*}=\bar{A} \supset \bar{B}\left(\mathrm{cf}. A_{*} \supset \bar{B}\right.$ in cbv).

Monadic translation (.) : $\bar{\lambda} \mu \tilde{\mu} \rightarrow \mathrm{M} \lambda \mu$ (the cbn case)

Types: $\bar{A}=M A_{*}$, and $X_{*}=X,(A \supset B)_{*}=\bar{A} \supset \bar{B}\left(\mathrm{cf}. A_{*} \supset \bar{B}\right.$ in cbv).
Expressions:

$$
\begin{array}{rlrl}
\bar{y} & =y & \bar{a} & =a[] \\
\overline{\lambda y \cdot t} & =\eta(\lambda y \cdot \bar{t}) \quad & \overline{u:: e} & =\operatorname{bind}([], f \cdot \operatorname{bind}(\eta(\bar{u}), z \cdot \bar{e}[f z])) \\
\overline{\mu a \cdot c} & =\mu a \cdot \bar{c} \quad \overline{\tilde{\mu} y \cdot c} & =\operatorname{bind}(\eta([]), y \cdot \bar{c}) \\
& & \overline{\langle t \mid e\rangle}=\bar{e}[t]
\end{array}
$$

Monadic translation (.) : $\bar{\lambda} \mu \tilde{\mu} \rightarrow \mathrm{M} \lambda \mu$ (the cbn case)

Types: $\bar{A}=M A_{*}$, and $X_{*}=X,(A \supset B)_{*}=\bar{A} \supset \bar{B}\left(\mathrm{cf}. A_{*} \supset \bar{B}\right.$ in cbv).
Expressions:

$$
\begin{array}{rlrl}
\bar{y} & =y & \bar{a} & =a[] \\
\overline{\lambda y \cdot t} & =\eta(\lambda y \cdot \bar{t}) \quad & \overline{u:: e} & =\operatorname{bind}([], f \cdot \operatorname{bind}(\eta(\bar{u}), z \cdot \bar{e}[f z])) \\
\overline{\mu a \cdot c} & =\mu a \cdot \bar{c} \quad \overline{\tilde{\mu} y \cdot c} & =\operatorname{bind}(\eta([]), y \cdot \bar{c}) \\
& & \overline{\langle t \mid e\rangle}=\bar{e}[t]
\end{array}
$$

Preservation of typing:

$$
\frac{\Gamma \vdash t: A \mid \Delta}{\bar{\Gamma} \vdash \bar{t}: \bar{A} \mid \bar{\Delta}} \frac{\Gamma \mid e: A \vdash \Delta}{\bar{e}[y]:(\bar{\Gamma}, y: \bar{A} \vdash \bar{\Delta})} \frac{c:(\Gamma \vdash \Delta)}{\bar{c}:(\bar{\Gamma} \vdash \bar{\Delta})} \text { are admissible. }
$$

Monadic translation $\overline{(.)}: \bar{\lambda} \mu \tilde{\mu} \rightarrow \mathrm{M} \lambda \mu$ (the cbn case)

Types: $\bar{A}=M A_{*}$, and $X_{*}=X,(A \supset B)_{*}=\bar{A} \supset \bar{B}\left(\mathrm{cf}. A_{*} \supset \bar{B}\right.$ in cbv).
Expressions:

$$
\begin{array}{rlrl}
\bar{y} & =y & \bar{a} & =a[] \\
\overline{\lambda y \cdot t} & =\eta(\lambda y \cdot \bar{t}) \quad & \overline{u:: e} & =\operatorname{bind}([], f \cdot \operatorname{bind}(\eta(\bar{u}), z \cdot \bar{e}[f z])) \\
\overline{\mu a \cdot c} & =\mu a \cdot \bar{c} \quad \overline{\tilde{\mu} y \cdot c} & =\operatorname{bind}(\eta([]), y \cdot \bar{c}) \\
& & \overline{\langle t \mid e\rangle}=\bar{e}[t]
\end{array}
$$

Preservation of typing:

$$
\frac{\Gamma \vdash t: A \mid \Delta}{\bar{\Gamma} \vdash \bar{t}: \bar{A} \mid \bar{\Delta}} \frac{\Gamma \mid e: A \vdash \Delta}{\bar{e}[y]:(\bar{\Gamma}, y: \bar{A} \vdash \bar{\Delta})} \frac{c:(\Gamma \vdash \Delta)}{\bar{c}:(\bar{\Gamma} \vdash \bar{\Delta})} \text { are admissible. }
$$

Strict simulation of reduction:
If $t \rightarrow u$ in cbn $\bar{\lambda} \mu \tilde{\mu}$, then $\bar{t} \rightarrow^{+} \bar{u}$ in $\mathrm{M} \lambda \mu$.
(Simulation is almost 1-1: only β in the source needs 2 steps in the target.)

Continuations-monad instantiation (. $)^{\bullet}: \mathrm{M} \lambda \mu \rightarrow \lambda$

Follows the usual term representation of the continuations-monad:

$$
M A:=\neg \neg A, \quad \eta t:=\lambda k . k t, \quad \operatorname{bind}(t, x \cdot u):=\lambda k . t(\lambda x \cdot u k) .
$$

Expressions:

$$
\begin{array}{rlrl}
x^{\bullet} & =x & (\operatorname{bind}(t, x . c))^{\bullet} & =t^{\bullet}\left(\lambda x . c^{\bullet}\right) \\
(\lambda x . t)^{\bullet} & =\lambda x . t^{\bullet} & (a t)^{\bullet} & =t^{\bullet} k_{a} \\
(t u)^{\bullet} & =t^{\bullet} u^{\bullet} & \\
(\mu a . c)^{\bullet} & =\lambda k_{0 .} \cdot c^{\bullet} & \left(\text { each a has a corresponding cont. var } k_{a}\right) \\
(\eta t)^{\bullet} & =\lambda k . k t^{\bullet} &
\end{array}
$$

Preseration of yping

Continuations-monad instantiation (. $)^{\bullet}: \mathrm{M} \lambda \mu \rightarrow \lambda$

Follows the usual term representation of the continuations-monad:

$$
M A:=\neg \neg A, \quad \eta t:=\lambda k . k t, \quad \operatorname{bind}(t, x . u):=\lambda k . t(\lambda x . u k) .
$$

Expressions:

$$
\begin{array}{rlrlr}
x^{\bullet} & =x & (\operatorname{bind}(t, x . c))^{\bullet} & =t^{\bullet}\left(\lambda x . c^{\bullet}\right) \\
(\lambda x . t)^{\bullet} & =\lambda x . t^{\bullet} & (a t)^{\bullet} & =t^{\bullet} k_{a} \\
(t u)^{\bullet} & =t^{\bullet} u^{\bullet} & & \\
(\mu a . c)^{\bullet} & =\lambda k_{a} \cdot c^{\bullet} & \text { (each a has a corresponding cont. var } \left.k_{a}\right) \\
(\eta t)^{\bullet} & =\lambda k . k t^{\bullet} &
\end{array}
$$

Preservation of typing:

$$
\frac{\Gamma \vdash t: A \mid \Delta}{\Gamma^{\bullet}, \neg \Delta^{-\bullet} \vdash t^{\bullet}: A^{\bullet}} \quad \neg \Delta^{-\bullet}=\left\{k_{a}: \neg A^{\bullet} \mid a: M A \in \Delta\right\}
$$

Strict simulation of reduction: If $t \rightarrow u$ in $\mathrm{M} \lambda \mu$, then $t^{\bullet} \rightarrow^{+} u^{\bullet}$ in $\lambda[\beta \eta]$. (η needed for simulating η_{μ} and $\eta_{\text {bind }}$)

Corollary: $\mathrm{M} \lambda \mu$ is SN for typed terms.

cps translation of $\bar{\lambda} \mu \tilde{\mu}$

cps-translations of $\bar{\lambda} \mu \tilde{\mu}$ are obtained by composing the monadic translations with the continuations-monad instantiation:

$$
\overline{\overline{(.)}}: \bar{\lambda} \mu \tilde{\mu} \xrightarrow{\overline{(.)}} \mathrm{M} \lambda \mu \xrightarrow{(.) \cdot} \lambda
$$

A closer look actually shows that simulation of the image of $\overline{(.)}$ ne

cps translation of $\bar{\lambda} \mu \tilde{\mu}$

cps-translations of $\bar{\lambda} \mu \tilde{\mu}$ are obtained by composing the monadic translations with the continuations-monad instantiation:

$$
\overline{\overline{(.)}}: \bar{\lambda} \mu \tilde{\mu} \xrightarrow{\overline{(.)}} \mathrm{M} \lambda \mu \xrightarrow{(.)^{\bullet}} \lambda
$$

A closer look actually shows that simulation of the image of $\overline{(.)}$ needs no η-steps, and so $\lambda[\beta]$ is enough for strict simulation of $\bar{\lambda} \mu \tilde{\mu}$ via $\overline{(.)}$.

cps translation of $\bar{\lambda} \mu \tilde{\mu}$

cps-translations of $\bar{\lambda} \mu \tilde{\mu}$ are obtained by composing the monadic translations with the continuations-monad instantiation:

$$
\overline{\overline{(.)}}: \bar{\lambda} \mu \tilde{\mu} \xrightarrow{\overline{(.)}} \mathrm{M} \lambda \mu \xrightarrow{(.)^{\bullet}} \lambda
$$

A closer look actually shows that simulation of the image of (.) needs no η-steps, and so $\lambda[\beta]$ is enough for strict simulation of $\bar{\lambda} \mu \tilde{\mu}$ via $\overline{(.)}$.
Corollary: The cbn and cbv fragments of $\bar{\lambda} \mu \tilde{\mu}$ are SN for typed terms.
The cbn case

cps translation of $\bar{\lambda} \mu \tilde{\mu}$

cps-translations of $\bar{\lambda} \mu \tilde{\mu}$ are obtained by composing the monadic translations with the continuations-monad instantiation:

$$
\overline{\overline{(.)}}: \bar{\lambda} \mu \tilde{\mu} \xrightarrow{\overline{(.)}} \mathrm{M} \lambda \mu \xrightarrow{(.)^{\bullet}} \lambda
$$

A closer look actually shows that simulation of the image of $\overline{(.)}$ needs no η-steps, and so $\lambda[\beta]$ is enough for strict simulation of $\bar{\lambda} \mu \tilde{\mu}$ via $\overline{(.)}$.
Corollary: The cbn and cbv fragments of $\bar{\lambda} \mu \tilde{\mu}$ are SN for typed terms.
The cbn case
Types: $\quad \overline{\bar{A}}=\neg \neg A^{*}, \quad X^{*}=X, \quad(A \supset B)^{*}=\overline{\bar{A}} \supset \overline{\bar{B}}$.
Expressions:

$$
\begin{array}{rlrl}
\overline{\bar{y}} & =y & \overline{\bar{a}} & =[] k_{a} \\
\overline{\overline{\lambda y \cdot t}}= & \operatorname{Eta}(\lambda y \cdot \overline{\bar{t}}) \quad \overline{\overline{\bar{u}:: e}} & =[](\lambda f . \operatorname{Eta}(\overline{\bar{u}})(\lambda z \cdot \overline{\bar{e}}[f z])) \\
\overline{\overline{\mu a \cdot c}}= & \lambda k_{a} \cdot \overline{\bar{c}} \quad \overline{\overline{\tilde{\mu} y \cdot c}}= & \operatorname{Eta}([])(\lambda y \cdot \overline{\bar{c}}) \\
& & \overline{\overline{\langle t \mid e\rangle}}=\overline{\bar{e}}[\overline{\bar{t}}] & \\
& \quad(\operatorname{Eta}(t)=\lambda k \cdot k t))
\end{array}
$$

Extension to 2nd-order

The ideas before apply also to 2 nd-order extensions of $\bar{\lambda} \mu \tilde{\mu}, \mathrm{M} \lambda \mu$ and λ. In particular, we find new SN results for the cbn and cbv fragments of 2 nd-order $\lambda \mu \tilde{\mu}$, inheriting SN of $\lambda 2$ via cps with strict simulation.

Extension to 2nd-order

The ideas before apply also to 2 nd-order extensions of $\bar{\lambda} \mu \tilde{\mu}, \mathrm{M} \lambda \mu$ and λ. In particular, we find new SN results for the cbn and cbv fragments of 2 nd-order $\bar{\lambda} \mu \tilde{\mu}$, inheriting SN of $\lambda 2$ via cps with strict simulation.

2nd-order $\bar{\lambda} \mu \tilde{\mu}$:

$$
\begin{gathered}
\frac{\Gamma \vdash t: B \mid \Delta}{\Gamma \vdash \Lambda X . t: \forall X . B \mid \Delta}(X \notin \Gamma, \Delta) \\
\frac{\Gamma \mid e:[A / X] B \vdash \Delta}{\Gamma \mid A:: e: \forall X . B \vdash \Delta} \\
(\beta 2) \quad\langle\Lambda X . t \mid A:: e\rangle \\
\rightarrow\langle[A / X] t \mid e\rangle
\end{gathered}
$$

Extension to 2nd-order

The ideas before apply also to 2 nd-order extensions of $\bar{\lambda} \mu \tilde{\mu}, \mathrm{M} \lambda \mu$ and λ. In particular, we find new SN results for the cbn and cbv fragments of 2 nd-order $\bar{\lambda} \mu \tilde{\mu}$, inheriting SN of $\lambda 2$ via cps with strict simulation.

2nd-order $\bar{\lambda} \mu \tilde{\mu}$:

$$
\begin{gathered}
\frac{\Gamma \vdash t: B \mid \Delta}{\Gamma \vdash \Lambda X . t: \forall X . B \mid \Delta}(X \notin \Gamma, \Delta) \\
\quad \frac{\Gamma \mid e:[A / X] B \vdash \Delta}{\Gamma \mid A:: e: \forall X . B \vdash \Delta} \\
(\beta 2) \quad\langle\Lambda X . t \mid A:: e\rangle \\
\rightarrow\langle[A / X] t \mid e\rangle
\end{gathered}
$$

2nd-order $\mathrm{M} \lambda \mu$:

$$
\begin{gathered}
\frac{\Gamma \vdash t: B \mid \Delta}{\Gamma \vdash \Lambda X . t: \forall X . B \mid \Delta}(X \notin \Gamma, \Delta) \\
(\beta 2) \quad(\Lambda X . t) A \rightarrow[A / X] t
\end{gathered}
$$

Extension to 2nd-order

The ideas before apply also to 2 nd-order extensions of $\bar{\lambda} \mu \tilde{\mu}, \mathrm{M} \lambda \mu$ and λ. In particular, we find new SN results for the cbn and cbv fragments of 2 nd-order $\bar{\lambda} \mu \tilde{\mu}$, inheriting SN of $\lambda 2$ via cps with strict simulation.

2nd-order $\bar{\lambda} \mu \tilde{\mu}$:

$$
\begin{gathered}
\frac{\Gamma \vdash t: B \mid \Delta}{\Gamma \vdash \Lambda X . t: \forall X . B \mid \Delta}(X \notin \Gamma, \Delta) \\
\quad \frac{\Gamma \mid e:[A / X] B \vdash \Delta}{\Gamma \mid A:: e: \forall X . B \vdash \Delta} \\
(\beta 2) \quad\langle\Lambda X . t \mid A:: e\rangle \\
\rightarrow\langle[A / X] t \mid e\rangle
\end{gathered}
$$

2nd-order $\mathrm{M} \lambda \mu$:

$$
\begin{gathered}
\frac{\Gamma \vdash t: B \mid \Delta}{\Gamma \vdash \Lambda X . t: \forall X . B \mid \Delta}(X \notin \Gamma, \Delta) \\
(\beta 2) \quad(\Lambda X . t) A \rightarrow[A / X] t
\end{gathered}
$$

Cbn cps-translation:

$$
(\forall X . A)^{*}=\forall X . \overline{\bar{A}}, \quad \overline{\overline{\Lambda X . t}}=\operatorname{Eta}(\Lambda X . \overline{\bar{t}}) \quad \overline{\overline{A:: e}}=[]\left(\lambda z . \overline{\bar{e}}\left[z A^{*}\right]\right)
$$

Final remarks

- An elementary proof of SN for $\mathrm{cbn} / \mathrm{cbv} \bar{\lambda} \mu \tilde{\mu}$ via cps-translations is achieved.
- The cps-translations factor through a new classical monadic language.
- The technique easily extends to 2nd-order.
- Big improvement of our earlier results on intuitionistic sequent calculus (TYPES'08).
- Extend results, e.g. to other connectives, or to dependent types.
- Further study $\mathrm{M} \lambda \mu$ and ways to combine classical logic with monads.

