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Generalities on Curry-Howard correspondence (I)

Intuitionistic implication in natural deduction and simply-typed λ-calculus
are a perfect match:

I assumptions A type variables x ;

I rule

[A]
...
B

A ⊃ B
Intro

types abstractions λx .t;

I rule
A ⊃ B A

B
Elim types applications tu;

I removal of a maximal formula A ⊃ B, i.e. a detour

[A]
...
B

A ⊃ B
Intro

A
B

Elim
,

is β-reduction (normalisation).
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Generalities on Curry-Howard correspondence (II)

How about extensions to sequent calculus and to classical logic?

Intuitionistic sequent calculus:

I typical rules:

Γ ` A Γ,B ` C

Γ,A ⊃ B ` C
Left

Γ ` C Γ,C ` A

Γ ` A
Cut

I issue: many proofs are essentially the same (differ up to
permutation of inferences)

I λ-calculus of Herbelin addresses this issue: there are two forms of
sequents, one, Γ|l : A ` B, has a selected formula on LHS and types
lists l := []|u :: l :

Γ ` u : A Γ|l : B ` C

Γ|u :: l : A ⊃ B ` C
Left

Γ|[] : A ` A
Ax
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Generalities on Curry-Howard correspondence (III)

Classical natural deduction:

I one option is adding
Γ,¬A ` ⊥

Γ ` A
RAA

I other option is multiple-conclusion sequents as in Parigot’s λµ:

I expressions: t, u ::= x |λx .t | tu |µa.c (terms)
c ::= at (commands)

(a is called name but also co-variable/continuation variable)
I sequents: Γ ` t : A|∆ and c : (Γ ` ∆)

(Γ resp ∆ consist of declarations x : A resp a : A)

I typing:
Γ ` t : A|a : A,∆

at : (Γ ` a : A,∆)
Pass

c : (Γ ` a : A,∆)

Γ ` µa.c : A|∆ Act

Classical sequent calculus:

I Unrestricts intuitionistic sequent calculus, by allowing sequents with
multiple conclusions

I Curien-Herbelin proposed the elegant calculus λµµ̃ (to be detailed
ahead), where dualites like cbn/cbv emerge.
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cps translation of λ-calculus

The cbn case:

I Terms: x = x
λx .t = λk .k(λx .t)

tu = λk .t(λf .f uk)

I Types: A = ¬¬A∗, and X ∗ = X , (A ⊃ B)∗ = A ⊃ B

I Preservation of typing:
Γ ` t : A

Γ ` t : A
is admissible.

Hatcliff-Danvy decomposition of cps’s:

λ
cps //

monadic trans. &&MMMMMMMMMMMM λcps

Moggi meta−lang .

inst.cont.monad .

77ooooooooooo
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Overview of what we achieve

λµµ̃
cbn monadic

,,

cbv monadic

22

cbv cps

<<

cbn cps

""
Mλµ

inst.cont.monad // λ

I Mλµ is a new monadic language

I all maps strictly preserve reduction and allow inheritance of SN
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λµµ̃-calculus of Curien-Herbelin

Types: A,B ::= X |A ⊃ B

Expressions: t ::= x |λx .t︸ ︷︷ ︸
values

|µa.c (terms)

e ::= a | u :: e︸ ︷︷ ︸
co−values

| µ̃x .c (co − terms)

c ::= 〈t|e〉 (commands)

Typing judgements:

Γ ` t : A|∆ Γ|e : A ` ∆ c : (Γ ` ∆)

Γ: type context for variables (x)
∆: type context for co-variables (a)
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λµµ̃-calculus of Curien-Herbelin
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Typing rules of λµµ̃

Γ, x : A ` x : A|∆ R − Ax
Γ|a : A ` a : A,∆

L− Ax

Γ, x : A ` t : B|∆
Γ ` λx .t : A ⊃ B|∆ R− ⊃

Γ ` u : A|∆ Γ|e : B ` ∆

Γ|u :: e : A ⊃ B ` ∆
L− ⊃

c : (Γ ` a : A,∆)

Γ ` µa.c : A|∆ R − Sel
c : (Γ, x : A ` ∆)

Γ|µ̃x .c : A ` ∆
L− Sel

Γ ` t : A|∆ Γ|e : A ` ∆

〈t|e〉 : (Γ ` ∆)
Cut



Reduction rules of λµµ̃

(β) 〈λx .t|u :: e〉 → 〈u|µ̃x .〈t|e〉〉
(σ) 〈t|µ̃x .c〉 → [t/x ]c
(π) 〈µa.c |e〉 → [e/a]c

(ηµ̃) µ̃x .〈x |e〉 → e, if x /∈ e
(ηµ) µa.〈t|a〉 → t, if a /∈ t

The set of rules is SN (for typed terms), but not confluent due to the
critical pair:

〈µa.c |µ̃x .c ′〉
σ

''OOOOOOOOOOO
π

wwppppppppppp

[µ̃x .c ′/a]c [µa.c/x ]c ′

Two confluent fragments emerge:

I call-by-value λµµ̃: in the σ-rule t must be a value.

I call-by-name λµµ̃: in the π-rule e must be a co-value.
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Monadic meta-language of Moggi

The meta-language adds to simply typed lambda-calculus:

I Types: A,B ::= ...|MA (monadic types)

I Expressions: t, u ::= ...|ηt|bind(t, x .u)

I Typing rules:

Γ ` t : A
Γ ` ηt : MA

Γ ` t : MA Γ, x : A ` u : MB

Γ ` bind(t, x .u) : MB

I Reduction rules (equations in Moggi):

(σ) bind(ηt, x .u) → [t/x ]u
(assoc) bind(bind(t, x .u), y .s) → bind(t, x .bind(u, y .s))
(ηbind) bind(t, x .ηx) → t

The reduction system is confluent and SN.
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Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Types: A,B ::= X |A ⊃ B |MA

Expressions: t, u ::= x |λx .t | tu |µa.c | ηt (terms)
c ::= at | bind(t, x .c) (commands)

Typing judgements: Γ ` t : A|∆ and c : (Γ ` ∆).
∆ consists of declarations a : MA (just monadic types).

Some typing rules:

Γ ` t : MA|a : MA,∆

at : (Γ ` a : MA,∆)
Pass

c : (Γ ` a : MA,∆)

Γ ` µa.c : MA|∆ Act

Γ ` s : A|∆
Γ ` ηs : MA|∆

Γ ` r : MA|∆ c : (Γ, x : A ` ∆)

bind(r , x .c) : (Γ ` ∆)

Contexts:
C ::= a[ ] | bind([ ], x .c) | bind(η[ ], x .c)

C [t] means fill the hole of C with t.

[C/a]c means substitution in c of au by C [u].



Monadic λµ-calculus Mλµ

Reduction rules:

(β) (λx .t)u → [u/x ]t
(σ) bind(ηt, x .c) → [t/x ]c

(πbind) bind(µa.c , x .c ′) → [bind([ ], x .c ′)/a]c
(πcovar) b(µa.c) → [b[ ]/a]c

(ηµ) µa.at → t (a /∈ t)
(ηbind) bind(t, x .a(ηx)) → at

The reduction system is confluent and SN.

Relationship with Moggi’s meta-language:

I The intuitionistic fragment of Mλµ arises by allowing only one
co-variable.

I This fragment gives a variant of Moggi’s meta-language where πbind

corresponds to an eager version of assoc.
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Monadic translation (.) : λµµ̃→ Mλµ
(the cbn case)

Types: A = MA∗, and X∗ = X , (A ⊃ B)∗ = A ⊃ B (cf. A∗ ⊃ B in cbv).

Expressions:

y = y a = a[ ]
λy .t = η(λy .t) u :: e = bind([ ], f .bind(η(u), z .e[fz ]))
µa.c = µa.c µ̃y .c = bind(η([ ]), y .c)

〈t|e〉 = e[t]

Preservation of typing:

Γ ` t : A|∆
Γ ` t : A|∆

Γ|e : A ` ∆

e[y ] : (Γ, y : A ` ∆)

c : (Γ ` ∆)

c : (Γ ` ∆)
are admissible.

Strict simulation of reduction:

If t → u in cbn λµµ̃, then t →+ u in Mλµ.

(Simulation is almost 1-1: only β in the source needs 2 steps in the target.)
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Continuations-monad instantiation (.)• : Mλµ→ λ

Follows the usual term representation of the continuations-monad:

MA := ¬¬A, ηt := λk .kt, bind(t, x .u) := λk.t(λx .uk).

Expressions:
x• = x (bind(t, x .c))• = t•(λx .c•)

(λx .t)• = λx .t• (at)• = t•ka

(tu)• = t•u•

(µa.c)• = λka.c
• (each a has a corresponding cont. var ka)

(ηt)• = λk.kt•

Preservation of typing:

Γ ` t : A|∆
Γ•,¬∆−

• ` t• : A•
¬∆−

•
= {ka : ¬A•|a : MA ∈ ∆}

Strict simulation of reduction: If t → u in Mλµ,then t• →+ u• in λ[βη].
(η needed for simulating ηµ and ηbind)

Corollary: Mλµ is SN for typed terms.
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cps translation of λµµ̃

cps-translations of λµµ̃ are obtained by composing the monadic
translations with the continuations-monad instantiation:

(.) : λµµ̃
(.)→ Mλµ

(.)•→ λ

A closer look actually shows that simulation of the image of (.) needs no

η-steps, and so λ[β] is enough for strict simulation of λµµ̃ via (.).

Corollary: The cbn and cbv fragments of λµµ̃ are SN for typed terms.

The cbn case

Types: A = ¬¬A∗, X ∗ = X , (A ⊃ B)∗ = A ⊃ B.

Expressions:

y = y a = [ ]ka

λy .t = Eta(λy .t) u :: e = [ ](λf .Eta(u)(λz .e[fz ]))

µa.c = λka.c µ̃y .c = Eta([ ])(λy .c)

〈t|e〉 = e[t] (Eta(t) = λk.kt)
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Extension to 2nd-order

The ideas before apply also to 2nd-order extensions of λµµ̃, Mλµ and λ.

In particular, we find new SN results for the cbn and cbv fragments of
2nd-order λµµ̃, inheriting SN of λ2 via cps with strict simulation.

2nd-order λµµ̃:

Γ ` t : B|∆
Γ ` ΛX .t : ∀X .B|∆

(X 6∈Γ,∆)
Γ|e : [A/X ]B ` ∆

Γ|A :: e : ∀X .B ` ∆

(β2) 〈ΛX .t|A :: e〉 → 〈[A/X ]t|e〉

2nd-order Mλµ:

Γ ` t : B|∆
Γ ` ΛX .t : ∀X .B|∆

(X 6∈Γ,∆)
Γ ` t : ∀X .B|∆

Γ ` tA : [A/X ]B|∆
(β2) (ΛX .t)A→ [A/X ]t

Cbn cps-translation:

(∀X .A)∗ = ∀X .A, ΛX .t = Eta(ΛX .t) A :: e = [ ](λz .e[zA∗])
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Final remarks

I An elementary proof of SN for cbn/cbv λµµ̃ via cps-translations is
achieved.

I The cps-translations factor through a new classical monadic
language.

I The technique easily extends to 2nd-order.

I Big improvement of our earlier results on intuitionistic sequent
calculus (TYPES’08).

I Extend results, e.g. to other connectives, or to dependent types.

I Further study Mλµ and ways to combine classical logic with
monads.


