
Deployment Components with Parametric Concurrency

Einar Broch Johnsen Olaf Owe
Rudolf Schlatte S. Lizeth Tapia Tarifa

University of Oslo

10 March 2011, Tallinn

http://www.hats-project.eu

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 1 / 43

http://www.hats-project.eu
http://cordis.europa.eu/fp7/home_en.html
http://www.hats-project.eu

Outline

1 Motivation and aim

2 The Abs language

3 Time model

4 Deployment components

5 Resource reallocation

6 Conclusions and future work

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 2 / 43

http://www.hats-project.eu

Motivation

Software systems tend to be released for
a range of different architectures

Examples
I Software Product Lines

I Embedded Systems

I Sensors

I Web Services

I Operating Systems

Need to model software which ranges over deployment scenarios

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 3 / 43

http://www.hats-project.eu

Motivation

Software systems tend to be released for
a range of different architectures

Examples
I Software Product Lines

I Embedded Systems

I Sensors

I Web Services

I Operating Systems

Need to model software which ranges over deployment scenarios

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 3 / 43

http://www.hats-project.eu

Motivation

Software systems tend to be released for
a range of different architectures

Examples
I Software Product Lines

I Embedded Systems

I Sensors

I Web Services

I Operating Systems

Need to model software which ranges over deployment scenarios

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 3 / 43

http://www.hats-project.eu

Motivation

Abstraction levels in modeling

Implementation-oriented Spec#, Java+JML

? ?

Design-oriented Graphical notations

Specification level Modeling formalisms

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 4 / 43

http://www.hats-project.eu

Motivation

Abstraction levels in modeling

Implementation-oriented Spec#, Java+JML

? ?

Design-oriented Graphical notations

Specification level Modeling formalisms

Abstract behavioral Abs

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 4 / 43

http://www.hats-project.eu

Abs Modeling Language

Abstract behavioral modeling language for distributed active objects

Syntactic categories.
C , I ,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x ;]M}
Sg ::= I m ([I x])

M ::= Sg == [I x ;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
e ::= x | b | this || null

rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x .get

I Abs has a model of parallelism based on concurrent objects, where the
communications is through asynchronous method calls.

I Every object has a set of processes to be executed

I At most one process per object is active, the others are suspended

I Scheduling is controlled by await statements

I Compositional proof theory, implemented in KeY

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 5 / 43

http://www.hats-project.eu

Abs Modeling Language

Abstract behavioral modeling language for distributed active objects

Syntactic categories.
C , I ,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x ;]M}
Sg ::= I m ([I x])

M ::= Sg == [I x ;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
e ::= x | b | this || null

rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x .get

I Abs has a model of parallelism based on concurrent objects, where the
communications is through asynchronous method calls.

I Every object has a set of processes to be executed

I At most one process per object is active, the others are suspended

I Scheduling is controlled by await statements

I Compositional proof theory, implemented in KeY

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 5 / 43

http://www.hats-project.eu

Abs Modeling Language

Abstract behavioral modeling language for distributed active objects

Syntactic categories.
C , I ,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x ;]M}
Sg ::= I m ([I x])

M ::= Sg == [I x ;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
e ::= x | b | this || null

rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x .get

I Abs has a model of parallelism based on concurrent objects, where the
communications is through asynchronous method calls.

I Every object has a set of processes to be executed

I At most one process per object is active, the others are suspended

I Scheduling is controlled by await statements

I Compositional proof theory, implemented in KeY

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 5 / 43

http://www.hats-project.eu

Abs Modeling Language

Abstract behavioral modeling language for distributed active objects

Syntactic categories.
C , I ,m in Names
g in Guard
s in Stmt
x in Var
e in Expr
b in BoolExpr

Definitions.

IF ::= interface I { [Sg] }
CL ::= classC [(I x)] [implements I] { [I x ;]M}
Sg ::= I m ([I x])

M ::= Sg == [I x ;] { s }
g ::= b | x? | g ∧ g
s ::= s; s | x := rhs | release | await g | return e

| if b then { s } [else { s }] | while b { s } | skip
e ::= x | b | this || null

rhs ::= e | new C (e) | [e]!m(e) | [e.]m(e) | x .get

I Abs has a model of parallelism based on concurrent objects, where the
communications is through asynchronous method calls.

I Every object has a set of processes to be executed

I At most one process per object is active, the others are suspended

I Scheduling is controlled by await statements

I Compositional proof theory, implemented in KeY

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 5 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

A Time Model for Abs

I A time interval captures the execution between two observable
points in time

I Comparable to a system clock which updates every n milliseconds

I The expression now returns the present time

I Suitable for guards in await statements.

• Example: Time t:=now;
await now ≥ t + c;

I From the local perspective time advances by
• awaiting the passage of time, or
• when no other activity may occur

Paper: Lightweight Time Modeling in Timed Creol

Proc. 1st Int. Workshop on Rewriting Techniques for Real-Time Systems (RTRTS 2010), ENTCS 36:67–81, 2010

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 6 / 43

http://www.hats-project.eu

Aim

Apply performance analysis to OO models
which range over deployment scenarios

Modeling of deployment scenarios

I Deployment components with a set of (physical) processors

I Every component is parametric in the amount of concurrent
processing resources

Processing resources are:

I Shared between the concurrent objects of a deployment component

I Updated for every time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 7 / 43

http://www.hats-project.eu

Aim

Apply performance analysis to OO models
which range over deployment scenarios

Modeling of deployment scenarios

I Deployment components with a set of (physical) processors

I Every component is parametric in the amount of concurrent
processing resources

Processing resources are:

I Shared between the concurrent objects of a deployment component

I Updated for every time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 7 / 43

http://www.hats-project.eu

Aim

Apply performance analysis to OO models
which range over deployment scenarios

Modeling of deployment scenarios

I Deployment components with a set of (physical) processors

I Every component is parametric in the amount of concurrent
processing resources

Processing resources are:

I Shared between the concurrent objects of a deployment component

I Updated for every time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 7 / 43

http://www.hats-project.eu

Aim

Apply performance analysis to OO models
which range over deployment scenarios

Modeling of deployment scenarios

I Deployment components with a set of (physical) processors

I Every component is parametric in the amount of concurrent
processing resources

Processing resources are:

I Shared between the concurrent objects of a deployment component

I Updated for every time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 7 / 43

http://www.hats-project.eu

Aim

Apply performance analysis to OO models
which range over deployment scenarios

Modeling of deployment scenarios

I Deployment components with a set of (physical) processors

I Every component is parametric in the amount of concurrent
processing resources

Processing resources are:

I Shared between the concurrent objects of a deployment component

I Updated for every time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 7 / 43

http://www.hats-project.eu

Approach

I Propose an abstract model of
deployment components

• Concurrent object groups
• Parametric amount of resources per time

interval

I Extend the Abs modeling language
• Time model
• Deployment components
• Resource reallocation

I Operational semantics in rewriting logic
• Executable prototype using Maude
• Language interpreter
• Simulation of model behavior
• Test suites

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 8 / 43

http://www.hats-project.eu

Approach

I Propose an abstract model of
deployment components

• Concurrent object groups
• Parametric amount of resources per time

interval

I Extend the Abs modeling language
• Time model
• Deployment components
• Resource reallocation

I Operational semantics in rewriting logic
• Executable prototype using Maude
• Language interpreter
• Simulation of model behavior
• Test suites

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 8 / 43

http://www.hats-project.eu

Approach

I Propose an abstract model of
deployment components

• Concurrent object groups
• Parametric amount of resources per time

interval

I Extend the Abs modeling language
• Time model
• Deployment components
• Resource reallocation

I Operational semantics in rewriting logic
• Executable prototype using Maude
• Language interpreter
• Simulation of model behavior
• Test suites

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 8 / 43

http://www.hats-project.eu

Model

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

methodA()

methodB()

Deployment
Component

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 9 / 43

http://www.hats-project.eu

Model with DC

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Global clock
Deployment
Component Resources

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 10 / 43

http://www.hats-project.eu

Deployment Components (1)

A deployment component has a number of concurrent resources

I These resources are shared between the component’s objects

I Resources abstract from the number and speed of the physical
processors available to the component

I Resources reflect the execution capacity of
the deployment component in a time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 11 / 43

http://www.hats-project.eu

Deployment Components (1)

A deployment component has a number of concurrent resources

I These resources are shared between the component’s objects

I Resources abstract from the number and speed of the physical
processors available to the component

I Resources reflect the execution capacity of
the deployment component in a time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 11 / 43

http://www.hats-project.eu

Deployment Components (1)

A deployment component has a number of concurrent resources

I These resources are shared between the component’s objects

I Resources abstract from the number and speed of the physical
processors available to the component

I Resources reflect the execution capacity of
the deployment component in a time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 11 / 43

http://www.hats-project.eu

Deployment Components (1)

A deployment component has a number of concurrent resources

I These resources are shared between the component’s objects

I Resources abstract from the number and speed of the physical
processors available to the component

I Resources reflect the execution capacity of
the deployment component in a time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 11 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|
I After one concurrent execution step,

D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|
I After one concurrent execution step,

D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|

I After one concurrent execution step,
D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|
I After one concurrent execution step,

D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|
I After one concurrent execution step,

D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Deployment Components (2)

Consider a deployment component D
with r units of processing resources
and G objects

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

I Any number n of objects in G can execute concurrently (n ≤ r)

I Let A ⊆ G such that n = |A|
I After one concurrent execution step,

D has r1 = r − n available units of resources.

I If r1 > 0, another execution step can be done
(leaving r2 remaining units of resources available)

Execution inside the time interval stops when no units of resources are
available or the objects are blocked

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 12 / 43

http://www.hats-project.eu

Abs Syntax Extension

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Extension of the Syntax of Abs:

I now() returns the current time

I component(r) creates a new deployment component

dc:=component(r);

I An optional clause in the object creation

new C(e) in dc;

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 13 / 43

http://www.hats-project.eu

Abs Syntax Extension

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Extension of the Syntax of Abs:

I now() returns the current time

I component(r) creates a new deployment component

dc:=component(r);

I An optional clause in the object creation

new C(e) in dc;

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 13 / 43

http://www.hats-project.eu

Abs Syntax Extension

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Extension of the Syntax of Abs:

I now() returns the current time

I component(r) creates a new deployment component

dc:=component(r);

I An optional clause in the object creation

new C(e) in dc;

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 13 / 43

http://www.hats-project.eu

Abs Syntax Extension

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Extension of the Syntax of Abs:

I now() returns the current time

I component(r) creates a new deployment component

dc:=component(r);

I An optional clause in the object creation

new C(e) in dc;

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 13 / 43

http://www.hats-project.eu

Operational Semantics - Extension

The operational semantics of Abs is formalized in rewriting logic and is
executable on the Maude tool

A Abs configuration (system state) consists of:

Classes, Objects, Futures and Invocation messages

Extend the configurations with:

I Global clock
〈 t:Clock | Limit:l 〉

I Deployment components
〈 dc:Comp|Free:r, Limit:l 〉

I Object attribute mycomp

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 14 / 43

http://www.hats-project.eu

Operational Semantics - Extension

The operational semantics of Abs is formalized in rewriting logic and is
executable on the Maude tool

A Abs configuration (system state) consists of:

Classes, Objects, Futures and Invocation messages

Extend the configurations with:

I Global clock
〈 t:Clock | Limit:l 〉

I Deployment components
〈 dc:Comp|Free:r, Limit:l 〉

I Object attribute mycomp

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 14 / 43

http://www.hats-project.eu

Operational Semantics - Extension

The operational semantics of Abs is formalized in rewriting logic and is
executable on the Maude tool

A Abs configuration (system state) consists of:

Classes, Objects, Futures and Invocation messages

Extend the configurations with:

I Global clock
〈 t:Clock | Limit:l 〉

I Deployment components
〈 dc:Comp|Free:r, Limit:l 〉

I Object attribute mycomp

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 14 / 43

http://www.hats-project.eu

Operational Semantics - Extension

The operational semantics of Abs is formalized in rewriting logic and is
executable on the Maude tool

A Abs configuration (system state) consists of:

Classes, Objects, Futures and Invocation messages

Extend the configurations with:

I Global clock
〈 t:Clock | Limit:l 〉

I Deployment components
〈 dc:Comp|Free:r, Limit:l 〉

I Object attribute mycomp

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 14 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Extend the rewriting rules with time, deployment
components, and resource consumption

Some of the statements consume resources when they execute.

Simple example:

skip;

Old rule:

rl [skip] : 〈 o : C | Pr : {l | skip; s} 〉
−→ 〈 o : C | Pr : {l | s} 〉 .

New rule: skip consumes a resource

crl [skip] : 〈 o : C | Att:a, Pr : {l | skip; s} 〉 〈dc:Comp |Free:r〉
−→ 〈 o : C | Att:a, Pr : {l | s} 〉 〈dc:Comp |Free:r − 1〉
if dc = a[mycomp].

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 15 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Extend the rewriting rules with time, deployment
components, and resource consumption

Some of the statements consume resources when they execute.

Simple example:

skip;

Old rule:

rl [skip] : 〈 o : C | Pr : {l | skip; s} 〉
−→ 〈 o : C | Pr : {l | s} 〉 .

New rule: skip consumes a resource

crl [skip] : 〈 o : C | Att:a, Pr : {l | skip; s} 〉 〈dc:Comp |Free:r〉
−→ 〈 o : C | Att:a, Pr : {l | s} 〉 〈dc:Comp |Free:r − 1〉
if dc = a[mycomp].

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 15 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Extend the rewriting rules with time, deployment
components, and resource consumption

Some of the statements consume resources when they execute.

Simple example:

skip;

Old rule:

rl [skip] : 〈 o : C | Pr : {l | skip; s} 〉
−→ 〈 o : C | Pr : {l | s} 〉 .

New rule: skip consumes a resource

crl [skip] : 〈 o : C | Att:a, Pr : {l | skip; s} 〉 〈dc:Comp |Free:r〉
−→ 〈 o : C | Att:a, Pr : {l | s} 〉 〈dc:Comp |Free:r − 1〉
if dc = a[mycomp].

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 15 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Extend the rewriting rules with time, deployment
components, and resource consumption

Some of the statements consume resources when they execute.

Simple example:

skip;

Old rule:

rl [skip] : 〈 o : C | Pr : {l | skip; s} 〉
−→ 〈 o : C | Pr : {l | s} 〉 .

New rule: skip consumes a resource

crl [skip] : 〈 o : C | Att:a, Pr : {l | skip; s} 〉 〈dc:Comp |Free:r〉
−→ 〈 o : C | Att:a, Pr : {l | s} 〉 〈dc:Comp |Free:r − 1〉
if dc = a[mycomp].

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 15 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Extend the rewriting rules with time, deployment
components, and resource consumption

Some of the statements consume resources when they execute.

Simple example:

skip;

Old rule:

rl [skip] : 〈 o : C | Pr : {l | skip; s} 〉
−→ 〈 o : C | Pr : {l | s} 〉 .

New rule: skip consumes a resource

crl [skip] : 〈 o : C | Att:a, Pr : {l | skip; s} 〉 〈dc:Comp |Free:r〉
−→ 〈 o : C | Att:a, Pr : {l | s} 〉 〈dc:Comp |Free:r − 1〉
if dc = a[mycomp].

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 15 / 43

http://www.hats-project.eu

Operational Semantics - Extension

Old rule:

crl [async-call] :

〈 o : C | Att : a, Pr : {l | x := e!m(e);s}, Lcnt : f 〉
−→ 〈 o : C | Att : a, Pr : {l [x 7→ n] | s}, Lcnt : f + 1 〉

invoc([[e]]
(a◦l),none

, n,m, [[e]]
(a◦l),none

) 〈n:Fut |Done:false,Value:⊥〉
if n:=label(o, f)∧ o 6= [[e]]

(a◦l),none
.

New rule consumes resources and evaluates expressions using time:

crl [async-call] :

〈 o : C | Att : a, Pr : {l | x := e!m(e);s}, Lcnt : f 〉
〈t:Clock | 〉 〈dc:Comp |Free:r〉

−→ 〈 o : C | Att : a, Pr : {l [x 7→ n] | s}, Lcnt : f + 1 〉
〈t:Clock | 〉 〈dc:Comp |Free:r − 1〉
invoc([[e]]t

(a◦l),none
, n,m, [[e]]t

(a◦l),none
) 〈n:Fut |Done:false,Value:⊥〉

if n:=label(o, f)∧ o 6= [[e]]t
(a◦l),none

∧ dc = a[mycomp] .

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 16 / 43

http://www.hats-project.eu

Operational Semantics - Extension

crl [progress] :
{ cn 〈 t : Clock | limit : limit 〉 }

−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 }
if canAdv(cn,t)∧ t < limit .

Adv(cn) resets the free resources of each deployment component to their specified limit.

canAdv(cn,t) is true if

I no object can do anything and no invocation messages to that object are in the
configuration.

An object can not do anything if:

• Its deployment component has run out of resources or
• All its process are blocked

Otherwise, time cannot advance.

Paper: Validating Timed Models of Deployment Components with Parametric Concurrency.

Proc. Int. Conference on Formal Verification of Object-Oriented Software (FoVeOOS) 2010. LNCS 6528, pg. 46–60.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 17 / 43

http://www.hats-project.eu

Operational Semantics - Extension

crl [progress] :
{ cn 〈 t : Clock | limit : limit 〉 }

−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 }
if canAdv(cn,t)∧ t < limit .

Adv(cn) resets the free resources of each deployment component to their specified limit.

canAdv(cn,t) is true if

I no object can do anything and no invocation messages to that object are in the
configuration.

An object can not do anything if:

• Its deployment component has run out of resources or
• All its process are blocked

Otherwise, time cannot advance.

Paper: Validating Timed Models of Deployment Components with Parametric Concurrency.

Proc. Int. Conference on Formal Verification of Object-Oriented Software (FoVeOOS) 2010. LNCS 6528, pg. 46–60.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 17 / 43

http://www.hats-project.eu

Operational Semantics - Extension

crl [progress] :
{ cn 〈 t : Clock | limit : limit 〉 }

−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 }
if canAdv(cn,t)∧ t < limit .

Adv(cn) resets the free resources of each deployment component to their specified limit.

canAdv(cn,t) is true if

I no object can do anything and no invocation messages to that object are in the
configuration.

An object can not do anything if:

• Its deployment component has run out of resources or
• All its process are blocked

Otherwise, time cannot advance.

Paper: Validating Timed Models of Deployment Components with Parametric Concurrency.

Proc. Int. Conference on Formal Verification of Object-Oriented Software (FoVeOOS) 2010. LNCS 6528, pg. 46–60.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 17 / 43

http://www.hats-project.eu

Operational Semantics - Extension

crl [progress] :
{ cn 〈 t : Clock | limit : limit 〉 }

−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 }
if canAdv(cn,t)∧ t < limit .

Adv(cn) resets the free resources of each deployment component to their specified limit.

canAdv(cn,t) is true if

I no object can do anything and no invocation messages to that object are in the
configuration.

An object can not do anything if:

• Its deployment component has run out of resources or
• All its process are blocked

Otherwise, time cannot advance.

Paper: Validating Timed Models of Deployment Components with Parametric Concurrency.

Proc. Int. Conference on Formal Verification of Object-Oriented Software (FoVeOOS) 2010. LNCS 6528, pg. 46–60.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 17 / 43

http://www.hats-project.eu

Operational Semantics - Extension

crl [progress] :
{ cn 〈 t : Clock | limit : limit 〉 }

−→ {Adv(cn) 〈 t + 1: Clock | limit : limit 〉 }
if canAdv(cn,t)∧ t < limit .

Adv(cn) resets the free resources of each deployment component to their specified limit.

canAdv(cn,t) is true if

I no object can do anything and no invocation messages to that object are in the
configuration.

An object can not do anything if:

• Its deployment component has run out of resources or
• All its process are blocked

Otherwise, time cannot advance.

Paper: Validating Timed Models of Deployment Components with Parametric Concurrency.

Proc. Int. Conference on Formal Verification of Object-Oriented Software (FoVeOOS) 2010. LNCS 6528, pg. 46–60.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 17 / 43

http://www.hats-project.eu

Example: A Shopping Service

Web Shop Model

Client

Client

order()

success?

order()

success?

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 18 / 43

http://www.hats-project.eu

Example: A Shopping Service

Client

Client

order()

success?

order()

success?

Agent Sessions

DBSession

getsession()

makeorder()

result

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 19 / 43

http://www.hats-project.eu

Example: A Shopping Service - Abs Model

Database

interface Database { Bool makeOrder(); }
class Database(Nat min, Nat max) implements Database {

Bool makeOrder () {
Time t:=now;
await now >= t + min;
return now <= t + max; }

}

interface Session { Bool order(); }
class Session(Agent agent, Database db) implements Session {

Bool order() {return db.makeorder(); agent.free(this); }
}

interface Agent { Session getSession(); Void free(Session session); }
class Agent(Database db, Set[Session] sessionPool) implements Agent {

Session getSession() {
if isempty(sessionPool) {

return new Session(this, db); }
else { session:=choose(sessionPool);

sessionPool:=remove(session,sessionPool); return session; } }
Void free(Session session) {sessionPool := add(sessionPool, session); }

}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 20 / 43

http://www.hats-project.eu

Example: A Shopping Service - Abs Model

interface Database { Bool makeOrder(); }
class Database(Nat min, Nat max) implements Database {

Bool makeOrder () {
Time t:=now;
await now >= t + min;
return now <= t + max; }

}

Session

interface Session { Bool order(); }
class Session(Agent agent, Database db) implements Session {

Bool order() {return db.makeorder(); agent.free(this); }
}

interface Agent { Session getSession(); Void free(Session session); }
class Agent(Database db, Set[Session] sessionPool) implements Agent {

Session getSession() {
if isempty(sessionPool) {

return new Session(this, db); }
else { session:=choose(sessionPool);

sessionPool:=remove(session,sessionPool); return session; } }
Void free(Session session) {sessionPool := add(sessionPool, session); }

}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 20 / 43

http://www.hats-project.eu

Example: A Shopping Service - Abs Model

interface Database { Bool makeOrder(); }
class Database(Nat min, Nat max) implements Database {

Bool makeOrder () {
Time t:=now;
await now >= t + min;
return now <= t + max; }

}

interface Session { Bool order(); }
class Session(Agent agent, Database db) implements Session {

Bool order() {return db.makeorder(); agent.free(this); }
}

Agent

interface Agent { Session getSession(); Void free(Session session); }
class Agent(Database db, Set[Session] sessionPool) implements Agent {

Session getSession() {
if isempty(sessionPool) {

return new Session(this, db); }
else { session:=choose(sessionPool);

sessionPool:=remove(session,sessionPool); return session; } }
Void free(Session session) {sessionPool := add(sessionPool, session); }

}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 20 / 43

http://www.hats-project.eu

Example: Client Behavior

Periodic
Client

order() order() order() order() order() order()

timec c...

Sync
Client

order() order()

timec c

success success
order()order()

c

success

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 21 / 43

http://www.hats-project.eu

Example: Client Behavior

Periodic
Client

order() order() order() order() order() order()

timec c...

Sync
Client

order() order()

timec c

success success
order()order()

c

success

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 21 / 43

http://www.hats-project.eu

Example: Client Behavior - Abs Model

Synchronous client

class SyncClient(Agent a, Nat c) {
Void run {

Time t := now;
Session s := a.getsession();
Bool result := s.order();
await now >= t + c;
this!run(); } }

class PeriodicClient(Agent a, Nat c) {
Void run {

Time t := now;
Session s := a.getsession();
Fut(Bool) rc := s!order();
await now >= t + c;
this!run(); } }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 22 / 43

http://www.hats-project.eu

Example: Client Behavior - Abs Model

class SyncClient(Agent a, Nat c) {
Void run {

Time t := now;
Session s := a.getsession();
Bool result := s.order();
await now >= t + c;
this!run(); } }

Periodic client

class PeriodicClient(Agent a, Nat c) {
Void run {

Time t := now;
Session s := a.getsession();
Fut(Bool) rc := s!order();
await now >= t + c;
this!run(); } }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 22 / 43

http://www.hats-project.eu

Example: Simulation

Client

Client

order()

success?

order()

success?

Agent Sessions

DBSession

getsession()

makeorder()

result

Shop

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 23 / 43

http://www.hats-project.eu

Example: Simulation and Testing - Abs Model

Different configurations:

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
SyncClient c := new SyncClient(a, 5); ... }

or

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
PeriodicClient c := new PeriodicClient(a, 5); ... }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 24 / 43

http://www.hats-project.eu

Example: Simulation and Testing - Abs Model

Different configurations:

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
SyncClient c := new SyncClient(a, 5); ... }

or

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
PeriodicClient c := new PeriodicClient(a, 5); ... }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 24 / 43

http://www.hats-project.eu

Example: Simulation and Testing - Abs Model

Different configurations:

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
SyncClient c := new SyncClient(a, 5); ... }

or

Void main() {
Component shop := component(10);
Database db := new Database(5, 10) in shop;
Agent a := new Agent(db, {}) in shop;
PeriodicClient c := new PeriodicClient(a, 5); ... }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 24 / 43

http://www.hats-project.eu

Example: Simulations in the Maude Interpreter

Use Maude as a language interpreter
to simulate the different scenarios

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 25 / 43

http://www.hats-project.eu

Example: Simulations in the Maude Interpreter - Results

The total and successful requests,
depending on the number of clients and resources

For a larger number of periodic clients, the system becomes unresponsive

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 26 / 43

http://www.hats-project.eu

Example: Simulations in the Maude Interpreter - Results

The total and successful requests,
depending on the number of clients and resources

For a larger number of periodic clients, the system becomes unresponsive

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 26 / 43

http://www.hats-project.eu

Example: Simulations in the Maude Interpreter - Results

The total and successful requests,
depending on the number of clients and resources

For a larger number of periodic clients, the system becomes unresponsive

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 26 / 43

http://www.hats-project.eu

Example: Simulations in the Maude Interpreter - Results

The total and successful requests,
depending on the number of clients and resources

For a larger number of periodic clients, the system becomes unresponsive

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 26 / 43

http://www.hats-project.eu

Deployment Component

Object1

ObjectN

method1()

result

methodN()

result

ObjectA

ObjectC

ObjectB

DC

methodA()

methodB()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 27 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

Object1

ObjectN

method1()

result

methodN()

result

ObjectA ObjectC

DC1

methodA()

methodB()

Balancer1

ObjectB

Balancer2

DC2

request()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 28 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Dynamic Resource Reallocation

I Let components and resources be first-class citizens in the language

I Now, we can store and pass on components and resource values

More new expressions and statements in Abs

Consider a variable dc of type Component and r of type Resource:

I The expression mycomp returns dc of the object.

I The expression available returns the number of resources currently
allocated to mycomp

I The expression load(e) returns the average number of used resources in
mycomp during the last e time intervals

I The statement transfer(dc, r) reallocates r resources from mycomp to
another component dc

Paper: Dynamic Resource Reallocation Between Deployment Components.

Proc. Int. Conference on Formal Engineering Methods (ICFEM) 2010. LNCS 6447, pg. 646–661.

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 29 / 43

http://www.hats-project.eu

Example: Phone Services

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 30 / 43

http://www.hats-project.eu

Example: Phone Services

smscomp

telcomp

Client

Client

sms()

call(n)

sms()

call(n)

tel

sms

telb

smsb

request()

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 31 / 43

http://www.hats-project.eu

Example: Phone Services - Abs Model

Telephone Service

interface TelephoneService { Void call(Int duration); }
class TelephoneService implements TelephoneService {

Void call(Int duration) {
Time t; t := now;
await now >= t + duration; }

}

interface SMSService { Void sendSMS(); }
class SMSService implements SMSService {

Void sendSMS() { skip; }
}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 32 / 43

http://www.hats-project.eu

Example: Phone Services - Abs Model

interface TelephoneService { Void call(Int duration); }
class TelephoneService implements TelephoneService {

Void call(Int duration) {
Time t; t := now;
await now >= t + duration; }

}

SMS Service

interface SMSService { Void sendSMS(); }
class SMSService implements SMSService {

Void sendSMS() { skip; }
}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 32 / 43

http://www.hats-project.eu

Example: Load Balancing Strategy - Abs Model

The proposed resource-related language-constructors available, load
and transfer allow to express different load balancing schemes:

A simple balancer scheme

interface Balancer { Void setPartner(Balancer p);
Void request(Component comp); }

class Balancer {
Balancer partner := null;

Void setPartner(Balancer p) { partner := p; }

Void request(Component comp) {
if (load(1)<available−10) {transfer(comp,available/2);} }

Void run () {
Time t := now;
await now > t;
if (partner 6=null ∧ available<load(1)*0.9) {

partner.request(mycomp);}
this!run(); }

}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 33 / 43

http://www.hats-project.eu

Example: Load Balancing Strategy - Abs Model

The proposed resource-related language-constructors available, load
and transfer allow to express different load balancing schemes:

A simple balancer scheme

interface Balancer { Void setPartner(Balancer p);
Void request(Component comp); }

class Balancer {
Balancer partner := null;

Void setPartner(Balancer p) { partner := p; }

Void request(Component comp) {
if (load(1)<available−10) {transfer(comp,available/2);} }

Void run () {
Time t := now;
await now > t;
if (partner 6=null ∧ available<load(1)*0.9) {

partner.request(mycomp);}
this!run(); }

}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 33 / 43

http://www.hats-project.eu

Example: The New Year’s Eve Client Behavior

50 70

Alternate
sms and call

Huge number of
sms per time interval

time

Alternate
sms and call

Midnight Window

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 34 / 43

http://www.hats-project.eu

Example: The New Year’s Eve Client Behavior

Normal behavior of client

class NYEbehavior (cycle: Int, ts: TelephoneService, smss: SMSService) {
Time created := now; Bool call := false;

Void normalBehavior() {
Time t := now;
if (now > created + 50 && now < created + 70) {

!midnightWindow();
} else {

if (call) ts.call(1;) else !smss.sendSMS()
call := ˜ call;
await now >= t + cycle;
!normalBehavior(); } }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 35 / 43

http://www.hats-project.eu

Example: The New Year’s Eve Client Behavior

Midnight behavior of client

Void midnightWindow() {
Time t := now;
Int i := 0;
if (now > created + 70) {

!normalBehavior();
} else {

while (i < 10) { !smss.sendSMS(); i := i+1; }
await now > t;
!midnightWindow(); } }

op run() { !normalBehavior(); } }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 36 / 43

http://www.hats-project.eu

Example: The New Year’s Eve Client Behavior

Void midnightWindow() {
Time t := now;
Int i := 0;
if (now > created + 70) {

!normalBehavior();
} else {

while (i < 10) { !smss.sendSMS(); i := i+1; }
await now > t;
!midnightWindow(); } }

Run

op run() { !normalBehavior(); } }

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 36 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

Balancer smsb := new Balancer in smscomp;
Balancer telb := new Balancer in telcomp;

smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 37 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

Balancer smsb := new Balancer in smscomp;
Balancer telb := new Balancer in telcomp;

smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 37 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

Balancer smsb := new Balancer in smscomp;
Balancer telb := new Balancer in telcomp;

smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 37 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

Balancer smsb := new Balancer in smscomp;
Balancer telb := new Balancer in telcomp;

smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 37 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

Balancer smsb := new Balancer in smscomp;
Balancer telb := new Balancer in telcomp;

smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 37 / 43

http://www.hats-project.eu

Example: Simulating and Testing - Abs Model

Void main() {
Component smscomp := component(50);
Component telcomp := component(50);

SMSService sms := new SMSService() in smscomp;
TelephoneService tel := new TelephoneService() in telcomp;

//Balancer smsb := new Balancerinsmscomp;
//Balancer telb := new Balancerintelcomp;

//smsb.setPartner(telb); telb.setPartner(smsb);

Client c := new NYEbehavior(1,tel,sms); . . .}

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 38 / 43

http://www.hats-project.eu

Example: Simulation in the Maude Interpreter

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 39 / 43

http://www.hats-project.eu

Example: Simulation in the Maude Interpreter

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 39 / 43

http://www.hats-project.eu

Conclusions

I Modern software is designed to be
deployed in different architectures

I Need analysis support which ranges
over different deployment scenarios

I We proposed deployment components
with parametric concurrent resources

I Abstract notion of resource, reflecting the execution capacity of a
component in a given time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 40 / 43

http://www.hats-project.eu

Conclusions

I Modern software is designed to be
deployed in different architectures

I Need analysis support which ranges
over different deployment scenarios

I We proposed deployment components
with parametric concurrent resources

I Abstract notion of resource, reflecting the execution capacity of a
component in a given time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 40 / 43

http://www.hats-project.eu

Conclusions

I Modern software is designed to be
deployed in different architectures

I Need analysis support which ranges
over different deployment scenarios

I We proposed deployment components
with parametric concurrent resources

I Abstract notion of resource, reflecting the execution capacity of a
component in a given time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 40 / 43

http://www.hats-project.eu

Conclusions

I Modern software is designed to be
deployed in different architectures

I Need analysis support which ranges
over different deployment scenarios

I We proposed deployment components
with parametric concurrent resources

I Abstract notion of resource, reflecting the execution capacity of a
component in a given time interval

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 40 / 43

http://www.hats-project.eu

Conclusions

I Dynamic reallocation of resources

I Software controlling allocation and
reallocation of resources can be
completely separated from the rest of
the code

I Different reallocation strategies can be expressed in terms of
load(e), available and transfer(dc , r)

I It is easy to replace different reallocation strategies for different
components

I Possible to express interesting non-functional system properties

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 41 / 43

http://www.hats-project.eu

Conclusions

I Dynamic reallocation of resources

I Software controlling allocation and
reallocation of resources can be
completely separated from the rest of
the code

I Different reallocation strategies can be expressed in terms of
load(e), available and transfer(dc , r)

I It is easy to replace different reallocation strategies for different
components

I Possible to express interesting non-functional system properties

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 41 / 43

http://www.hats-project.eu

Conclusions

I Dynamic reallocation of resources

I Software controlling allocation and
reallocation of resources can be
completely separated from the rest of
the code

I Different reallocation strategies can be expressed in terms of
load(e), available and transfer(dc , r)

I It is easy to replace different reallocation strategies for different
components

I Possible to express interesting non-functional system properties

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 41 / 43

http://www.hats-project.eu

Conclusions

I Dynamic reallocation of resources

I Software controlling allocation and
reallocation of resources can be
completely separated from the rest of
the code

I Different reallocation strategies can be expressed in terms of
load(e), available and transfer(dc , r)

I It is easy to replace different reallocation strategies for different
components

I Possible to express interesting non-functional system properties

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 41 / 43

http://www.hats-project.eu

Conclusions

I Dynamic reallocation of resources

I Software controlling allocation and
reallocation of resources can be
completely separated from the rest of
the code

I Different reallocation strategies can be expressed in terms of
load(e), available and transfer(dc , r)

I It is easy to replace different reallocation strategies for different
components

I Possible to express interesting non-functional system properties

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 41 / 43

http://www.hats-project.eu

Ongoing/Future Work

I Reallocation between deployment components
(eg. load balancing) using object mobility

I Resource adjustments frameworks using
hierarchical strategies

I Stronger analysis methods
• Symbolic analysis
• Static analysis

I Memory resources for deployment components
I Scheduling

• Priority scheduling: Processes can dynamically increase
or decrease in priority according to their waiting time

• Deadlines to method calls

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 42 / 43

http://www.hats-project.eu

Ongoing/Future Work

I Reallocation between deployment components
(eg. load balancing) using object mobility

I Resource adjustments frameworks using
hierarchical strategies

I Stronger analysis methods
• Symbolic analysis
• Static analysis

I Memory resources for deployment components
I Scheduling

• Priority scheduling: Processes can dynamically increase
or decrease in priority according to their waiting time

• Deadlines to method calls

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 42 / 43

http://www.hats-project.eu

Ongoing/Future Work

I Reallocation between deployment components
(eg. load balancing) using object mobility

I Resource adjustments frameworks using
hierarchical strategies

I Stronger analysis methods
• Symbolic analysis
• Static analysis

I Memory resources for deployment components
I Scheduling

• Priority scheduling: Processes can dynamically increase
or decrease in priority according to their waiting time

• Deadlines to method calls

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 42 / 43

http://www.hats-project.eu

Ongoing/Future Work

I Reallocation between deployment components
(eg. load balancing) using object mobility

I Resource adjustments frameworks using
hierarchical strategies

I Stronger analysis methods
• Symbolic analysis
• Static analysis

I Memory resources for deployment components

I Scheduling
• Priority scheduling: Processes can dynamically increase

or decrease in priority according to their waiting time
• Deadlines to method calls

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 42 / 43

http://www.hats-project.eu

Ongoing/Future Work

I Reallocation between deployment components
(eg. load balancing) using object mobility

I Resource adjustments frameworks using
hierarchical strategies

I Stronger analysis methods
• Symbolic analysis
• Static analysis

I Memory resources for deployment components
I Scheduling

• Priority scheduling: Processes can dynamically increase
or decrease in priority according to their waiting time

• Deadlines to method calls

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 42 / 43

http://www.hats-project.eu

THANK YOU

Rudolf Schlatte Deployment Components 10.3.2011, Tallinn 43 / 43

http://www.hats-project.eu

