
Modelling Workflow Systems with Active Folders:

A Decentralized and Declarative approach to Collaborative Systems

with an emphasis on the Artifacts and the Stakeholders

Eric Badouel

INRIA - Rennes

June 2012

Eric Badouel (INRIA) Active Folders Tallinn 1 / 46

Plan

1 Document-Centric Workflow Systems

2 The Model of Active Folders

3 Assessment of the Model and Future Works

Eric Badouel (INRIA) Active Folders Tallinn 2 / 46

Document-Centric Workflow Systems

Document-centric Workflow Systems

Of documents and men

Eric Badouel (INRIA) Active Folders Tallinn 3 / 46

Document-Centric Workflow Systems

Business Process Management

Workflows systems are traditionnally organized as a set of coordinated
activities between the various stakeholders of the system.

Eric Badouel (INRIA) Active Folders Tallinn 4 / 46

Document-Centric Workflow Systems

Business Process Management

Workflows systems are traditionnally organized as a set of coordinated
activities between the various stakeholders of the system.

In this context the emphasis is on the flow of tasks, which is usually modeled
using centralized and state-based formalisms like automata, or Petri nets.

Eric Badouel (INRIA) Active Folders Tallinn 4 / 46

Document-Centric Workflow Systems

Business Process Management

Workflows systems are traditionnally organized as a set of coordinated
activities between the various stakeholders of the system.

In this context the emphasis is on the flow of tasks, which is usually modeled
using centralized and state-based formalisms like automata, or Petri nets.

Data that are exchanged during the processing of a task play a secondary role
when they are not simply ignored.

Eric Badouel (INRIA) Active Folders Tallinn 4 / 46

Document-Centric Workflow Systems

Business Process Management

Workflows systems are traditionnally organized as a set of coordinated
activities between the various stakeholders of the system.

In this context the emphasis is on the flow of tasks, which is usually modeled
using centralized and state-based formalisms like automata, or Petri nets.

Data that are exchanged during the processing of a task play a secondary role
when they are not simply ignored.

Similarly, stakeholders are used as plain ressources of these systems like a
machine or a robot in a production line.

Eric Badouel (INRIA) Active Folders Tallinn 4 / 46

Document-Centric Workflow Systems

Data-centric Workflows

By contrast, the more recent model of data-centric workflow systems, put
forward by IBM, puts stress on the exchanged documents, the so-called
Business Artifacts.

Eric Badouel (INRIA) Active Folders Tallinn 5 / 46

Document-Centric Workflow Systems

Data-centric Workflows

By contrast, the more recent model of data-centric workflow systems, put
forward by IBM, puts stress on the exchanged documents, the so-called
Business Artifacts.

An artifact is a document that conveys all the informations related to a given
task from its inception in the workflow till its completion.

Eric Badouel (INRIA) Active Folders Tallinn 5 / 46

Document-Centric Workflow Systems

Data-centric Workflows

By contrast, the more recent model of data-centric workflow systems, put
forward by IBM, puts stress on the exchanged documents, the so-called
Business Artifacts.

An artifact is a document that conveys all the informations related to a given
task from its inception in the workflow till its completion.

However this model is again state-based (the life cycle of an artifact is given
by an automaton) and centralized, and stakeholders are still not first class
citizens.

Eric Badouel (INRIA) Active Folders Tallinn 5 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Our proposition

A modular language-based approach for the design of the end-user workspace.

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Our proposition

A modular language-based approach for the design of the end-user workspace.

This workspace is modeled by a so-called Active Folder which combines
structure, data, and computations.

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Our proposition

A modular language-based approach for the design of the end-user workspace.

This workspace is modeled by a so-called Active Folder which combines
structure, data, and computations.

The latter are given by semantic rules used to derive data values from
contextual information in the structure –as in a spreadsheet system– or to
restrict user interactions to guide him in the completion of some required
data fields.

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Our proposition

A modular language-based approach for the design of the end-user workspace.

This workspace is modeled by a so-called Active Folder which combines
structure, data, and computations.

The latter are given by semantic rules used to derive data values from
contextual information in the structure –as in a spreadsheet system– or to
restrict user interactions to guide him in the completion of some required
data fields.

This model use a variant of attribute grammars

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

Document-Centric Workflow Systems

Active Folders

A decentralized and purely declarative approach to

collaborative systems which are at the same time user-centric and data
sensitive.

Our proposition

A modular language-based approach for the design of the end-user workspace.

This workspace is modeled by a so-called Active Folder which combines
structure, data, and computations.

The latter are given by semantic rules used to derive data values from
contextual information in the structure –as in a spreadsheet system– or to
restrict user interactions to guide him in the completion of some required
data fields.

This model use a variant of attribute grammars

The actions in the system are then modelled as the productions of the
grammar (used for refining a budding node of an artifact).

Eric Badouel (INRIA) Active Folders Tallinn 6 / 46

The Model of Active Folders

The Model of Active Folders

A Case Study: The Editorial Process of an Electronic
Journal

Eric Badouel (INRIA) Active Folders Tallinn 7 / 46

The Model of Active Folders

Artefact

A

data

s

?

data1

s1

B

data2

s2

Grammar

A : s → s1 s2

B : s2 →

local information: τ ::= (τ1, . . . , τn) | τ
∗ | b

article = {date :: Date;
title :: String;
correspondingauthor :: author;
coauthors :: author

∗;
abstract :: String;
text :: PDF}

Eric Badouel (INRIA) Active Folders Tallinn 8 / 46

The Model of Active Folders

Definition of a node: Production

P : 〈x0 :: s0〉 → 〈x1 :: s1〉 · · · 〈xn :: sn〉

?

α

s0

P

α′

s0

?

α1

s1

?

αn

sn

Local information is

initialized at the creation of the node

updated when it is defined by a production.

Eric Badouel (INRIA) Active Folders Tallinn 9 / 46

The Model of Active Folders

Active Documents: Attaching programs to open nodes

?

α

P

α′

?

α1

?

αn

s0

user

s1

user

sn

user

A generator serves only once (to define the node it is attached to) but new
generators must be attached to the newly created (open) nodes.

A generator is a reactive program triggered either

by user interactions
by the arrival of a value in an input port (public channel)
by reading a value of an input node (that should be linked to it beforehand).

Eric Badouel (INRIA) Active Folders Tallinn 10 / 46

The Model of Active Folders

Submitting a paper

?

SInBox

SSubmit

?

SSubmit

?
data

S(port, val) : 〈x :: SInBox〉 → 〈x
′ :: SInBox 〉 〈y :: elet〉

where x ′ = S(port)
y = users

y .local = val

Eric Badouel (INRIA) Active Folders Tallinn 11 / 46

The Model of Active Folders

Submission validated by the Editor in Chief

?

?
data

SSubmit

Subm
data

Eric Badouel (INRIA) Active Folders Tallinn 12 / 46

The Model of Active Folders

Sollicitation of an Associate Editor

?

Ed
ed1

data R

?
?

SSubmit

q

Subm
data

?

EInBox

R

Eric Badouel (INRIA) Active Folders Tallinn 13 / 46

The Model of Active Folders

Sollicitation of an Associate Editor (2)

?

Ed
ed1 ReqEd

data

data

?

SSubmit

q

Subm
data

?

EInBox

R

Eric Badouel (INRIA) Active Folders Tallinn 14 / 46

The Model of Active Folders

Sollicitation of an Associate Editor (3)

?

Ed
ed1

data

?

SSubmit

Subm
data

?

R

?
data

?

q

Eric Badouel (INRIA) Active Folders Tallinn 15 / 46

The Model of Active Folders

Associate Editor’s refusal

?

Ed
ed1

data

?

SSubmit

Subm
data

?

R

No
data+msg

No
msg

q

Eric Badouel (INRIA) Active Folders Tallinn 16 / 46

The Model of Active Folders

Associate Editor’s refusal (2)

?

Ed
ed1

data

?

No
msg

?

SSubmit

Subm
data

?

R

No
data+msg

Eric Badouel (INRIA) Active Folders Tallinn 17 / 46

The Model of Active Folders

Ready to look for another Associate Editor

?

Ed
ed1

data

No
msg

?

SSubmit

Subm
data

?

R

No
data+msg

Eric Badouel (INRIA) Active Folders Tallinn 18 / 46

The Model of Active Folders

Editor 2 has been sollicited

Ed
ed2

data

? ?

R

?
data

?

q

Eric Badouel (INRIA) Active Folders Tallinn 19 / 46

The Model of Active Folders

Editor 2 has accepted

Ed
ed2

data

? ?

R

Yes
data+msg

Yes
msg

?

?

q

Eric Badouel (INRIA) Active Folders Tallinn 20 / 46

The Model of Active Folders

Editor 2 has accepted (2)

Ed
ed2

Yes
msg

?

?

R

Yes
data+msg

?

?

q’

Eric Badouel (INRIA) Active Folders Tallinn 21 / 46

The Model of Active Folders

Some time later ...

Ed
ed2

Yes
msg

?

Yes
data+msg

?

?

?

?

No
ref1

Yes
ref2

Yes
ref3

Yes
ref4

Report

data
q’

Eric Badouel (INRIA) Active Folders Tallinn 22 / 46

The Model of Active Folders

Attributes

Attributes contain (structural) information attached to nodes which are used to compute
some synthesized information to be send to an external node having subscribed for this
information.

place y subscribes to a view q of the synthesized attribute a ∈ Syn(s) of node x :: s

?

data

x :: s

?

data′

y :: s ′

inh
x · i

?
x · a

q

y = q(x · a)

attributes vs local information

Attributes are produced and consummed (by semantics rules), they are attached to open
nodes (buds) and therefore this auxiliary information (carried by attributes) no longer
exists when the artefact is completed (no open nodes left).

Eric Badouel (INRIA) Active Folders Tallinn 23 / 46

The Model of Active Folders

Semantics rules

?

α

x0

?

β

y

inh

x0 · i

?

x0 · a

q

z = t(z1, · · · , zm)

t is a tree over an auxiliary alphabet of constructors

copy rule when t = z′ is a variable

used variables:
{x0 · i | i ∈ Inh(s0)} ∪1≤j≤n {xj · a | a ∈ Syn(sj)}

defined variables:
{x0 · a | a ∈ Syn(s0)} ∪1≤j≤n {xj · i | i ∈ Inh(sj)}

P

α′

x0

?

α1

x1

?

αn

xn

inh1 ? inhn ?

?

β

y

syn

x0 · a

q

Eric Badouel (INRIA) Active Folders Tallinn 24 / 46

The Model of Active Folders

An Example: flattening a binary tree

Root

x

?

x1

id

Nil ?

Root : 〈x :: Root〉 → 〈x1 :: Bin〉

where x · s = x1 · s
x1 · h = Nil

Fork

x

? x1 ?x2

? id

id ? id ?

Fork : 〈x :: Bin〉 → 〈x1 :: Bin〉 〈x2 :: Bin〉

where x · s = x1 · s
x1 · h = x2 · s
x2 · h = x · h

Eric Badouel (INRIA) Active Folders Tallinn 25 / 46

The Model of Active Folders

An Example: flattening a binary tree (2)

Leaf
a

x

inh

x1

Cons
a

x0

Leaf (a) : 〈x :: Bin〉 →

where x .local = a

x · s = Consa(x · h)

Initial configuration

?

x :: Root

?

y :: List

?

id
y = x · s

Eric Badouel (INRIA) Active Folders Tallinn 26 / 46

The Model of Active Folders

Applying the semantic rules

?

x :: Root

?

y :: List

?

id

Root

x :: Root

?

x1

?

y :: List

Nil ?

id

To apply production Root at node x

Add to the current configuration y = x · s

the equations of the production where x is substitued
to the left-hand side variable and the variables of the
right and side (and their associated attributes) are
fresh names

x · s = x1.s

x1.h = Nil

The new configuration is obtained after

elimination of the copy rules: elimination of a

variable z which is both used and defined after

replacingeach of its used occurrences by its

definition

elimination of the equations that define an

inherited attribute of x or use a synthesized

attribute of x that may remain after elmination

of the copy rules.

y = x1.s

x1.h = Nil

Eric Badouel (INRIA) Active Folders Tallinn 27 / 46

The Model of Active Folders

Root

x :: Root

Fork
Nil id

?

y :: List

? ?

id ? ? ?

id

Eric Badouel (INRIA) Active Folders Tallinn 28 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

? ?

id ? Nil ?

id

Eric Badouel (INRIA) Active Folders Tallinn 29 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

? Leaf
c

id ?

id

Nil Cons
c

Eric Badouel (INRIA) Active Folders Tallinn 30 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

? Leaf
c

Cons
c

Nil

?

id

Eric Badouel (INRIA) Active Folders Tallinn 31 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

Leaf
c

Cons
c

Nil

?

Fork

? ?

id ? id ?

id

Eric Badouel (INRIA) Active Folders Tallinn 32 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

Leaf
cFork

? ?

id ? Cons
c

Nil

?

id

Eric Badouel (INRIA) Active Folders Tallinn 33 / 46

The Model of Active Folders

Root

x :: Root

Fork

?

y :: List

Leaf
cFork

Leaf
a ?

id Cons
a

Cons
c

Nil

?

id

Eric Badouel (INRIA) Active Folders Tallinn 34 / 46

The Model of Active Folders

Root

x :: Root

Fork

Cons
a

y :: List

?

Leaf
cFork

Leaf
a ?

?Cons
c

Nil

id

Eric Badouel (INRIA) Active Folders Tallinn 35 / 46

The Model of Active Folders

Root

x :: Root

Fork

Cons
a

y :: List

?

Leaf
cFork

Leaf
a

Leaf
b

Cons
b

Cons
c

Nil

id

Eric Badouel (INRIA) Active Folders Tallinn 36 / 46

The Model of Active Folders

Root

x :: Root

Fork

Cons
a

y :: List

Cons
b

Cons
c

Nil

Leaf
cFork

Leaf
a

Leaf
b

Eric Badouel (INRIA) Active Folders Tallinn 37 / 46

The Model of Active Folders

Composite productions

Derived operator t@ for t(x1, x2) = Fork(Fork(x1, x2), Leafc)

Fork
id

Leaf
cFork

? ?

id ? Cons
c

Nil

?

t@ : 〈x :: Bin〉 → 〈x1 :: Bin〉 〈x2 :: Bin〉

where x · s = x1 · s
x1 · h = x2 · s
x2 · h = Consa(Nil)

Eric Badouel (INRIA) Active Folders Tallinn 38 / 46

The Model of Active Folders

Generators (tree transducers)

q(A(x1, · · · , xn)) = · · ·

A

x

x1 xn

?

β

y

q

Eric Badouel (INRIA) Active Folders Tallinn 39 / 46

The Model of Active Folders

Generators (tree transducers)

q(A(x1, · · · , xn)) = tq,A(β)(y1, · · · , ym)
where y1 = q1(xi1), . . . , yn = qn(xin)

x1 xn

t@
q,A(β)

y

?

β1

y1

?

βn yn

?

βm

ym

q1

qn

user

Eric Badouel (INRIA) Active Folders Tallinn 39 / 46

The Model of Active Folders

Adding handles in semantic rules

The handle of a generator can be used in a semantic rule in order to linked it to an input

place. With some restriction: Any attribute whose value may contain an handle should

be used only once in semantics rules (a generator should never be linked to multiple

input places).

q(A(x1, · · · , xn)) = · · ·

A

x
?

β

y

q

Eric Badouel (INRIA) Active Folders Tallinn 40 / 46

The Model of Active Folders

Adding handles in semantic rules

The handle of a generator can be used in a semantic rule in order to linked it to an input

place. With some restriction: Any attribute whose value may contain an handle should

be used only once in semantics rules (a generator should never be linked to multiple

input places).

q(A(x1, · · · , xn) = tq,A(β)(y1, · · · , ym)) where

{

yj = qj(xij)
yj′ = user

xi = a

t@
q,A(β)

y

?

β1
?

βn

?

βm

qj

user

Eric Badouel (INRIA) Active Folders Tallinn 40 / 46

The Model of Active Folders

Communication between stakeholders: Public channels

Each site contains some input channels (each connected to an InBox). Upon receiving a

data they behave according to the schema described above,

?

InBox

Input

except that this channel does not disappear but
is “redirected” to a new fresh cell of the InBox
(implemented as a list of the artifacts created by
the messages)

Submit
data

?

?

Eric Badouel (INRIA) Active Folders Tallinn 41 / 46

The Model of Active Folders

Communication between stakeholders: Public channels

Each site contains some input channels (each connected to an InBox). Upon receiving a

data they behave according to the schema described above,

?

InBox

Input

except that this channel does not disappear but
is “redirected” to a new fresh cell of the InBox
(implemented as a list of the artifacts created by
the messages)

? ? ?
data

?

Eric Badouel (INRIA) Active Folders Tallinn 41 / 46

Assessment of the Model and Future Works

Assessment of the Model

and Future Works

in collaboration with

Héla Gomri, Georges-Edouard Kouamou, Célestin Nkuimi,

Rodrigue Djeumen, ...

Eric Badouel (INRIA) Active Folders Tallinn 42 / 46

Assessment of the Model and Future Works

Language-oriented approach

Language-oriented approach Procedural parts of artifacts encode and encapsulate
technical known-hows that end user may safely ignore. Each stakeholder
manipulates documents in a familiar syntax using notations adapted to
his domain (Domain Specific Languages).

Eric Badouel (INRIA) Active Folders Tallinn 43 / 46

Assessment of the Model and Future Works

Language-oriented approach

Language-oriented approach Procedural parts of artifacts encode and encapsulate
technical known-hows that end user may safely ignore. Each stakeholder
manipulates documents in a familiar syntax using notations adapted to
his domain (Domain Specific Languages).

Configuration of the Working Environment Attribute grammars can be used to design
DSL as a set of functional combinators. (Swierstra et al).

Eric Badouel (INRIA) Active Folders Tallinn 43 / 46

Assessment of the Model and Future Works

Language-oriented approach

Language-oriented approach Procedural parts of artifacts encode and encapsulate
technical known-hows that end user may safely ignore. Each stakeholder
manipulates documents in a familiar syntax using notations adapted to
his domain (Domain Specific Languages).

Configuration of the Working Environment Attribute grammars can be used to design
DSL as a set of functional combinators. (Swierstra et al).

Component-based Architecture Bottom-up approach: we first design the notations
specific to each stakeholder then we write specific procedures using these
DSLs. Therefore related applications can share the same architecture
(product line approach vs a particular application).

Eric Badouel (INRIA) Active Folders Tallinn 43 / 46

Assessment of the Model and Future Works

Language-oriented approach

Language-oriented approach Procedural parts of artifacts encode and encapsulate
technical known-hows that end user may safely ignore. Each stakeholder
manipulates documents in a familiar syntax using notations adapted to
his domain (Domain Specific Languages).

Configuration of the Working Environment Attribute grammars can be used to design
DSL as a set of functional combinators. (Swierstra et al).

Component-based Architecture Bottom-up approach: we first design the notations
specific to each stakeholder then we write specific procedures using these
DSLs. Therefore related applications can share the same architecture
(product line approach vs a particular application).

Combinator-based communication Component-based programming relies on an
adaquate notion of interface for the communication between the various
entities. To communicate with an external service, we use (part of) its
language. Interfaces consists in the type (and informal semantical
description) of combinators: each DSL is embedded in the same host
language (e.g. Haskell) so that interfacing the various activities does not
involve extra machinery.

Eric Badouel (INRIA) Active Folders Tallinn 43 / 46

Assessment of the Model and Future Works

User-centric Approach

Collaborative Systems The system is no longer dedicated to the orchestration of the
various activities but it is rather design as a support to the structuration
of its own activity and to the communication with the external services.
Exchanged documents (active forms) appears more as a support to the
communication than as the result of this collaboration.

Eric Badouel (INRIA) Active Folders Tallinn 44 / 46

Assessment of the Model and Future Works

User-centric Approach

Collaborative Systems The system is no longer dedicated to the orchestration of the
various activities but it is rather design as a support to the structuration
of its own activity and to the communication with the external services.
Exchanged documents (active forms) appears more as a support to the
communication than as the result of this collaboration.

Service-oriented Architecture Some combinators provided in the interface of a
component may implement services. A call to a service can be presented
as a form (build from these combinators) that enacts queries and specific
side effect actions (sending a message, updating a data base ...).

Eric Badouel (INRIA) Active Folders Tallinn 44 / 46

Assessment of the Model and Future Works

User-centric Approach

Collaborative Systems The system is no longer dedicated to the orchestration of the
various activities but it is rather design as a support to the structuration
of its own activity and to the communication with the external services.
Exchanged documents (active forms) appears more as a support to the
communication than as the result of this collaboration.

Service-oriented Architecture Some combinators provided in the interface of a
component may implement services. A call to a service can be presented
as a form (build from these combinators) that enacts queries and specific
side effect actions (sending a message, updating a data base ...).

Web Technology The approach is declarative, entities communicates through
asynchronous message passing (without fifo assumption nor share
memory), and everthing is encoded as (active) structured documents
(local states=active folders, message contents=active forms). These
systems may thus be directly deployed on Internet and in particular in a
degraded environement (where a client/server approach would not be
convenient).

Eric Badouel (INRIA) Active Folders Tallinn 44 / 46

Assessment of the Model and Future Works

Modularity

The attribute grammars approach to the design of combinator languages allows various
forms of modularity:

modular attribute grammars based on Bekic principle of resolution of systems of
recursive equation by substitution allows to decompose a large attribute grammar
into a set of smaller specifications. This method encourages the reuse of langage
designs.

Eric Badouel (INRIA) Active Folders Tallinn 45 / 46

Assessment of the Model and Future Works

Modularity

The attribute grammars approach to the design of combinator languages allows various
forms of modularity:

modular attribute grammars based on Bekic principle of resolution of systems of
recursive equation by substitution allows to decompose a large attribute grammar
into a set of smaller specifications. This method encourages the reuse of langage
designs.

Descriptional composition A way of decomposing a langage into successive stages
(originally introduced by Genzinger and Giegerich). Allow semantic rules to use
notations borrowed from other pre-existing languages.

Eric Badouel (INRIA) Active Folders Tallinn 45 / 46

Assessment of the Model and Future Works

Modularity

The attribute grammars approach to the design of combinator languages allows various
forms of modularity:

modular attribute grammars based on Bekic principle of resolution of systems of
recursive equation by substitution allows to decompose a large attribute grammar
into a set of smaller specifications. This method encourages the reuse of langage
designs.

Descriptional composition A way of decomposing a langage into successive stages
(originally introduced by Genzinger and Giegerich). Allow semantic rules to use
notations borrowed from other pre-existing languages.

Aspect decomposition An aspect can be viewed as a bunch of attributes.

Eric Badouel (INRIA) Active Folders Tallinn 45 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).
2 A (simplified) system of distance learning in a degraded environment

(intermitent connection to Internet).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).
2 A (simplified) system of distance learning in a degraded environment

(intermitent connection to Internet).
3 A distributed system of early detection of diseases (Institut Pasteur).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).
2 A (simplified) system of distance learning in a degraded environment

(intermitent connection to Internet).
3 A distributed system of early detection of diseases (Institut Pasteur).
4 A reporting system (“write things once” principle, 90% of an activity report

consists of information already available, avoid unnecessary overload in
low-content communication: “zero Email” principle).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).
2 A (simplified) system of distance learning in a degraded environment

(intermitent connection to Internet).
3 A distributed system of early detection of diseases (Institut Pasteur).
4 A reporting system (“write things once” principle, 90% of an activity report

consists of information already available, avoid unnecessary overload in
low-content communication: “zero Email” principle).

An editor for the description and generation of a document-centric worflow
system based on Active Folders. Using the early version of an editor of
modular attribute grammars that we have developped (Edigram).

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

Assessment of the Model and Future Works

Future Works

Introduce notations and diagrams to guide the modelisation process (as an
aid to the design of particular instances of Active Folders).

Automatic generation of code from the such a specification.

We would like to develop some representative case studies
1 The editorial process of an electronic journal (from submission to publication).
2 A (simplified) system of distance learning in a degraded environment

(intermitent connection to Internet).
3 A distributed system of early detection of diseases (Institut Pasteur).
4 A reporting system (“write things once” principle, 90% of an activity report

consists of information already available, avoid unnecessary overload in
low-content communication: “zero Email” principle).

An editor for the description and generation of a document-centric worflow
system based on Active Folders. Using the early version of an editor of
modular attribute grammars that we have developped (Edigram).

Formal properties: modularity, interfaces, soundness ...

Eric Badouel (INRIA) Active Folders Tallinn 46 / 46

	Document-Centric Workflow Systems
	The Model of Active Folders
	Assessment of the Model and Future Works

