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Discovering workflow nets from event logs

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is
marked) until the case terminates and exits from the system (output place o is marked).
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A workflow net is a contact-free, initially life,
place simple and connected elementary net
system N = (P,T , F ,M0) where P contains
an input place i and an output place o

•i = o• = ∅

M[t〉M′ ⇔ •t ⊆ M ∧ M ∩ t• = ∅
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L(N) = {u ∈ T∗ | M0[u〉Mt }
= {ABCD,ACBD,AED}

A net is contact free if •t ⊆ M entails M ∩ t• = ∅ for every reachable marking M; hence

M[t〉M′ ⇔
(

•t ⊆ M ∧ M′ = M \ •t ∪ t•
)

.
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marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life,
place simple and connected elementary net
system N = (P,T , F ,M0) where P contains
an input place i and an output place o

•i = o• = ∅

p inner place: •p 6= ∅ ∧ p• 6= ∅

termination: Mt = {o} is reachable from
any marking reachable from M0 = {i}.

no scories: Mt is the only reachable
marking that contains o.
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α-abstraction of a log

α-Abstraction of a language W ⊆ T∗

Abs(W ) =
{

t | t.T∗ ∩W 6= ∅
}

t ∈ IW
∪
{

t t’ | T∗.t.t ′.T∗ ∩W 6= ∅
}

(t, t ′) ∈ CW

∪
{

t | T∗.t ∩W 6= ∅
}

t ∈ OW
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2 (∀a1, a2 ∈ A) a1♯W a2, and

3 (∀b1, b2 ∈ B) b1♯W b2
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Let A ≺m
W B when A and B are maximal sets with the property A ≺W B, i.e.,

A ≺m
W B ⇔ (A ≺W B) ∧ (A′ ≺W B′ ∧ A ⊆ A′ ∧ B ⊆ B′ ⇒ A = A′ ∧ B = B′).
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α-algorithm
α(W ) = (P ,T ,F ,M0) defined as follows:

1 P = {i , o} ∪ {pA,B | ∅ 6= A,B ⊆ T ∧ A ≺m
W B },

2 •i = ∅, and i• = IW ,

3 •o = OW , and o• = ∅,

4 •pA,B = A, and pA,B
• = B,

5 M0 = {i}.

W = {ABCD,ACBD,AED}
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Some observations about α
Two places of a net constructed by algorithm α are incomparable for the order relation:

p ⊑ q ⇔ (•p ⊆ •q ∧ p• ⊆ q•)
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Do non maximal elements of ≺W always provide redundant places ?
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p ⊑ q ⇔ (•p ⊆ •q ∧ p• ⊆ q•)

Do non maximal elements of ≺W always provide redundant places ?

A place p of a (contact-free) net system N = (P,T , F ,M0) is a (structurally) implicit
place if for every reachable marking M and transition t ∈ p•, •t \ {p} ⊆ M ⇒ p ∈ M.

L(N) = A (B′C ′A′)∗ B (C ′A′B′)∗ C .

A complete log is
W = {ABC ,AB′C ′A′BC ′A′B′C}.

q, q′ and r correspond to maximal elements of
relation ≺W :

{A,A′}≺m
W{B,B

′},
{B,B′}≺m

W{C ,C
′},

{C ′}≺m
W{A

′}

p ❁ q and p′ ❁ q′

L(α(W )) = A (B + B′) (C ′A′ (B + B′))∗ C

i
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p′ q′
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A A′
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C C ′
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Complete logs of a workflow net

Complete log

W ⊆ L(N) is a complete log of workflow net N if Abs(W ) = Abs(L(N)), i.e. it
contains all the information used to synthesize α(L(N)); thus α(W ) ∼= α(L(N)).
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Algorithm α is sober

For any complete log W ⊆ L(N) of a workflow net N any larger log
W ⊆W ′ ⊆ L(N) is also complete

The minimal size of complete logs of workflow nets is asymptotically negligible
w.r.t. the size of their languages.

The size of Abs(L(N)) is in O(|T |2). Moreover, a firing sequence of N contained in a

log W may contribute several pairs of transitions in CW .
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Algorithm α is sober

For any complete log W ⊆ L(N) of a workflow net N any larger log
W ⊆W ′ ⊆ L(N) is also complete

The minimal size of complete logs of workflow nets is asymptotically negligible
w.r.t. the size of their languages.

The size of Abs(L(N)) is in O(|T |2). Moreover, a firing sequence of N contained in a

log W may contribute several pairs of transitions in CW .

Sobriety means that one can assume W ⊆ L(N) to be a complete log of workflow
net N as soon as it contains a reasonable number of its execution sequences.
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Discovery of a workflow net from one of its complete logs

Workflow net discovery:

A workflow net N is α-reconstructible, i.e., N ∼= α(L(N)) if and only if it can be
discovered from any of its complete log W ⊆ L(N), i.e., N ∼= α(W ).
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W ⊆ L(N) is a complete log of an unknown α-reconstructible workflow net N. if and
only if the following two conditions hold:
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(ii) Abs(W ) = Abs(α(W )), i.e. W is also a complete log of α(W ).

Eric Badouel (INRIA) On the α-Reconstructibility of Workflow Nets Tallinn 7 / 18



Discovery of a workflow net from one of its complete logs

Workflow net discovery:

A workflow net N is α-reconstructible, i.e., N ∼= α(L(N)) if and only if it can be
discovered from any of its complete log W ⊆ L(N), i.e., N ∼= α(W ).

Remark:

W ⊆ L(N) is a complete log of an unknown α-reconstructible workflow net N. if and
only if the following two conditions hold:
(i) α(W ) is a workflow net, such that W ⊆ L(α(W )), and
(ii) Abs(W ) = Abs(α(W )), i.e. W is also a complete log of α(W ).

⇒ Conditions (i) and (ii) holds because W ⊆ L(N) is a complete log
of N ∼= α(W ).

⇐ Let N = α(W ), then W is a complete log of N (by i and ii) and N

is α-reconstructible: N = α(W ) ∼= α(L(N))
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α construction is not a closure operation

One may have expected any net constructed by algorithm α to be an α reconstructible

workflow net. Or more precisely, that α algorithm computes a closure operation

providing the best approximation of a given log by a workflow net.
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providing the best approximation of a given log by a workflow net.

No Galois connection: W ⊆ L(N) ⇔ N ≤ α(W )

W = {ACC ′D,AD,BC ′CE ,BE} is a complete log of net N (on the left)
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Because of the short loop between C and C ′ the α-algorithm infers C‖W C ′
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No Galois connection: W ⊆ L(N) ⇔ N ≤ α(W )

W = {ACC ′D,AD,BC ′CE ,BE} is a complete log of net N (on the left)

Because of the short loop between C and C ′ the α-algorithm infers C‖W C ′

The language of the resulting net α(W ), shown on the right, namely {ACE ,BC ′D}
does not reproduce the execution sequences in W
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α construction is not a closure operation

One may have expected any net constructed by algorithm α to be an α reconstructible

workflow net. Or more precisely, that α algorithm computes a closure operation

providing the best approximation of a given log by a workflow net.

No Galois connection: W ⊆ L(N) ⇔ N ≤ α(W )

W = {ACC ′D,AD,BC ′CE ,BE} is a complete log of net N (on the left)

Because of the short loop between C and C ′ the α-algorithm infers C‖W C ′

The language of the resulting net α(W ), shown on the right, namely {ACE ,BC ′D}
does not reproduce the execution sequences in W

Thus, W is the complete log of some workflow net such that W 6⊆ L(α(W ))
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Structural workflow nets: a sufficient condition for

α-reconstructibility ...
Structured workflow nets

A workflow net N = (P,T , F ,M0) is a structured workflow net if it has no structurally
implicit places and the following condition holds:

∀t ∈ T |•t| > 1⇒ (∀p ∈ •t |•p| = 1 ∧ |p•| = 1) (SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions

has a unique cause (|•p| = 1) and a unique consequence (|p•| = 1), hence it cannot induce a conflict

between t and another transition t′.
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Structured workflow nets without short loops are α-reconstructible
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has a unique cause (|•p| = 1) and a unique consequence (|p•| = 1), hence it cannot induce a conflict

between t and another transition t′.

van der Aalst et al

Structured workflow nets without short loops are α-reconstructible

Adding structurally implicit places to a net preserves its language
removing places from a net satisfying condition (SWN) cannot invalidate this
condition.
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Structural workflow nets: a sufficient condition for

α-reconstructibility ...
Structured workflow nets

A workflow net N = (P,T , F ,M0) is a structured workflow net if it has no structurally
implicit places and the following condition holds:

∀t ∈ T |•t| > 1⇒ (∀p ∈ •t |•p| = 1 ∧ |p•| = 1) (SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions

has a unique cause (|•p| = 1) and a unique consequence (|p•| = 1), hence it cannot induce a conflict

between t and another transition t′.

van der Aalst et al

Structured workflow nets without short loops are α-reconstructible

Adding structurally implicit places to a net preserves its language
removing places from a net satisfying condition (SWN) cannot invalidate this
condition.

Corollary

A workflow net N without short loops and satisfying condition (SWN) is always
language equivalent to some α-reconstructible workflow net N ′.

Eric Badouel (INRIA) On the α-Reconstructibility of Workflow Nets Tallinn 9 / 18



... which is not a necessary condition.

An α reconstructible net which does not satisfy (SWN)
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α-reconstructible workflow nets

For every place p of an elementary net

1 ∀a, a′ ∈ •p a♯Na′,

2 ∀b, b′ ∈ p• b♯Nb′,

3 ∀a ∈ •p ∀b ∈ p• a→N b

t→N t ′ ⇔ t• ∩ •t ′ 6= ∅
t ♯N t ′ ⇔ (•t ∩ •t ′) ∪ (t• ∩ t ′•) 6= ∅
t ‖N t ′ ⇔ (•t ∪ t ′•) ∩ (•t ∪ t ′•) = ∅
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Let W = L(N) be the full log of a workflow net

1 →W⊆→N ‖W t ′ ⊆ ‖N , and ♯N ⊆ ♯W

2 if t and t ′ are co-enabled, i.e. there exists some reachable marking M such that
M[t〉 and M[t ′〉, then t‖Nt ′ ⇔ t‖W t ′ and t♯Nt ′ ⇔ t♯W t ′
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2 if t and t ′ are co-enabled, i.e. there exists some reachable marking M such that
M[t〉 and M[t ′〉, then t‖Nt ′ ⇔ t‖W t ′ and t♯Nt ′ ⇔ t♯W t ′

The importance of contact-freeness
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L(N) = I(ABC)∗AO

A→W B vs B→N A

B→W C A→N C

C→W A C→N B
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Boundary places

How to ensure →N⊆→W ?

1 N workflow net without short loops: t• ∩ •t ′ ⇒ ¬ t’ t

2 Boundary place: inner place s.t. ∀t ∈ •p ∀t ′ ∈ p• t t’ .

3 →N=→L(N) if N is a workflow net without short loops and all of whose inner places
are boundary places
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α(L(N)): p and p′ are neither (structurally) implit places nor boundary places
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α-reconstructibility of workflow nets

Theorem

A workflow net N is α-reconstructible if and only if

1 It has no short loop

2 Every inner place is a boundary place

3 •p ⊆ •q ∧ p• ⊆ q• ⇒ p = q

4 There exists places witnessing for relation ≺=≺L(N):

A ≺ B ⇒ ∃p ∈ P s.t. A ⊆ •p ∧ B ⊆ p•

•p ≺ p• for every place p of a workflow net without short loops and whose inner
places are boundary places; thus the pairs 〈•p, p•〉 are the maximal elements of ≺
(w.r.t; ⊑).
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Processes

R = (R, ℓ) process of a workflow net N = (P,T , F ,M0)

a net R = (PR ,TR ,FR) and two labelling functions ℓ : TR → T and ℓ : PR → ℘(P) such
that:

1 There is a place iR such that •iR = ∅, and ℓ(iR) = {i} where i is the input place of
the workflow net N.

2 There is a place oR such that oR
• = ∅, and ℓ(oR) = {o} where o is the output

place of the workflow net N.

3 ∀pR ∈ PR \ {iR , oR} |•pR | = 1 and |pR
•| = 1.

4 ∀tR ∈ TR
•tR 6= ∅ and tR

• 6= ∅.

5 The underlying graph of R is acyclic.

6 {ℓ(pR) | pR ∈
•tR } is a partition of •ℓ(tR).

7 {ℓ(pR) | pR ∈ tR
• } is a partition of ℓ(tR)•.
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•tR 6= ∅ and tR

• 6= ∅.

5 The underlying graph of R is acyclic.

6 {ℓ(pR) | pR ∈
•tR } is a partition of •ℓ(tR).

7 {ℓ(pR) | pR ∈ tR
• } is a partition of ℓ(tR)•.

Proposition

Processes R = (R, ℓ) of a workflow net N are in bĳective correspondence with the
equivalences classes of complete execution sequences of N modulo permutation of
concurrent transitions.
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Characterization of boundary places

An inner place p of a workflow net is a boundary place if and only if for every pair
of transitions t ∈ •p and t ′ ∈ p• there exists a process R = (R , ℓ) of N and a non
(structurally) implicit place pR ∈ PR in this process with pR ∈ tR

• ∩ •t ′R such that
ℓ(tR) = t, ℓ(t ′R) = t ′ and p ∈ ℓ(pR).

i

p1

p2

p3

p4

o

A

B

C

DE
{i}

{p1}

{p2}

{p3}

{p4}

{o}

A

B

C

D

{i} {p1, p2} {p3, p4} {o}

A E D

Eric Badouel (INRIA) On the α-Reconstructibility of Workflow Nets Tallinn 15 / 18



Characterization of boundary places

An inner place p of a workflow net is a boundary place if and only if for every pair
of transitions t ∈ •p and t ′ ∈ p• there exists a process R = (R , ℓ) of N and a non
(structurally) implicit place pR ∈ PR in this process with pR ∈ tR

• ∩ •t ′R such that
ℓ(tR) = t, ℓ(t ′R) = t ′ and p ∈ ℓ(pR).

i q′

p

p′

q o

A

B

C

D

E

{i} {q′}

{p}

{q} {o}

A

C

D

{i} {q′}

{p′}

{q} {o}

B

C

E

Eric Badouel (INRIA) On the α-Reconstructibility of Workflow Nets Tallinn 16 / 18



Boundary places vs non implicit places

An inner place of a structured workflow net is a boundary place if and only it is a
non implicit place.

These two notions differs in general

i q′
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q o

A

B

C

D

E

Places p are p′ are neither boundary nor
implicit places.

p
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A place which is both a boundary place
and an implicit place
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Conclusion

We presented a characterization of the class of α-reconstructible workflow
nets.

Limited interest from a practical point of view: this class is not given by
structural properties.
It may however pave the way to the discovery of interesting classes of
α-reconstructible workflow nets larger than the class of structured workflow
nets.

The variant mining algorithm based on regions (ω-algorithm) is more
expressive

The two algorithms do not solve the same problem: recovery for α versus
approximation of a log by a workflow net for ω.
For a fixed log ω is computationally much more costy but it can me made
incremental (we refine the workflow approximation when the log increases).
There is potentially room for the design of intermediate mining algorithms.
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