On the α -Reconstructibility of Workflow Nets

Eric Badouel

INRIA - Rennes

June 2012

Eric Badouel (INRIA)

On the α -Reconstructibility of Workflow Nets

Tallinn 1 / 18

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

< ロト < 同ト < ヨト < ヨ)

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life, place simple and connected elementary net system $N = (P, T, F, M_0)$ where P contains an input place *i* and an output place *o*

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life, place simple and connected elementary net system $N = (P, T, F, M_0)$ where P contains an input place *i* and an output place *o*

•
$$i = o^{\bullet} = \emptyset$$

$$\begin{split} M[t\rangle M' & \Leftrightarrow \quad {}^{\bullet}t \subseteq M \land M \cap t^{\bullet} = \emptyset \\ M' = M \setminus {}^{\bullet}t \cup t^{\bullet} \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

A net is contact free if ${}^{\bullet}t \subseteq M$ entails $M \cap t^{\bullet} = \emptyset$ for every reachable marking M; hence $M[t\rangle M' \Leftrightarrow \left({}^{\bullet}t \subseteq M \land M' = M \setminus {}^{\bullet}t \cup t^{\bullet}\right).$

Tallinn 2 / 18

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life, place simple and connected elementary net system $N = (P, T, F, M_0)$ where P contains an input place *i* and an output place *o*

•
$$i = o^{\bullet} = \emptyset$$

• *p* inner place: •
$$p \neq \emptyset \land p^{\bullet} \neq \emptyset$$

$$\begin{array}{ll} M[t\rangle M' & \Leftrightarrow & {}^{\bullet}t \subseteq M \land M \cap t^{\bullet} = \emptyset \\ & M' = M \setminus {}^{\bullet}t \cup t^{\bullet} \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

A net is contact free if $\bullet t \subseteq M$ entails $M \cap t^{\bullet} = \emptyset$ for every reachable marking M; hence $M[t\rangle M' \Leftrightarrow (\bullet t \subseteq M \land M' = M \setminus \bullet t \cup t^{\bullet}).$

Tallinn 2 / 18

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life, place simple and connected elementary net system $N = (P, T, F, M_0)$ where P contains an input place *i* and an output place *o*

•
$$i = o^{\bullet} = \emptyset$$

- *p* inner place: $p \neq \emptyset \land p^{\bullet} \neq \emptyset$
- termination: M_t = {o} is reachable from any marking reachable from M₀ = {i}.

$$\begin{array}{ll} M[t\rangle M' & \Leftrightarrow & {}^{\bullet}t \subseteq M \land M \cap t^{\bullet} = \emptyset \\ & M' = M \setminus {}^{\bullet}t \cup t^{\bullet} \end{array}$$

イロト イヨト イヨト イヨト

A net is contact free if $\bullet t \subseteq M$ entails $M \cap t^{\bullet} = \emptyset$ for every reachable marking M; hence $M[t\rangle M' \Leftrightarrow (\bullet t \subseteq M \land M' = M \setminus \bullet t \cup t^{\bullet}).$

The (maximal) firing sequences of the worflow net =

all activities pertaining to a case from the time it enters the system (input place i is marked) until the case terminates and exits from the system (output place o is marked).

A workflow net is a contact-free, initially life, place simple and connected elementary net system $N = (P, T, F, M_0)$ where P contains an input place *i* and an output place *o*

•
$$i = o^{\bullet} = \emptyset$$

- *p* inner place: $p \neq \emptyset \land p^{\bullet} \neq \emptyset$
- termination: M_t = {o} is reachable from any marking reachable from M₀ = {i}.
- no scories: M_t is the only reachable marking that contains o.

$$\begin{array}{ll} M[t\rangle M' & \Leftrightarrow & {}^{\bullet}t \subseteq M \land M \cap t^{\bullet} = \emptyset \\ & M' = M \setminus {}^{\bullet}t \cup t^{\bullet} \end{array}$$

イロト イヨト イヨト イヨト

A net is contact free if $\bullet t \subseteq M$ entails $M \cap t^{\bullet} = \emptyset$ for every reachable marking M; hence $M[t\rangle M' \Leftrightarrow (\bullet t \subseteq M \land M' = M \setminus \bullet t \cup t^{\bullet}).$

Tallinn 2 / 18

 $\alpha\text{-}\mathsf{Abstraction}$ of a language $\mathit{W}\subseteq\mathit{T}^*$

$$Abs(W) = \left\{ \underbrace{\uparrow t}_{t} \mid t.T^{*} \cap W \neq \emptyset \right\} \qquad t \in I_{W}$$
$$\cup \left\{ \underbrace{\uparrow t'}_{t} \mid T^{*}.t.t'.T^{*} \cap W \neq \emptyset \right\} \qquad (t,t') \in C_{W}$$
$$\cup \left\{ \underbrace{\uparrow t}_{t} \mid T^{*}.t \cap W \neq \emptyset \right\} \qquad t \in O_{W}$$

イロン イロン イヨン イヨン

 $\alpha\text{-}\mathsf{Abstraction}$ of a language $W\subseteq \mathit{T}^*$

$$Abs(W) = \left\{ \underbrace{\downarrow t}_{t} \mid t.T^* \cap W \neq \emptyset \right\} \qquad t \in I_W$$
$$\cup \left\{ \underbrace{\downarrow \downarrow t}_{t} \mid T^*.t.t'.T^* \cap W \neq \emptyset \right\} \qquad (t,t') \in C_W$$
$$\cup \left\{ \underbrace{\downarrow \downarrow}_{t} \mid T^*.t \cap W \neq \emptyset \right\} \qquad t \in O_W$$

Derived relations

э

 $\alpha\text{-}\mathsf{Abstraction}$ of a language $W\subseteq \mathit{T}^*$

$$Abs(W) = \left\{ \underbrace{ \mathsf{t}}_{\mathsf{t}} \mid t.T^* \cap W \neq \emptyset \right\} \qquad t \in I_W \\ \cup \left\{ \underbrace{ \mathsf{t}}_{\mathsf{t}} \underbrace{\mathsf{t}}_{\mathsf{t}} \mid T^*.t.t'.T^* \cap W \neq \emptyset \right\} \qquad (t,t') \in C_W \\ \cup \left\{ \underbrace{ \mathsf{t}}_{\mathsf{t}} \mid T^*.t \cap W \neq \emptyset \right\} \qquad t \in O_W$$

Derived relations

For sets of transitions $A, B \subseteq T$, let $A \prec_W B$ when

$$(\forall a \in A)(\forall b \in B) \quad a \to_W b$$

$$\bigcirc (\forall a_1, a_2 \in A) \quad a_1 \sharp_W a_2, \text{ and}$$

$$\bigcirc (\forall b_1, b_2 \in B) \quad b_1 \sharp_W b_2$$

・ロト ・四ト ・ヨト ・ヨト

э

 $\alpha\text{-}\mathsf{Abstraction}$ of a language $W\subseteq \mathit{T}^*$

$$Abs(W) = \left\{ \underbrace{\downarrow t}_{t} \mid t.T^{*} \cap W \neq \emptyset \right\} \qquad t \in I_{W}$$
$$\cup \left\{ \underbrace{\downarrow \downarrow t}_{t} \mid T^{*}.t.t'.T^{*} \cap W \neq \emptyset \right\} \qquad (t,t') \in C_{W}$$
$$\cup \left\{ \underbrace{\downarrow \downarrow}_{t} \mid T^{*}.t \cap W \neq \emptyset \right\} \qquad t \in O_{W}$$

Derived relations

For sets of transitions $A, B \subseteq T$, let $A \prec_W B$ when

 $\begin{bmatrix} a_1 & p & b_1 \\ \hline a_2 & b_2 \end{bmatrix}$

イロト イヨト イヨト イヨト

Let $A \prec_W^m B$ when A and B are maximal sets with the property $A \prec_W B$, i.e., $A \prec_W^m B \Leftrightarrow (A \prec_W B) \land (A' \prec_W B' \land A \subseteq A' \land B \subseteq B' \Rightarrow A = A' \land B = B').$

Tallinn 3 / 18

3

 $\alpha(W) = (P, T, F, M_0)$ defined as follows:

$$P = \{i, o\} \cup \{p_{A,B} \mid \emptyset \neq A, B \subseteq T \land A \prec_W^m B\},$$

2
$$\bullet i = \emptyset$$
, and $i \bullet = I_W$

$$\bullet o = O_W$$
, and $o^{\bullet} = \emptyset$,

•
$$p_{A,B} = A$$
, and $p_{A,B} = B$,

(a)
$$M_0 = \{i\}$$

. $W = \{ABCD, ACBD, AED\}$

 $\alpha(W) = (P, T, F, M_0)$ defined as follows:

$$P = \{i, o\} \cup \{p_{A,B} \mid \emptyset \neq A, B \subseteq T \land A \prec_W^m B\},$$

$$\bullet i = \emptyset, \text{ and } i^{\bullet} = I_{W_i}$$

$$\bullet o = O_W$$
, and $o^{\bullet} = \emptyset$,

•
$$p_{A,B} = A$$
, and $p_{A,B} = B$,

$$M_0 = \{i\}.$$

$W = \{ABCD, ACBD, AED\}$

 $\alpha(W) = (P, T, F, M_0)$ defined as follows:

 $P = \{i, o\} \cup \{p_{A,B} \mid \emptyset \neq A, B \subseteq T \land A \prec_W^m B\},$

D

2)
$$\bullet i = \emptyset$$
, and $i \bullet = I_W$,

$$\bullet o = O_W$$
, and $o^{\bullet} = \emptyset$,

•
$$p_{A,B} = A$$
, and $p_{A,B} = B$,

$$M_0 = \{i\}.$$

$W = \{ABCD, ACBD, AED\}$

В·	D	
E	۰D	
C	۰D	

	В	С	D	Е
Α	$A \rightarrow_W B$	$A \rightarrow_W C$	$A \sharp_W D$	$A \rightarrow_W E$
В		$B _W C$	$B \rightarrow_W D$	B♯ _W E
С			$C \rightarrow_W D$	C♯wE
D				$E \rightarrow_W D$

 $\alpha(W) = (P, T, F, M_0)$ defined as follows:

 $P = \{i, o\} \cup \{p_{A,B} \mid \emptyset \neq A, B \subseteq T \land A \prec_W^m B\},$

2)
$$\bullet i = \emptyset$$
, and $i \bullet = I_W$,

$$\bullet o = O_W$$
, and $o^{\bullet} = \emptyset$,

•
$$p_{A,B} = A$$
, and $p_{A,B} = B$,

(a)
$$M_0 = \{i\}$$

$W = \{ABCD, ACBD, AED\}$

	В	С	D	Е
Α	$A \rightarrow_W B$	$A \rightarrow_W C$	$A \sharp_W D$	$A \rightarrow_W E$
В		$B _W C$	$B \rightarrow_W D$	B♯ _W E
С			$C \rightarrow_W D$	C♯wE
D				$E \rightarrow_W D$

 $\begin{array}{l} \{A\} \prec^m_W \{B, E\} \quad \{A\} \prec^m_W \{C, E\} \\ \{B, E\} \prec^m_W \{D\} \quad \{C, E\} \prec^m_W \{D\} \end{array}$

 $\alpha(W) = (P, T, F, M_0)$ defined as follows:

 $P = \{i, o\} \cup \{p_{A,B} \mid \emptyset \neq A, B \subseteq T \land A \prec_W^m B\},$

2 •
$$i = \emptyset$$
, and $i^{\bullet} = I_{W}$,

$$\bullet o = O_W$$
, and $o^{\bullet} = \emptyset$,

•
$$p_{A,B} = A$$
, and $p_{A,B} = B$,

$$M_0 = \{i\}.$$

$W = \{ABCD, ACBD, AED\}$ В С D Е A AB B D D $A \rightarrow_W B$ $A \rightarrow W C$ Attw D $A \rightarrow W E$ Α $B \parallel_W C$ В $\overline{B} \rightarrow W D$ B♯wE A E • D $\overline{C} \rightarrow W D$ C♯wE A C C D $E \rightarrow W D$ p_1 p_3 В O $\{A\} \prec_{W}^{m} \{B, E\} \{A\} \prec_{W}^{m} \{C, E\}$ Е D $\{B, E\} \prec_{W}^{m} \{D\} \{C, E\} \prec_{W}^{m} \{D\}$

 p_2

 p_4

Some observations about $\boldsymbol{\alpha}$

Two places of a net constructed by algorithm α are incomparable for the order relation:

 $p \sqsubseteq q \Leftrightarrow (^{\bullet}p \subseteq ^{\bullet}q \land p^{\bullet} \subseteq q^{\bullet})$

Some observations about α

Two places of a net constructed by algorithm α are incomparable for the order relation:

$$p \sqsubseteq q \Leftrightarrow (^{\bullet}p \subseteq ^{\bullet}q \land p^{\bullet} \subseteq q^{\bullet})$$

Do non maximal elements of \prec_W always provide redundant places ?

A place *p* of a (contact-free) net system $N = (P, T, F, M_0)$ is a (structurally) implicit place if for every reachable marking *M* and transition $t \in p^{\bullet}$, ${}^{\bullet}t \setminus \{p\} \subseteq M \Rightarrow p \in M$.

Some observations about α

Two places of a net constructed by algorithm α are incomparable for the order relation:

$$p \sqsubseteq q \Leftrightarrow (^{\bullet}p \subseteq ^{\bullet}q \land p^{\bullet} \subseteq q^{\bullet})$$

Do non maximal elements of \prec_W always provide redundant places ?

A place *p* of a (contact-free) net system $N = (P, T, F, M_0)$ is a (structurally) implicit place if for every reachable marking *M* and transition $t \in p^{\bullet}$, ${}^{\bullet}t \setminus \{p\} \subseteq M \Rightarrow p \in M$.

- $\mathcal{L}(N) = A (B'C'A')^* B (C'A'B')^* C.$
- A complete log is $W = \{ABC, AB'C'A'BC'A'B'C\}.$
- *q*, *q*['] and *r* correspond to maximal elements of relation ≺_W:
 - {A, A'} \prec_{W}^{m} {B, B'}, • {B, B'} \prec_{W}^{m} {C, C'}, • {C'} \prec_{W}^{m} {A'}
- $p \sqsubset q$ and $p' \sqsubset q'$

•
$$\mathcal{L}(\alpha(W)) = A(B+B')(C'A'(B+B'))^*C$$

Complete logs of a workflow net

Complete log

 $W \subseteq \mathcal{L}(N)$ is a complete log of workflow net N if $Abs(W) = Abs(\mathcal{L}(N))$, i.e. it contains all the information used to synthesize $\alpha(\mathcal{L}(N))$; thus $\alpha(W) \cong \alpha(\mathcal{L}(N))$.

Complete logs of a workflow net

Complete log

 $W \subseteq \mathcal{L}(N)$ is a complete log of workflow net N if $Abs(W) = Abs(\mathcal{L}(N))$, i.e. it contains all the information used to synthesize $\alpha(\mathcal{L}(N))$; thus $\alpha(W) \cong \alpha(\mathcal{L}(N))$.

Algorithm α is sober

- For any complete log W ⊆ L(N) of a workflow net N any larger log W ⊆ W' ⊆ L(N) is also complete
- The minimal size of complete logs of workflow nets is asymptotically negligible w.r.t. the size of their languages.

The size of $Abs(\mathcal{L}(N))$ is in $O(|T|^2)$. Moreover, a firing sequence of N contained in a log W may contribute several pairs of transitions in C_W .

Complete logs of a workflow net

Complete log

 $W \subseteq \mathcal{L}(N)$ is a complete log of workflow net N if $Abs(W) = Abs(\mathcal{L}(N))$, i.e. it contains all the information used to synthesize $\alpha(\mathcal{L}(N))$; thus $\alpha(W) \cong \alpha(\mathcal{L}(N))$.

Algorithm α is sober

- For any complete log W ⊆ L(N) of a workflow net N any larger log W ⊆ W' ⊆ L(N) is also complete
- The minimal size of complete logs of workflow nets is asymptotically negligible w.r.t. the size of their languages.

The size of $Abs(\mathcal{L}(N))$ is in $O(|T|^2)$. Moreover, a firing sequence of N contained in a log W may contribute several pairs of transitions in C_W .

Sobriety means that one can assume $W \subseteq \mathcal{L}(N)$ to be a complete log of workflow net N as soon as it contains a reasonable number of its execution sequences.

Discovery of a workflow net from one of its complete logs

Workflow net discovery:

A workflow net N is α -reconstructible, i.e., $N \cong \alpha(\mathcal{L}(N))$ if and only if it can be discovered from any of its complete log $W \subseteq \mathcal{L}(N)$, i.e., $N \cong \alpha(W)$.

Discovery of a workflow net from one of its complete logs

Workflow net discovery:

A workflow net N is α -reconstructible, i.e., $N \cong \alpha(\mathcal{L}(N))$ if and only if it can be discovered from any of its complete log $W \subseteq \mathcal{L}(N)$, i.e., $N \cong \alpha(W)$.

Remark:

 $W \subseteq \mathcal{L}(N)$ is a complete log of an unknown α -reconstructible workflow net N. if and only if the following two conditions hold: (*i*) $\alpha(W)$ is a workflow net, such that $W \subseteq \mathcal{L}(\alpha(W))$, and

(ii) $Abs(W) = Abs(\alpha(W))$, i.e. W is also a complete log of $\alpha(W)$.

< ロト < 同ト < ヨト < ヨ)

Discovery of a workflow net from one of its complete logs

Workflow net discovery:

A workflow net N is α -reconstructible, i.e., $N \cong \alpha(\mathcal{L}(N))$ if and only if it can be discovered from any of its complete log $W \subseteq \mathcal{L}(N)$, i.e., $N \cong \alpha(W)$.

Remark:

 $W \subseteq \mathcal{L}(N)$ is a complete log of an unknown α -reconstructible workflow net N. if and only if the following two conditions hold:

(i) $\alpha(W)$ is a workflow net, such that $W \subseteq \mathcal{L}(\alpha(W))$, and

(ii) $Abs(W) = Abs(\alpha(W))$, i.e. W is also a complete log of $\alpha(W)$.

- ⇒ Conditions (i) and (ii) holds because $W \subseteq \mathcal{L}(N)$ is a complete log of $N \cong \alpha(W)$.
- $\leftarrow \text{ Let } N = \alpha(W), \text{ then } W \text{ is a complete log of } N \text{ (by i and ii) and } N \text{ is } \alpha \text{-reconstructible: } N = \alpha(W) \cong \alpha(\mathcal{L}(N))$

<ロ> (日) (日) (日) (日) (日)

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

No Galois connection: $W \subseteq \mathcal{L}(N) \Leftrightarrow N \leq \alpha(W)$

・ロト ・回ト ・ヨト ・ヨト

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

No Galois connection: $W \subseteq \mathcal{L}(N) \Leftrightarrow N \leq \alpha(W)$

• $W = \{ACC'D, AD, BC'CE, BE\}$ is a complete log of net N (on the left)

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

No Galois connection: $W \subseteq \mathcal{L}(N) \Leftrightarrow N \leq \alpha(W)$

- $W = \{ACC'D, AD, BC'CE, BE\}$ is a complete log of net N (on the left)
- Because of the short loop between C and C' the α -algorithm infers $C \parallel_W C'$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

No Galois connection: $W \subseteq \mathcal{L}(N) \Leftrightarrow N \leq \alpha(W)$

- $W = \{ACC'D, AD, BC'CE, BE\}$ is a complete log of net N (on the left)
- Because of the short loop between C and C' the α -algorithm infers $C \parallel_W C'$
- The language of the resulting net α(W), shown on the right, namely {ACE, BC'D} does not reproduce the execution sequences in W

< ロト < 同ト < ヨト < ヨ)

One may have expected any net constructed by algorithm α to be an α reconstructible workflow net. Or more precisely, that α algorithm computes a closure operation providing the best approximation of a given log by a workflow net.

No Galois connection: $W \subseteq \mathcal{L}(N) \Leftrightarrow N \leq \alpha(W)$

- $W = \{ACC'D, AD, BC'CE, BE\}$ is a complete log of net N (on the left)
- Because of the short loop between C and C' the α -algorithm infers $C \parallel_W C'$
- The language of the resulting net α(W), shown on the right, namely {ACE, BC'D} does not reproduce the execution sequences in W
- Thus, W is the complete log of some workflow net such that $W \not\subseteq \mathcal{L}(\alpha(W))$

・ロト ・回ト ・ヨト ・ヨト

Structural workflow nets: a sufficient condition for $\alpha\text{-reconstructibility}\ldots$

Structured workflow nets

A workflow net $N = (P, T, F, M_0)$ is a structured workflow net if it has no structurally implicit places and the following condition holds:

$$\forall t \in \mathcal{T} \quad |^{\bullet}t| > 1 \Rightarrow (\forall p \in {}^{\bullet}t \quad |^{\bullet}p| = 1 \land |p^{\bullet}| = 1)$$
(SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions has a unique cause ($|^{\bullet}p| = 1$) and a unique consequence ($|p^{\bullet}| = 1$), hence it cannot induce a conflict between t and another transition t'.

Structural workflow nets: a sufficient condition for α -reconstructibility ...

Structured workflow nets

A workflow net $N = (P, T, F, M_0)$ is a structured workflow net if it has no structurally implicit places and the following condition holds:

$$\forall t \in T \quad |^{\bullet}t| > 1 \Rightarrow (\forall p \in {}^{\bullet}t \quad |^{\bullet}p| = 1 \land |p^{\bullet}| = 1)$$
(SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions has a unique cause ($|^{\bullet}p| = 1$) and a unique consequence ($|p^{\bullet}| = 1$), hence it cannot induce a conflict between t and another transition t'.

van der Aalst et al

Structured workflow nets without short loops are α -reconstructible

Structural workflow nets: a sufficient condition for α -reconstructibility ...

Structured workflow nets

A workflow net $N = (P, T, F, M_0)$ is a structured workflow net if it has no structurally implicit places and the following condition holds:

$$\forall t \in T \quad |^{\bullet}t| > 1 \Rightarrow (\forall p \in {}^{\bullet}t \quad |^{\bullet}p| = 1 \land |p^{\bullet}| = 1)$$
(SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions has a unique cause ($|^{\bullet}p| = 1$) and a unique consequence ($|p^{\bullet}| = 1$), hence it cannot induce a conflict between t and another transition t'.

van der Aalst et al

Structured workflow nets without short loops are α -reconstructible

- Adding structurally implicit places to a net preserves its language
- removing places from a net satisfying condition (SWN) cannot invalidate this condition.

Tallinn 9 / 18

・ロト ・四ト ・ヨト ・ヨト

Structural workflow nets: a sufficient condition for α -reconstructibility ...

Structured workflow nets

A workflow net $N = (P, T, F, M_0)$ is a structured workflow net if it has no structurally implicit places and the following condition holds:

$$\forall t \in \mathcal{T} \quad |{}^{\bullet}t| > 1 \Rightarrow (\forall p \in {}^{\bullet}t \quad |{}^{\bullet}p| = 1 \land |p^{\bullet}| = 1)$$
(SWN)

i.e., if a transition t requires the synchronization of several conditions (places), then each of these conditions has a unique cause ($|^{\bullet}p| = 1$) and a unique consequence ($|p^{\bullet}| = 1$), hence it cannot induce a conflict between t and another transition t'.

van der Aalst et al

Structured workflow nets without short loops are α -reconstructible

- Adding structurally implicit places to a net preserves its language
- removing places from a net satisfying condition (SWN) cannot invalidate this condition.

Corollary

A workflow net N without short loops and satisfying condition (SWN) is always language equivalent to some α -reconstructible workflow net N'.

Eric Badouel (INRIA)

... which is not a necessary condition.

An α reconstructible net which does not satisfy (SWN)

... which is not a necessary condition.

An α reconstructible net which does not satisfy (SWN)

An α -reconstructible workflow net with implicit places

$\alpha\text{-reconstructible workflow nets}$

For every place p of an elementary net

- $\forall b, b' \in p^{\bullet} \qquad b \sharp_N b',$

$$\begin{array}{ll} t \to_{N} t' & \Leftrightarrow & t^{\bullet} \cap^{\bullet} t' \neq \emptyset \\ t \, \sharp_{N} t' & \Leftrightarrow & (^{\bullet} t \cap^{\bullet} t') \cup (t^{\bullet} \cap t'^{\bullet}) \neq \emptyset \\ t \, \|_{N} t' & \Leftrightarrow & (^{\bullet} t \cup t'^{\bullet}) \cap (^{\bullet} t \cup t'^{\bullet}) = \emptyset \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\alpha\text{-reconstructible workflow nets}$

For every place p of an elementary net

Let $W = \mathcal{L}(N)$ be the full log of a workflow net

(a) if t and t' are co-enabled, i.e. there exists some reachable marking M such that $M[t\rangle$ and $M[t'\rangle$, then $t||_{N}t' \Leftrightarrow t||_{W}t'$ and $t\sharp_{N}t' \Leftrightarrow t\sharp_{W}t'$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\alpha\text{-}\mathsf{reconstructible}$ workflow nets

For every place p of an elementary net

Let $W = \mathcal{L}(N)$ be the full log of a workflow net

• if t and t' are co-enabled, i.e. there exists some reachable marking M such that $M[t\rangle$ and $M[t'\rangle$, then $t||_{N}t' \Leftrightarrow t||_{W}t'$ and $t\sharp_{N}t' \Leftrightarrow t\sharp_{W}t'$

The importance of contact-freeness

 $\mathcal{L}(N) = I(ABC)^*AO$

$$\begin{array}{cccc} A \rightarrow_W B & \mathbf{vs} & B \rightarrow_N A \\ B \rightarrow_W C & A \rightarrow_N C \\ C \rightarrow_W A & C \rightarrow_N B \end{array}$$

Boundary places

How to ensure $\rightarrow_N \subseteq \rightarrow_W$?

- **()** *N* workflow net without short loops: $t^{\bullet} \cap {}^{\bullet}t' \Rightarrow \neg [t' \bullet t]$
- **8** Boundary place: inner place s.t. $\forall t \in {}^{\bullet}p \ \forall t' \in p^{\bullet}$ [t t'].
- $\rightarrow_N = \rightarrow_{\mathcal{L}(N)}$ if *N* is a workflow net without short loops and all of whose inner places are boundary places

Boundary places

How to ensure $\rightarrow_N \subseteq \rightarrow_W$?

- **()** *N* workflow net without short loops: $t^{\bullet} \cap {}^{\bullet}t' \Rightarrow \neg [t' \bullet t]$
- **8** Boundary place: inner place s.t. $\forall t \in {}^{\bullet}p \ \forall t' \in p^{\bullet}$ [t t'].
- $\rightarrow_N = \rightarrow_{\mathcal{L}(N)}$ if *N* is a workflow net without short loops and all of whose inner places are boundary places

$\mathcal{L}(N) = \{ACD, BCE\}$			
♦ A	A C	C D	
♦ B	B C	C E	

Boundary places

How to ensure $\rightarrow_N \subseteq \rightarrow_W$?

Q *N* workflow net without short loops: $t^{\bullet} \cap {}^{\bullet}t' \Rightarrow \neg [t, t]$

8 Boundary place: inner place s.t. $\forall t \in {}^{\bullet}p \ \forall t' \in p^{\bullet}$ [t t'].

● $\rightarrow_N = \rightarrow_{\mathcal{L}(N)}$ if *N* is a workflow net without short loops and all of whose inner places are boundary places

$\mathcal{L}(N) = \{ACD, BCE\}$			
A A	A • C B • C	C D C E	

 $\alpha(\mathcal{L}(N))$: p and p' are neither (structurally) implit places nor boundary places

$\alpha\text{-}\mathsf{reconstructibility}$ of workflow nets

Theorem

A workflow net N is α -reconstructible if and only if

- It has no short loop
- Every inner place is a boundary place

$$\mathbf{S} \bullet p \subseteq \bullet q \land p \bullet \subseteq q \bullet \quad \Rightarrow \quad p = q$$

• There exists places witnessing for relation $\prec = \prec_{\mathcal{L}(N)}$:

$$A \prec B \Rightarrow \exists p \in P \text{ s.t. } A \subseteq \bullet p \land B \subseteq p^{\bullet}$$

• $p \prec p^{\bullet}$ for every place p of a workflow net without short loops and whose inner places are boundary places; thus the pairs $\langle \bullet p, p^{\bullet} \rangle$ are the maximal elements of \prec (w.r.t; \sqsubseteq).

<ロ> (日) (日) (日) (日) (日)

Processes

$\mathcal{R} = (R, \ell)$ process of a workflow net $N = (P, T, F, M_0)$

a net $R = (P_R, T_R, F_R)$ and two labelling functions $\ell : T_R \to T$ and $\ell : P_R \to \wp(P)$ such that:

- There is a place i_R such that $i_R = \emptyset$, and $\ell(i_R) = \{i\}$ where *i* is the input place of the workflow net *N*.
- **2** There is a place o_R such that $o_R^{\bullet} = \emptyset$, and $\ell(o_R) = \{o\}$ where o is the output place of the workflow net N.

- The underlying graph of R is acyclic.
- **(**) $\{\ell(p_R) \mid p_R \in {}^{\bullet}t_R\}$ is a partition of ${}^{\bullet}\ell(t_R)$.
- $\{\ell(p_R) \mid p_R \in t_R^{\bullet}\}$ is a partition of $\ell(t_R)^{\bullet}$.

Processes

$\mathcal{R} = (R, \ell)$ process of a workflow net $N = (P, T, F, M_0)$

a net $R = (P_R, T_R, F_R)$ and two labelling functions $\ell : T_R \to T$ and $\ell : P_R \to \wp(P)$ such that:

- There is a place i_R such that $i_R = \emptyset$, and $\ell(i_R) = \{i\}$ where *i* is the input place of the workflow net *N*.
- **2** There is a place o_R such that $o_R^{\bullet} = \emptyset$, and $\ell(o_R) = \{o\}$ where o is the output place of the workflow net N.

- The underlying graph of R is acyclic.
- **(a)** $\{\ell(p_R) \mid p_R \in {}^{\bullet}t_R\}$ is a partition of ${}^{\bullet}\ell(t_R)$.
- $\{\ell(p_R) \mid p_R \in t_R^{\bullet}\}$ is a partition of $\ell(t_R)^{\bullet}$.

Proposition

Processes $\mathcal{R} = (R, \ell)$ of a workflow net N are in bijective correspondence with the equivalences classes of complete execution sequences of N modulo permutation of concurrent transitions.

Characterization of boundary places

An inner place p of a workflow net is a boundary place if and only if for every pair of transitions $t \in {}^{\bullet}p$ and $t' \in p^{\bullet}$ there exists a process $\mathcal{R} = (R, \ell)$ of N and a non (structurally) implicit place $p_R \in P_R$ in this process with $p_R \in t_R^{\bullet} \cap {}^{\bullet}t'_R$ such that $\ell(t_R) = t$, $\ell(t'_R) = t'$ and $p \in \ell(p_R)$.

Tallinn 15 / 18

Characterization of boundary places

An inner place p of a workflow net is a boundary place if and only if for every pair of transitions $t \in {}^{\bullet}p$ and $t' \in p^{\bullet}$ there exists a process $\mathcal{R} = (R, \ell)$ of N and a non (structurally) implicit place $p_R \in P_R$ in this process with $p_R \in t_R^{\bullet} \cap {}^{\bullet}t'_R$ such that $\ell(t_R) = t$, $\ell(t'_R) = t'$ and $p \in \ell(p_R)$.

Boundary places vs non implicit places

An inner place of a structured workflow net is a boundary place if and only it is a non implicit place.

Conclusion

- We presented a characterization of the class of $\alpha\text{-reconstructible workflow nets.}$
 - Limited interest from a practical point of view: this class is not given by structural properties.
 - It may however pave the way to the discovery of interesting classes of $\alpha\text{-reconstructible}$ workflow nets larger than the class of structured workflow nets.
- The variant mining algorithm based on regions (ω -algorithm) is more expressive
 - The two algorithms do not solve the same problem: recovery for α versus approximation of a log by a workflow net for $\omega.$
 - For a fixed log ω is computationally much more costy but it can me made incremental (we refine the workflow approximation when the log increases).
 - There is potentially room for the design of intermediate mining algorithms.