A Set that is Streamless and Not Provably Noetherian

A Set that is Streamless and Not Provably
Noetherian

Marc Bezem
Department of Informatics
University of Bergen
(joint work with Keiko Nakata and Tarmo Uustalu)

December 2011

A Set that is Streamless and Not Provably Noetherian

Overview

v

Topic: constructive ‘finiteness’ of sets AC N

v

Prerequisite: elementary intuitionistic reasoning
Prerequisite: elementary recursion theory
Definition of streamless set

Definition of noetherian set

Comparing ‘streamless’ to ‘noetherian’
Conjecture by Coquand and Spiwack

v

v

v

v

v

A Set that is Streamless and Not Provably Noetherian

Finiteness

» Ubiquitous:
» Reasoning about termination
» Reasoning using fairness (‘eventually’)
» Infinite combinatorics (PHP, Ramsey, Higman, ...)
» Recently: initial algebra of a certain functor having the
Cantor space as final co-algebra (Escardo, Bauer).

» Classically: surprisingly unproblematic (not FO-def.)

» Constructively: the obvious ‘comprehensive list of
elements’ often inadequate (f.e. fairness, ‘Aussonderung’)

A Set that is Streamless and Not Provably Noetherian

Finiteness, variants

v

Knowing all the finitely many elements of AC N

Knowing the exact number of elements of (undecidable) A
Knowing an upper bound on the number of elements of A
Not knowing an upper bound, yet knowing that A is finite (!)
Less attractive: doubly negated variants

v

v

v

v

A Set that is Streamless and Not Provably Noetherian

Streamless and Noetherian

v

For A C N, for our purposes, streams s: strA:=N — A
For ACN, lists ¢ : list A as usual ((), ::)

For both lists and streams, dup for having duplicates
Streamless A :=Vs: strA. dup s

Noetherian A := Acca(), where:

v

v

v

v

dup/? Va: AAccya::l
Accpt Accpl

A Set that is Streamless and Not Provably Noetherian

Noetherian vs. Streamless

Let A be noetherian, that is, Acca(). Prove by induction that
Acca ¢ implies dup s for all s : str A extending reversed /:

dup/? Va: AAccya:l
Accp t Accpt

Let A be streamless: Vs : strA. dup s. How to prove Acca()?
» By classical logic (and dependent choice)
» By bar induction (dup is the bar)
NB Bar induction fails in recursive analysis (by the Kleene tree)

A Set that is Streamless and Not Provably Noetherian

Elementary Recursion Theory

v

Kleene-brackets (universal machine): {-}-
Church’s Thesis: every stream over N has a Kleene-index

v

CT :=Vs:strN.3i:N.Vn:N. s(n) = {i}n

v

Halting set H:= {n: N | {n}n |}
Bitstring b approximates H means:

v

ke H < bx=1, forall k < Ith(b)

v

Bitstrings are encoded as natural numbers

A Set that is Streamless and Not Provably Noetherian

Streamless But Not Provably Noetherian

Define:

v

A:={be N | CT A b approximates H}

v

Classically: A empty

Constructively: empty bitstring e A <— CT
NB1: if s stream over A, then CT

NB2: if a,b € A and lth(a) < Ith(b), then a < b

v

v

v

A Set that is Streamless and Not Provably Noetherian

Streamless A

Define partial recursive ¢(x, y) as follows:
Compute {x}0,...,{x}(y + 1) and decode these as bitstrings.
Let b = {x}n be the first of these having maximal length.

1 b =1
S0(“’){0 it by = 0

provided /th(b) > y, otherwise put ¢(x, y) = 0 (irrelevant).

By the S-n-m Theorem there exists a total recursive f such that
{F)}y = p(x.y).

If sis a stream over A, then s has Kleene-index j and there is a
duplicate among s(0), ..., s(f(/) + 1). Details on blackboard.

A Set that is Streamless and Not Provably Noetherian

Not Provable: Noetherian A

We prove Acca() = —CT. Assume Acca() A CT and let S be
the set of all lists of bitstrings containing some bitstring twice or
more. Then, S is closed under the rules defining Acca C list A:

dupt Va:AaleS
leS leS

For the left rule this is obvious. For the right rule, assume
Va:Aa:l € Sforsome ¢ : list A. Let b be the longest bitstring
in . Let bi be b extended by i = 0, 1. By construction we have
that bi::¢ € S implies ¢ € S. By contraposition we getthat ¢ ¢ S
implies bi::{ ¢ S,sobi¢ A, i=0,1,asVa: Aa:l e S.

Having CT (only needed for ¢ = ()), this is absurd (details on
blackboard). Hence —¢ ¢ S and so ¢ € S, as this is decidable.
Now Acc() implies () € S, absurd, so Acca() — —CT.

