
A Set that is Streamless and Not Provably Noetherian

A Set that is Streamless and Not Provably
Noetherian

Marc Bezem
Department of Informatics

University of Bergen
(joint work with Keiko Nakata and Tarmo Uustalu)

December 2011



A Set that is Streamless and Not Provably Noetherian

Overview

I Topic: constructive ‘finiteness’ of sets A ⊆ N
I Prerequisite: elementary intuitionistic reasoning
I Prerequisite: elementary recursion theory
I Definition of streamless set
I Definition of noetherian set
I Comparing ‘streamless’ to ‘noetherian’
I Conjecture by Coquand and Spiwack



A Set that is Streamless and Not Provably Noetherian

Finiteness

I Ubiquitous:
I Reasoning about termination
I Reasoning using fairness (‘eventually’)
I Infinite combinatorics (PHP, Ramsey, Higman, ...)
I Recently: initial algebra of a certain functor having the

Cantor space as final co-algebra (Escardo, Bauer).
I Classically: surprisingly unproblematic (not FO-def.)
I Constructively: the obvious ‘comprehensive list of

elements’ often inadequate (f.e. fairness, ‘Aussonderung’)



A Set that is Streamless and Not Provably Noetherian

Finiteness, variants

I Knowing all the finitely many elements of A ⊆ N
I Knowing the exact number of elements of (undecidable) A
I Knowing an upper bound on the number of elements of A
I Not knowing an upper bound, yet knowing that A is finite (!)
I Less attractive: doubly negated variants



A Set that is Streamless and Not Provably Noetherian

Streamless and Noetherian

I For A ⊆ N, for our purposes, streams s : str A := N→ A
I For A ⊆ N, lists ` : list A as usual (〈〉, ::)
I For both lists and streams, dup for having duplicates
I Streamless A := ∀s : strA. dup s
I Noetherian A := AccA〈〉, where:

dup `

AccA `

∀a : A AccA a::`
AccA `



A Set that is Streamless and Not Provably Noetherian

Noetherian vs. Streamless

Let A be noetherian, that is, AccA〈〉. Prove by induction that
AccA ` implies dup s for all s : str A extending reversed `:

dup `

AccA `

∀a : A AccA a::`
AccA `

Let A be streamless: ∀s : strA. dup s. How to prove AccA〈〉?
I By classical logic (and dependent choice)
I By bar induction (dup is the bar)

NB Bar induction fails in recursive analysis (by the Kleene tree)



A Set that is Streamless and Not Provably Noetherian

Elementary Recursion Theory

I Kleene-brackets (universal machine): {·}·
I Church’s Thesis: every stream over N has a Kleene-index

CT := ∀s : str N. ∃i : N. ∀n : N. s(n) = {i}n

I Halting set H := {n : N | {n}n ↓}
I Bitstring b approximates H means:

k ∈ H ⇐⇒ bk = 1, for all k < lth(b)

I Bitstrings are encoded as natural numbers



A Set that is Streamless and Not Provably Noetherian

Streamless But Not Provably Noetherian

I Define:

A := {b ∈ N | CT ∧ b approximates H}

I Classically: A empty
I Constructively: empty bitstring ∈ A ⇐⇒ CT
I NB1: if s stream over A, then CT
I NB2: if a,b ∈ A and lth(a) ≤ lth(b), then a � b



A Set that is Streamless and Not Provably Noetherian

Streamless A

Define partial recursive ϕ(x , y) as follows:
Compute {x}0, . . . , {x}(y + 1) and decode these as bitstrings.
Let b = {x}n be the first of these having maximal length.

ϕ(x , y) '
{
↑ if by = 1
0 if by = 0

provided lth(b) > y , otherwise put ϕ(x , y) = 0 (irrelevant).
By the S-n-m Theorem there exists a total recursive f such that
{f (x)}y ' ϕ(x , y).
If s is a stream over A, then s has Kleene-index i and there is a
duplicate among s(0), . . . , s(f (i) + 1). Details on blackboard.



A Set that is Streamless and Not Provably Noetherian

Not Provable: Noetherian A
We prove AccA〈〉 =⇒ ¬CT . Assume AccA〈〉 ∧CT and let S be
the set of all lists of bitstrings containing some bitstring twice or
more. Then, S is closed under the rules defining AccA ⊆ list A:

dup `

` ∈ S
∀a : A a::` ∈ S

` ∈ S

For the left rule this is obvious. For the right rule, assume
∀a : A a::` ∈ S for some ` : list A. Let b be the longest bitstring
in `. Let bi be b extended by i = 0,1. By construction we have
that bi ::` ∈ S implies ` ∈ S. By contraposition we get that ` /∈ S
implies bi ::` /∈ S, so bi /∈ A, i = 0,1, as ∀a : A a::` ∈ S.
Having CT (only needed for ` = 〈〉), this is absurd (details on
blackboard). Hence ¬` /∈ S and so ` ∈ S, as this is decidable.
Now AccA〈〉 implies 〈〉 ∈ S, absurd, so AccA〈〉 =⇒ ¬CT .


