A Set that is Streamless and Not Provably Noetherian

Marc Bezem Department of Informatics University of Bergen (joint work with Keiko Nakata and Tarmo Uustalu)

December 2011

Overview

- Topic: constructive 'finiteness' of sets $A \subseteq \mathbb{N}$
- Prerequisite: elementary intuitionistic reasoning
- Prerequisite: elementary recursion theory
- Definition of streamless set
- Definition of noetherian set
- Comparing 'streamless' to 'noetherian'
- Conjecture by Coquand and Spiwack

Finiteness

- Ubiquitous:
 - Reasoning about termination
 - Reasoning using fairness ('eventually')
 - Infinite combinatorics (PHP, Ramsey, Higman, ...)
 - Recently: initial algebra of a certain functor having the Cantor space as final co-algebra (Escardo, Bauer).
- Classically: surprisingly unproblematic (not FO-def.)
- Constructively: the obvious 'comprehensive list of elements' often inadequate (f.e. fairness, 'Aussonderung')

Finiteness, variants

- Knowing all the finitely many elements of $A \subseteq \mathbb{N}$
- Knowing the exact number of elements of (undecidable) A
- Knowing an upper bound on the number of elements of A
- Not knowing an upper bound, yet knowing that A is finite (!)
- Less attractive: doubly negated variants

Streamless and Noetherian

- ▶ For $A \subseteq \mathbb{N}$, for our purposes, streams $s : str A := \mathbb{N} \to A$
- For $A \subseteq \mathbb{N}$, lists ℓ : *list* A as usual ($\langle \rangle$, ::)
- For both lists and streams, dup for having duplicates
- Streamless $A := \forall s : strA. dup s$
- Noetherian $A := Acc_A \langle \rangle$, where:

$$\frac{dup\,\ell}{Acc_A\,\ell} \qquad \frac{\forall a: A\,Acc_A\,a::\ell}{Acc_A\,\ell}$$

Noetherian vs. Streamless

Let *A* be noetherian, that is, $Acc_A\langle\rangle$. Prove by induction that $Acc_A \ell$ implies *dup s* for all *s* : *str A* extending *reversed* ℓ :

$$\frac{dup\,\ell}{Acc_A\,\ell} \qquad \frac{\forall a: A\,Acc_A\,a::\ell}{Acc_A\,\ell}$$

Let *A* be streamless: $\forall s : strA. dup s$. How to prove $Acc_A \langle \rangle$?

- By classical logic (and dependent choice)
- By bar induction (*dup* is the bar)

NB Bar induction fails in recursive analysis (by the Kleene tree)

Elementary Recursion Theory

- Kleene-brackets (universal machine): {·}·
- Church's Thesis: every stream over \mathbb{N} has a Kleene-index

 $CT := \forall s : str \mathbb{N}. \exists i : \mathbb{N}. \forall n : \mathbb{N}. s(n) = \{i\}n$

- Halting set $H := \{n : \mathbb{N} \mid \{n\}n \downarrow\}$
- Bitstring b approximates H means:

$$k \in H \iff b_k = 1$$
, for all $k < lth(b)$

Bitstrings are encoded as natural numbers

Streamless But Not Provably Noetherian

Define:

$$A := \{b \in \mathbb{N} \mid CT \land b \text{ approximates } H\}$$

- Classically: A empty
- Constructively: empty bitstring $\in A \iff CT$
- ▶ NB1: if *s* stream over *A*, then *CT*
- ▶ NB2: if $a, b \in A$ and $lth(a) \leq lth(b)$, then $a \leq b$

Streamless A

Define partial recursive $\varphi(x, y)$ as follows: Compute $\{x\}0, \ldots, \{x\}(y+1)$ and decode these as bitstrings. Let $b = \{x\}n$ be the first of these having maximal length.

$$\varphi(x,y) \simeq \begin{cases} \uparrow & \text{if } b_y = 1 \\ 0 & \text{if } b_y = 0 \end{cases}$$

provided *lth*(*b*) > *y*, otherwise put $\varphi(x, y) = 0$ (irrelevant). By the S-n-m Theorem there exists a total recursive *f* such that $\{f(x)\}y \simeq \varphi(x, y)$. If *s* is a stream over *A*, then *s* has Kleene-index *i* and there is a

duplicate among $s(0), \ldots, s(f(i) + 1)$. Details on blackboard.

Not Provable: Noetherian A

We prove $Acc_A \langle \rangle \implies \neg CT$. Assume $Acc_A \langle \rangle \land CT$ and let *S* be the set of all lists of bitstrings containing some bitstring twice or more. Then, *S* is closed under the rules defining $Acc_A \subseteq list A$:

$$\frac{dup\,\ell}{\ell\in S} \qquad \frac{\forall a:A\ a::\ell\in S}{\ell\in S}$$

For the left rule this is obvious. For the right rule, assume $\forall a : A a :: \ell \in S$ for some $\ell : list A$. Let *b* be the longest bitstring in ℓ . Let *bi* be *b* extended by i = 0, 1. By construction we have that $bi::\ell \in S$ implies $\ell \in S$. By contraposition we get that $\ell \notin S$ implies $bi::\ell \notin S$, so $bi \notin A$, i = 0, 1, as $\forall a : A a::\ell \in S$. Having *CT* (only needed for $\ell = \langle \rangle$), this is absurd (details on blackboard). Hence $\neg \ell \notin S$ and so $\ell \in S$, as this is decidable. Now $Acc_A \langle \rangle$ implies $\langle \rangle \in S$, absurd, so $Acc_A \langle \rangle \implies \neg CT$.