The Tarski alternative and the Garden-of-Eden theorem

Silvio Capobianco

Institute of Cybernetics at TUT

May 3, 2012

Revision: May 8, 2012

Ð

Introduction

- The discovery of the Banach-Tarski paradox and the study of the axiomatic properties of the Lebesgue integral originated an area of research merging measure theory with group theory.
- In 1929 John von Neumann defined amenable groups and proved that abelian groups are amenable.
- The Tarski alternative specifies that amenable groups are precisely those that disallow the Banach-Tarski paradox.
- A surprising link with E.F. Moore's Garden-of-Eden theorem was established by the work of Ceccherini-Silberstein *et al.* (1999) and Bartholdi (2007).

The Banach-Tarski paradox (1924)

A closed ball U in the 3-dimensional Euclidean space can be decomposed into two disjoint subsets X, Y, both of which are piecewise congruent to U.

Recall that two subsets A, B of the Euclidean space are piecewise congruent if they can be decomposed as $A = \bigsqcup_{i=1}^{n} A_i$, $B = \bigsqcup_{i=1}^{n} B_i$, with A_i congruent to B_i for each i.

The reasons behind the paradox

At the root of the Banach-Tarski paradox lies the Hausdorff phenomenon: The sphere S^2 can be decomposed into four disjoint parts A, B, C, Q such that:

- A, B, and C are congruent to each other,
- A is congruent to $B \cup C$, and
- Q is countable.

In turn, the Hausdorff phenomenon is made possible by a series of facts:

- The axiom of choice.
- The group of rotations of the 3-dimensional space has a free subgroup on two generators.

This does not happen with the rotations on the plane.

• The pieces of the decomposition are not Lebesgue measurable.

Notation

Let X be a set.

- $\mathcal{PF}(X)$ is the family of finite subsets of X.
- For $f,g: X \to \mathbb{R}$ we write $f \ge g$ if $f(x) \ge g(x)$ for all $x \in X$.
- $\ell^{\infty}(X)$ is the space of bounded real-valued functions defined on X, with the norm $||f||_{\infty} = \sup_{x \in X} |f(x)|$. (We consider X as a discrete topological space.)

Let G be a group.

- $L_g: G \to G$ is the left multiplication: $L_g(g') = gg'$ for every $g' \in G$.
- For every set Q, G acts on the left on Q^G by

$$gf=f\circ L_{g^{-1}}$$
,

i.e., (gh)f = g(hf) and $1_G f = f$ for every $g, h \in G$, $f \in Q^G$.

Amenable groups

von Neumann, 1929

A group is **amenable** if it admits a finitely additive probability measure μ such that $\mu(gA) = \mu(A)$ for every $g \in G$, $A \subseteq G$.

Remarks on the definition of amenable group

- As we consider discrete groups, the probability measure shall be defined on every subset of the group.
- For the same reason, we cannot ask more than finite additivity.
- Left-invariance can be replaced by right-invariance, and yield the same definition.

In fact, bi-invariance can be obtained, i.e., $\mu(gA) = \mu(Ag) = \mu(A)$.

- This is **not** true for monoids! Non-commutative monoids can be "left-amenable" without being "right-amenable".
- Finite groups are amenable, with $\mu(A) = |A|/|G|$.

Means

A mean on a set X is a linear map $m: \ell^{\infty}(X) \to \mathbb{R}$ such that:

1
$$m(1) = 1.$$

2 If $f \ge 0$ then $m(f) \ge 0$.

The set $\mathcal{M}(X)$ of means on X is a compact convex subset of $(\ell^{\infty}(X))^*$ for the weak-* topology, which is the coarsest topology that makes the evaluations $\phi \mapsto \phi(x)$ continuous.

Every mean has operator norm 1, i.e., $\sup_{\|f\|_{\infty}=1} |m(f)| = 1$.

If X = G is a group, then G acts on $\mathcal{M}(G)$ via

$$gm(f) = m(f \circ L_g) = m(g^{-1}f) \ \forall g \in G \ \forall m \in \mathcal{M}(G)$$
.

m is left-invariant if gm = m for every $g \in G$.

The mean-measure duality

Let X be a set.

• If *m* is a mean on *X*, then

$$\mu(A) = m(\chi_A)$$

is a finitely additive probability measure on X.

• If μ is a finitely additive probability measure on X, then

$$m(f) = \int_X f \, d\mu = \mathbb{E}_{\mu}(f)$$

is a mean on X.

- The two operations above are each other's inverse.
- gm = m if and only if $g\mu = \mu$, where $g\mu(A) = \mu(g^{-1}A)$.

Closure properties of the class of amenable groups

A subgroup of an amenable group is amenable.

• If
$$G = \bigsqcup_{j \in J} H_j$$
 define $\mu_H(A)$ as $\mu\left(\bigsqcup_{j \in J} A_j\right)$.

A quotient of an amenable group is amenable.

• Put $\mu_{G/K}(A) = \mu(\rho^{-1}(A))$ where $\rho: G \to G/K$ is the canonical homomorphism.

An extension of an amenable group by an amenable group is amenable.

• Let m_K , $m_{G/K}$ be left-invariant means on $K \lhd G$ and G/K.

• If
$$f \in \ell^{\infty}(K)$$
, then $\tilde{f}(Kg) = m_{K}(g^{-1}f|_{K})$ belongs to $\ell^{\infty}(G/K)$.

• Then $m(f) = m_{G/K}(\tilde{f})$ is a left-invariant mean on G.

A direct product of finitely many amenable groups is amenable.

• This is not true for infinite products!

A group whose subgroups of finite index are all amenable, is amenable.

Abelian groups are amenable

Let G be a group.

- The space $\mathcal{M}(G)$ of means on G, with the weak-* topology, is Hausdorff, convex and compact.
- The transformations $m \mapsto gm$ are affine, *i.e.*, for every $g \in G$, $m_1, m_2 \in \mathcal{M}(G)$, $t \in (0, 1)$,

$$g(tm_1 + (1-t)m_2) = t(gm_1) + (1-t)(gm_2)$$
.

Suppose G is abelian.

- Then the transformations $m \mapsto gm$ commute with each other.
- By the Markov-Kakutani fixed point theorem, there exists a mean m such that gm = m for every g ∈ G.

Corollary: solvable groups are amenable.

The free group is not amenable

Let $G = \mathbb{F}_2$ be the free group on two generators a, b. Let $w = w_1 \dots w_\ell$ be the writing of g as a reduced word. Define:

•
$$A = \{g \in G \mid w_1 = a\} \cup \{a^{-n} \mid n \in \mathbb{N}\}.$$

• $B = \{g \in G \mid w_1 = a^{-1}\} \setminus \{a^{-n} \mid n \in \mathbb{N}\}.$
• $C = \{g \in G \mid w_1 = b\}.$
• $D = \{g \in G \mid w_1 = b^{-1}\}.$

Then

$$G = A \sqcup B \sqcup C \sqcup D$$
$$= A \sqcup aB$$
$$= C \sqcup bD,$$

and a left-invariant finitely additive probability measure on \mathbb{F}_2 cannot exist.

A paradoxical decomposition of \mathbb{F}_2

Paradoxical groups

Let G be a group.

• A paradoxical decomposition is a partition

$$G = \bigsqcup_{i=1}^{n} A_i$$

together with $\alpha_1, \ldots, \alpha_n \in G$ such that, for some $k \in (1, n)$,

$$G = \bigsqcup_{i=1}^k \alpha_i A_i = \bigsqcup_{i=k+1}^n \alpha_i A_i \; .$$

• *G* is paradoxical if it admits a paradoxical decomposition. Equivalently, one can give a partition $G = \bigsqcup_{i=1}^{k} A_i \alpha_i = \bigsqcup_{i=k+1}^{n} A_i \alpha_i$.

Examples of paradoxical groups

- The free group on two generators is paradoxical.
- Every group with a paradoxical subgroup is paradoxical.

• If $H = \bigsqcup_{i=1}^{n} A_i$ and $G = \bigsqcup_{j \in J} H_j$ then $G = \bigsqcup_{i=1}^{n} A_i J$.

- In particular, every group with a free subgroup on two generators is paradoxical.
- The converse of the previous point is not true! (von Neumann's conjecture; disproved by Ol'shanskii, 1980)
- In fact, there exist paradoxical groups where every element has finite order. (Adian, 1983)

The Tarski alternative

Let G be a group. Exactly one of the following happens.

- G is amenable.
- **2** G is paradoxical.

Why is this an alternative?

Characterizations of paradoxical groups

Let G be a group. The following are equivalent.

- **(**) *G* has a paradoxical decomposition.
- 2 There exists K ∈ PF(G) such that |KF| ≥ 2|F| for every F ∈ PF(G). Equivalently: H ∈ PF(G) s.t. |FH| ≥ 2|F| for every F ∈ PF(G).
- G has a bounded propagation 2:1 compressing map. That is: G has a map φ : G → G such that, for a finite set S,
 φ(g)⁻¹g ∈ S for every g ∈ G, and
 |φ⁻¹(g)| = 2 for every g ∈ G.

Proof

Point 1 implies point 3.

• Let $G = \bigsqcup_{i=1}^{n} A_i = \bigsqcup_{r=1}^{k} A_r \alpha_r = \bigsqcup_{s=k+1}^{n} A_s \alpha_s$. • Put $S = \{\alpha_1^{-1}, \dots, \alpha_n^{-1}\}$. • If $g = a_r \alpha_r = a_s \alpha_s$ put $\phi(a_r) = \phi(a_s) = g$.

Point 3 implies point 1.

- For every $g \in G$ sort $\varphi^{-1}(g) = \{g_1, g_2\}.$
- If $S = \{s_1, \ldots, s_k\}$ and $\varphi(g)^{-1}g = s_i$, put g_1 in A_i and g_2 in A_{i+k} .
- Then $G = \bigsqcup_{i=1}^{2k} A_i$ is a paradoxical decomposition.

Proof (cont.)

Point 3 implies point 2.

• *FS* contains at least the two ϕ -preimages of each $x \in F$.

Point 2 implies point 3.

• Consider the bipartite graph (G, G, \mathcal{E}) with

$$\mathcal{E} = \{(g, h) \in G \times G \mid h \in Kg\}$$

- For every $F \in \mathcal{PF}(G)$, $x \in F$ there are at least 2|F| y's such that $(x, y) \in \mathcal{E}$.
- For every $F \in \mathcal{PF}(G)$, $y \in F$ there are at least |F|/2 x's such that $(x, y) \in \mathcal{E}$.
- Then ϕ exists by the Hall harem theorem.

The Følner conditions

Let G be a group. The following are equivalent.

● For every K ∈ PF(G) and every ε > 0 there exists F ∈ PF(G) such that

$$\frac{|kF\setminus F|}{|F|}<\varepsilon \ \forall k\in K.$$

2 There exists a net $\mathcal{F} = \{F_i\}_{i \in I}$ of finite nonempty subsets of G such that

$$\lim_{i\in I}\frac{|gF_i\setminus F_i|}{|F_i|}=0 \ \forall g\in G.$$

Such \mathcal{F} is called a left Følner net.

In fact, if point 1 holds:

• Set $I = \mathcal{PF}(G) \times \mathbb{N}$ with $(K_1, n_1) \leq (K_2, n_2)$ iff $K_1 \subseteq K_2$ and $n_1 \leq n_2$.

• For i = (K, n) define F_i so that $|kF_i \setminus F_i| < |F_i|/n|K|$ for every $k \in K$.

Similar conditions hold with right, instead of left, multiplication.

Proof of the Tarski alternative

Either G satisfies the Følner conditions, or it does not. If it does:

• For every
$$i \in I$$
 define $m_i(f) = \frac{1}{|F_i|} \sum_{x \in F_i} f(x)$.

- m_i is a mean and $\lim_{i \in I} (gm_i m_i) = 0$ in $(\ell^{\infty}(G))^*$ for every $g \in G$.
- Every limit point m of $\{m_i\}_{i \in I}$ satisfies gm = m for every $g \in G$. If it does not:
 - Choose $K_0 \in \mathcal{PF}(G)$, $\varepsilon_0 > 0$, and $k_0 \in K_0$ such that

$$|k_0F \setminus F| > \varepsilon_0|F| \ \forall F \in \mathcal{PF}(G)$$
.

- Set $K_1 = K_0 \cup \{1_G\}$. Then $F \subseteq K_1F$ and $K_1F \setminus F = K_0F \setminus F$.
- As $1_G \in K_1$, $|K_1F \setminus F| = |K_1F| |F|$.
- But then, $|K_1F| \ge |F| + |k_0F \setminus F| \ge (1 + \varepsilon_0)|F|$ for every finite F.
- Put then $K = K_1^n$ with $(1 + \varepsilon_0)^n \ge 2$.

The Ornstein-Weiss lemma

Let G be an amenable group.

Let $\phi : \mathcal{PF}(G) \to \mathbb{R}$ be a subadditive, left-invariant map, *i.e.*:

- For every $U, V \in \mathcal{PF}(G)$, $\phi(U \cup V) \le \phi(U) + \phi(V)$.
- **2** For every $g \in G$, $U \in \mathcal{PF}(G)$, $\phi(gU) = \phi(U)$.

Then for every left Følner net $\mathcal{F} = \{F_i\}_{i \in I}$,

$$L = \lim_{i \in I} \frac{\Phi(F_i)}{|F_i|}$$

exists and does not depend on the choice of \mathcal{F} .

Entropy

Let G be an amenable group. For $E \in \mathcal{PF}(G)$ let

$$\pi_E(c) = \left. c \right|_E$$
 .

By the Ornstein-Weiss lemma, the entropy

$$h(X) = \lim_{i \in I} \frac{\log |\pi_{F_i}(X)|}{|F_i|},$$

of $X \subseteq A^G$, where $\{F_i\}_{i \in I}$ is a left Følner sequence on G, is well defined and does not depend on $\{F_i\}_{i \in I}$.

Growth rate

Let G be a finitely generated group, *i.e.*, every $g \in G$ can be seen as a word on the elements of some $S \in \mathcal{PF}(G)$ and their inverses.

- The length of g ∈ G w.r.t. S is the minimum length of a word determining g.
- Let $D_{n,S}$ be the disk of radius *n*, *i.e.*, set of elements of *G* with length at most *n* w.r.t. *S*. Call $\gamma_S(n) = |D_{n,S}|$ the growth function.
- If S' is another finite set of generators for G, then

$$\frac{1}{C} \cdot \gamma_{\mathcal{S}}\left(\frac{n}{C}\right) \leq \gamma_{\mathcal{S}'}(n) \leq C \cdot \gamma_{\mathcal{S}}(C \cdot n)$$

for a suitable C > 0 and for every *n* large enough.

• The growth rate of G,

$$\lambda = \lim_{n \to \infty} \sqrt[n]{\gamma_{\mathcal{S}}(n)} ,$$

is thus well defined, and does not depend on S.

S. Capobianco (IoC)

Growth rate and amenability

G is of subexponential growth if $\lambda = 1$.

- If G is of exponential growth, then $\{D_{n,S}\}_{n\geq 0}$ does not contain any Følner subsequence.
- If G is of subexponential growth, then $\{D_{n,S}\}_{n\geq 0}$ does contain a Følner subsequence.
- If G is of polynomial growth, then $\{D_{n,S}\}_{n\geq 0}$ is a Følner sequence.
- However, there do exist amenable groups of exponential growth.

Incidentally:

A group whose finitely generated subgroups are all amenable, is amenable.

Cellular automata

A cellular automaton (CA) on a group G is a triple $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$ where

- Q is a finite set of states.
- $\mathcal{N} = \{n_1, \ldots, n_k\} \subseteq G$ is a finite neighborhood index.
- $f: Q^k \to Q$ is a finitary local function

The local function induces a global function $F: Q^G \to Q^G$ via

$$F(c)(x) = f(c(x \cdot n_1), \dots, c(x \cdot n_k))$$

= $f(c \circ L_x|_{\mathcal{N}})$

The same rule induces a function over patterns with finite support:

$$f(p): E \to Q$$
, $f(p)(x) = f(p \circ L_x|_{\mathcal{N}}) \quad \forall p: E\mathcal{N} \to Q$

In a Garden of Eden

Let $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$ be a CA.

• A Garden of Eden (GOE) for \mathcal{A} is a configuration c such that

$$F_{\mathcal{A}}^{-1}(c) = \emptyset.$$

• An orphan for \mathcal{A} is a pattern p such that

$$f^{-1}(p) = \emptyset.$$

By compactness of Q^{G} , a CA has a GOE if and only if it has an orphan.

Not injectivity, but almost

- Two configurations are almost equal if they differ only on finitely many points.
- A cellular automaton is pre-injective if any two almost equal configurations with the same image are equal.
- Two distinct patterns $p, p' : E \to Q$ are mutually erasable for a CA with global rule F, if any two configurations c, c' with

$$\left. c \right|_E = p \;, \; \left. c' \right|_E = p' \;, \; \text{ and } \; \left. c \right|_{G \setminus E} = \left. c' \right|_{G \setminus E} \right.$$

satisfy F(c) = F(c').

A CA is pre-injective if and only if it does not have m.e. patterns.

The Garden-of-Eden theorem (Moore, 1962)

If a *d*-dimensional cellular automaton has two mutuably erasable patterns, then it also has an orphan pattern.

Notably, the converse was proved by Myhill the same year. This means that:

cellular automata on an infinite space behave, with regard to surjectivity, more or less as they were finitary functions.

Not completely: XOR with right neighbor is surjective but not injective.

Balancedness

A cellular automaton A is balanced if for any given shape E, every pattern $p: E \to Q$ has the same number of preimages.

- For elementary 1D CA: every contiguous block has four preimages.
- For 2D CA with Moore neighborhood: every square pattern of side ℓ has |Q|^{4ℓ+4} preimages.
- A balanced CA has no orphans.

Theorem (Maruoka and Kimura, 1976)

A surjective CA on \mathbb{Z}^d is balanced.

The Tarski alternative from the CA point of view

Let G be a group. The following are equivalent.

- G is amenable.
- Every surjective CA on G is pre-injective.
 (Ceccherini-Silberstein *et al.*, 1999; Bartholdi, 2007)
- Every surjective CA on G is balanced. (Bartholdi, 2010)

Some notation and a lemma

Let G be a group, $E \in \mathcal{PF}(G)$.

•
$$B^{+E} = \{z \in G \mid zE \cap B \neq \emptyset\} = BE^{-1}$$
.

• $B^{-E} = \{z \in G \mid zE \subseteq B\}.$

• If $E = D_r$ we write B^{+r} and B^{-r} instead.

Lemma (Ceccherini-Silberstein, Machì and Scarabotti, 1999) Let G be a finitely generated amenable group, $q \ge 2$, and n > r > 0. For $L = D_n$ there exist m > 0 and $B \in \mathcal{PF}(G)$ such that:

There exist g₁,..., g_m ∈ G such that g_iL ⊆ B for every i, and g_iL ∩ g_jL = Ø for every i ≠ j.
(a^{|L|} - 1)^m ⋅ a^{|B|-m|L|} < a^{|B-r|}.

In the next slides, unless stated differently, we will suppose $\mathcal{N} = D_r$.

The Moore-Myhill theorem for amenable groups

Suppose G is amenable.

Then every surjective CA on G is pre-injective.

- Define a relation on Q^B by saying that p₁ ~ p₂ if they are equal or mutually erasable on each copy of L, and equal elsewhere.
- There are at most $(|Q|^{|L|}-1)^m\cdot |Q|^{|B|-m|L|}$ classes, and each element of the same class has same image.
- By the lemma, at least one $p: B^{-r} \to Q$ must be orphan.

And every pre-injective CA on G is surjective.

- If no two patterns on B^{+r} are m.e., then there are at least as many non-GOE patterns on B than patterns on B^{-r} .
- $\bullet\,$ Then either there are no ${\rm GOE}$ at all, or it is impossible to satisfy the lemma.

No Moore's theorem for the free group!

Let \mathcal{A} be the majority CA on the free group. Then \mathcal{A} is clearly not pre-injective. However:

• For
$$g \neq 1$$
, $g = s_1 \cdots s_n$ let $\varphi(g) = s_1 \cdots s_{n-1}$.

• Given
$$c:\mathbb{F}_2 o Q$$
, set $e(1)=0$ and $e(g)=c(\varphi(g))$ otherwise.

• Then each $g \in G$ has at least three neighbors j with e(j) = c(g).

No Myhill's theorem for the free group!

Let $Q = \{1, u, v, uv\}$ be the Klein group and let

$$\mathcal{F}(q_1, q_a, q_b, q_{a^{-1}}, q_{b^{-1}}) = p_u(q_a) \cdot p_v(q_b) \cdot p_u(q_{a^{-1}}) \cdot p_v(q_{b^{-1}})$$

where $p_u(u) = p_u(uv) = p_v(v) = p_v(uv) = u$, $p_i(x) = 1$ otherwise.

- Suppose c and e have same image, but differ in finitely many points. Define $d: G \to Q$ by $d(g) = c(g) \cdot e(g)$. Then F(d) = 1.
- Let g be a point of maximal length where c(g) ≠ e(g). Then d(g) is either u, v, or uv.
- If it is u or uv, choose h ∈ {ga, ga⁻¹} so that it has length greater than g. Then F(d)(h) = u, impossible.
- If it is v, choose h ∈ {gb, gb⁻¹} so that it has length greater than g. Then F(d)(h) = u, impossible.

No Moore's theorem for paradoxical groups!

Let G be a non-amenable group, ϕ a bounded propagation 2:1 compressing map with propagation set S. Define on S a total ordering \leq . Define a CA \mathcal{A} on G by $Q = (S \times \{0, 1\} \times S)$, $\mathcal{N} = S$, and

 $f(u) = \begin{cases} (p, \alpha, q) & \text{if } \exists (s, t) \in S \times S \text{ minimal } \mid u_s = (s, \alpha, p), u_t = (t, \beta, q) \\ q_0 & \text{otherwise.} \end{cases}$

Then \mathcal{A} is surjective.

- For $j \in G$ it is $j = \varphi(js) = \varphi(jt)$ for exactly two $s, t \in S$ with $s \prec t$.
- If $c(j) = (p, \alpha, q)$ put $e(js) = (s, \alpha, p)$ and e(jt) = (t, 0, q).
- Then $F_{\mathcal{A}}(e) = c$.

However, ${\cal A}$ is not pre-injective.

• In the construction above we can always replace (t, 0, q) with (t, 1, q).

・ロト ・同ト ・ヨト ・ヨト

Surjective CA on amenable groups are balanced

The following proof is due to Jarkko Kari.

- Let $L' = L^{-r}$. Suppose $p: L' \to Q$ satisfies $|f^{-1}(p)| \le |Q|^{|L|-|L'|} 1$.
- Then there are at most

$$\left(\left|Q
ight|^{\left|L
ight|-\left|L'
ight|}-1
ight)^{m}\cdot\left|Q
ight|^{\left|B
ight|-m\left|L
ight|}$$

patterns on B that are mapped to p on each copy of L'.

- But $\left(|Q|^{|L|-|L'|} 1 \right) \le |Q|^{-|L'|} \left(|Q|^{|L|} 1 \right)$.
- So the number of said patterns is at most

$$|Q|^{-m|L'|} \cdot \left(|Q|^{|L|} - 1\right)^m \cdot |Q|^{|B|-m|L|} < |Q|^{|B^{-r}|-m|L'|}$$

• The right-hand side is the number of patterns on B^{-r} that coincide with p on each copy of L': some of which must be orphan.

A surjective, non-balanced CA (Guillon, 2011)

Let G be a non-amenable group, ϕ a bounded propagation 2:1 compressing map with propagation set S.

Define on S a total ordering \leq .

Define a CA ${\mathcal A}$ on G by $Q=(S imes\{0,1\} imes S)\sqcup\{q_0\},\ {\mathcal N}=S,$ and

 $f(u) = \begin{cases} q_0 & \text{if } \exists s \in S \mid u_s = q_0, \\ (p, \alpha, q) & \text{if } \exists (s, t) \in S \times S \mid s \prec t, u_s = (s, \alpha, p), u_t = (t, 1, q), \\ q_0 & \text{otherwise.} \end{cases}$

(Due to ϕ being 2:1, if a pair (s, t) as above exists, it is unique.) Then A, although clearly non-balanced, is surjective.

• For $j \in G$ it is $j = \phi(js) = \phi(jt)$ for exactly two $s, t \in S$ with $s \prec t$.

• If
$$c(j) = q_0$$
 put $e(js) = e(jt) = (s, 0, s)$.

- If $c(j) = (p, \alpha, q)$ put $e(js) = (s, \alpha, p)$ and e(jt) = (t, 1, q).
- Then $F_{\mathcal{A}}(e) = c$.

イロト 不得 とうせい かほとう ほ

Conclusions and open questions

- Amenable groups are the obstacle to the Banach-Tarski paradox.
- The Tarski alternative can be expressed in terms of finite sets.
- Moore's Garden-of-Eden theorem characterizes amenable groups.
- Is Myhill's theorem characteristic to amenable groups as well?

Thank you for attention!

Any questions?

