
A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

A Lightweight Approach
to Start Time Consistency in Haskell

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
February 9, 2012



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Functional reactive programming

declarative approach to programming reactive systems

functional programming extended with support
for temporal processes

examples of processes:

behaviors time-varying values:

JBehavior αK ≈ Time→ JαK

events values at points in time:

JEvent αK ≈ Time× JαK



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Start times

processes have associated start times:

behaviors provides values only at their start times and later
events can only fire at their start times or later

processes appearing within other processes at some time t
must start at t

introduce a start time parameter to the meanings of types:

behaviors:

JBehavior αK(t) = Πt ′ : Time . (t 6 t ′)→ JαK(t ′)

events:

JEvent αK(t) = Σt ′ : Time . (t 6 t ′)× JαK(t ′)

start time parameter passed downwards for ordinary
type constructors



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Temporal categories

basic constructions in Haskells type system:

finite products
finite sums
function spaces

modelled by bicartesian closed categories (BCCCs):

objects correspond to types
morphisms correspond to functions

support for FRP by extending BCCCs to temporal
categories (TCs):

objects correspond to types
morphisms correspond to families of functions
with one function per time:

Πt : Time . JαK(t)→ JβK(t)

Behavior and Event correspond to functors 2 and 3



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

FRP operations in temporal categories

natural transformations for operations where all involved
processes have the same start time:

mA,B : 2A×2B → 2(A× B)

µA : 33A→ 3A

sA,B : 2A×3B → 3(A× B)

etc.

transforming values inside behaviors and events:

for every f : A→ B, we have:

2f : 2A→ 2B

3f : 3A→ 3B

safe, because f : A→ B includes a function for every time



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Tensorial strength

two natural transformations:

t2A,B : A×2B → 2(A× B)

t3A,B : A×3B → 3(A× B)

disallowed, because they would have to shift values
to different times



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

A straightforward implementation approach

polymorphic functions for natural transformations:

fuse :: (Behavior α,Behavior β)→ Behavior (α, β)

join :: Event (Event α) → Event α

sample :: (Behavior α,Event β) → Event (α, β)

Haskell’s Functor class for functors:

class Functor f where

fmap :: (α→ β)→ (f α→ f β)

instance Functor Behavior where . . .

instance Functor Event where . . .



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Tensorial strength through the backdoor

fmap is a Haskell function

so it corresponds to a morphism itself

for each functor F , we have the following:

ϕF
A,B : BA → FBFA

allows us to construct tensorial strength:

ΛidA×B : A→ (A× B)B

ϕF
B,A×B(ΛidA×B) : A→ F (A× B)FB

(ϕF
B,A×B(ΛidA×B)× idFB) : A× FB → F (A× B)FB × FB

e(ϕF
B,A×B(ΛidA×B)× idFB) : A× FB → F (A× B)

the same in Haskell:

strength :: (Functor f )⇒ (α, f β)→ f (α, β)
strength (x , f ) = fmap ((,) x) f



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Applicative functors

functors support lifting of unary functions:

fmap :: (Functor f )⇒ (α→ β)→ (f α→ f β)

applicative functors support lifting of functions
of arbitrary arity:

liftAn :: (Applicative f )⇒
(α1 → · · · → αn → β) →
(f α1 → · · · → f αn → f β)

Applicative class contains two methods:

pure = liftA0 (~) = liftA2 ($)

for arbitrary n ∈ N, liftAn can be derived:

liftAn f f 1 . . . f n = pure f ~ f 1 ~ · · ·~ f n



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Timed values

no functions that directly work with behaviors and events

user can construct only values that are valid
independently of time

type constructor At for encapsulating values that are fixed
to some time:

At has a phantom parameter t that represents a time
At t α contains all values of type α that are valid at t
in particular:

At t (Behavior α) contains all behaviors that start at t
At t (Event α) contains all events that start at t

for every t, At t is an applicative functor:

liftAn :: (α1 → · · · → αn → β) →
(At t α1 → · · · → At t αn → At t β)



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Operations with timed values

functions on At for natural transformations:

fuse :: At t (Behavior α,Behavior β)→
At t (Behavior (α, β))

join :: At t (Event (Event α)) →
At t (Event α)

sample :: At t (Behavior α,Event β) →
At t (Event (α, β))

functor application requires an argument with universally
quantified time:

class SafeFunctor f where

safeMap :: (∀t . At t α→ At t β) →
At t (f α)→ At t (f β)

instance SafeFunctor Behavior where . . .

instance SafeFunctor Event where . . .



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

No tensorial strength anymore

remember our implementation of strength:

strength :: (Functor f )⇒ (α, f β)→ f (α, β)
strength (x , f ) = fmap ((,) x) f

for any x :: α, we have ((,) x) :: β → (α, β)

not suitable as an argument of safeMap



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Really?

we can lift that function:

liftA1 ((,) x) :: At t β → At t (α, β)

allows us to construct a “safe strength”:

safeStrength :: (SafeFunctor f )⇒
(α,At t (f β))→ At t (f (α, β))

safeStrength (x , f ) = safeMap (liftA1 ((,) x)) f

no problem if values of α are valid independently of time

but we can transform values that are already under an At:

liftA1 safeStrength :: (SafeFunctor f )⇒
At t (α,At t ′ (f β))→
At t (At t ′ (f (α, β)))

solution:

At-values are only assumed to be consistent
if they do not appear under another At



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

The Q-functor

values of types ∀t . At t α→ At t β everywhere

conversion from ∀t . At t α→ At t β to ∀t . At t (α→ β)
should be safe

opposite conversion is safe, because it is possible
via application of (~)

introduce a type constructor Q with Q α = ∀t . At t α
instead of ∀t . At t α→ At t β use Q (α→ β)

Q is an applicative functor, because the liftAn of At t
with type

(α1 → · · · → αn → β) →
(At t α1 → · · · → At t αn → At t β)

can be turned into a liftAn of Q, which has type

(α1 → · · · → αn → β) →
((∀t . At t α1)→ · · · → (∀t . At t αn)→ (∀t . At t β))



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

No universal quantification at the surface

using applicative functor operations is enough
for working with Q

so we can hide the implementation of Q

no universal quantification at the surface anymore:

fuse :: Q ( (Behavior α,Behavior β)→
Behavior (α, β))

join :: Q (Event (Event α) →
Event α)

sample :: Q ( (Behavior α,Event β) →
Event (α, β))

class SafeFunctor f where

safeMap :: Q (α→ β)→ Q (f α→ f β)



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

No universal quantification internally

library implementor can take care of ensuring consistency,
since implementation of Q is hidden

no need for using universal quantification internally anymore

Q can just be implemented as the identity functor:

newtype Q α = Q α



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

1 Introduction

2 Categorical models

3 FRP in Haskell, inconsistently

4 Applicative functors

5 Start time consistency via timed values

6 A lightweight solution

7 Conclusions and outlook



A Lightweight
Approach

to Start Time
Consistency
in Haskell

Wolfgang
Jeltsch

Introduction

Categorical
models

FRP in
Haskell,
inconsistently

Applicative
functors

Start time
consistency via
timed values

A lightweight
solution

Conclusions
and outlook

Conclusions and outlook

lightweight technique for ensuring start time consistency:

easy to use
easy to implement
no need for language extensions

open problems:

Does it really work?
Why does it work?
What kind of “effect” is represented by the Q-functor?
Is Q also a monad?

future work:

Q-functor technique seems to be more generally applicable
use it to encode the Curry–Howard analog of linear logic
in Haskell
leads to a more functional way of dealing with I/O
(hopefully)
see next theory seminar


	Introduction
	Categorical models
	FRP in Haskell, inconsistently
	Applicative functors
	Start time consistency via timed values
	A lightweight solution
	Conclusions and outlook

