A Lightweight
Approach
to Start Time

Consistency
in Haskell

A Lightweight Approach
to Start Time Consistency in Haskell

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
February 9, 2012

A Lightweight
Approach .

to Start Time Introduction
Consistency
in Haskell

Introduction

Functional reactive programming

A Lightweight
Approach
to Start Time
Consistency

in Haskell m declarative approach to programming reactive systems

m functional programming extended with support
for temporal processes

Introduction

m examples of processes:
behaviors time-varying values:

[Behavior o] ~ Time — [«]
events values at points in time:

[Event o] ~ Time x [a]

Start times

A Lightweight
Approach H H .
o coproach B processes have associated start times:
Consistency
in Haskell

m behaviors provides values only at their start times and later
m events can only fire at their start times or later

B processes appearing within other processes at some time t
Introduction must start at t

m introduce a start time parameter to the meanings of types:
m behaviors:

[Behavior o](t) = Nt": Time . (t < t') — [o](t)
m events:
[Event a](t) = Zt': Time . (t < t') x [](t)

m start time parameter passed downwards for ordinary
type constructors

A Lightweight
Approach
to Start Time
Consistency
in Haskell

Categorical models

Categorical
models

Temporal categories

A Lightweight] . .
pproach m basic constructions in Haskells type system:
to Start Time
Consistency ..
in Haskell u flnlte prOdUCtS
W m finite sums

leitsch m function spaces
m modelled by bicartesian closed categories (BCCCs):
Categorical m objects correspond to types
medels m morphisms correspond to functions
m support for FRP by extending BCCCs to temporal
categories (TCs):
m objects correspond to types
m morphisms correspond to families of functions
with one function per time:

Mt : Time . [a](£) — [6]()

m Behavior and Event correspond to functors O and <

FRP operations in temporal categories

A Lightweight
Approach
to Start Time

m natural transformations for operations where all involved
Consi .
Ry processes have the same start time:

W

elsch map : DA x OB — O(A x B)
par OCA = OA
modes sap: OA X OB — O(A x B)

etc.
m transforming values inside behaviors and events:
m for every f : A — B, we have:

of : 0A— OB
Of 1 CA— OB

m safe, because f : A — B includes a function for every time

Tensorial strength

A Lightweight
Approach
to Start Time
Consistency
in Haskell

m two natural transformations:

iaotdeeglzrical tE,B N A X DB — D(A X B)
tag : AX OB — O(Ax B)

m disallowed, because they would have to shift values
to different times

A Lightweight

Approach
to Start Time
Consistency
in Haskell

FRP in Haskell, inconsistently

FRP in
Haskell,
inconsistently

A straightforward implementation approach

A Lightweight
Approach
to Start Time
Consistency
in Haskell

m polymorphic functions for natural transformations:
"t fuse :: (Behavior a, Behavior 3) — Behavior (v, 3)
Join :: Event (Event) — Event «
sample :: (Behavior «v, Event) — Event («, 3)
FRe in m Haskell's Functor class for functors:
el class Functor f where

fmap:: (o — B) — (f a — f)
instance Functor Behavior where ...

instance Functor Event where ...

Tensorial strength through the backdoor

A Lightweight . .
Pypeeds fmap is a Haskell function

to Start Time
Consistency
in Haskell

so it corresponds to a morphism itself

for each functor F, we have the following:

onp: B — FBM

allows us to construct tensorial strength:

FRP in Nidaxg : A — (A x B)B

Haskell,
inconsistently @E7AXB(A|CIAXB) . A — F(A % B)FB
(¢B.axs(Nidaxs) x idrg) : Ax FB — F(A x B)Ff x FB
e(¢p.axp(Nidaxs) x ideg) : A x FB — F(A x B)
m the same in Haskell:

strength :: (Functor f) = (a, f B) — f (a,)
strength (x, f) = fmap ((,) x) f

A Lightweight
Approach
to Start Time

Consistency
in Haskell

Applicative functors

Applicative
functors

Applicative functors

A Lightweight
A I e e .
o S m functors support lifting of unary functions:

Consistency

in Haskell fmap :: (Functor f) = (o — B) = (f a« = f ()

m applicative functors support lifting of functions
of arbitrary arity:
liftA, :: (Applicative f) =
(1 = —a, —p0) —
(fag = = fa,—fp)
m Applicative class contains two methods:

Applicative
functors

pure = liftAp (®) = liftAs (9)
m for arbitrary n € N, /iftA, can be derived:

liftAp ff1 ... fo=puref ®f1®---®F,

A Lightweight
Approach
to Start Time
Consistency
in Haskell

Start time consistency via timed values
Start time

consistency via

timed values

Timed values

A Lightweight
Approach
to Start Ti
Consistenty m no functions that directly work with behaviors and events
in Haskell

m user can construct only values that are valid
independently of time
m type constructor At for encapsulating values that are fixed
to some time:
m At has a phantom parameter t that represents a time
m At t « contains all values of type « that are valid at t
m in particular:

m At t (Behavior o) contains all behaviors that start at ¢
m At t (Event a) contains all events that start at t

Start time

consistency via m for every t, At t is an applicative functor:

timed values
liftAn = (a1 — = Qp — B) -
(Atta; — - > At ta, = At t 3)

Operations with timed values

A Lightweight . .
s m functions on At for natural transformations:

to Start Time

Consistency fuse :: At t (Behavior o, Behavior) —
" feskel At t (Behavior (c, 8))
join At t (Event (Event «)) —

At t (Event «)
sample :: At t (Behavior a, Event 3) —
At t (Event («, 8))
m functor application requires an argument with universally
quantified time:
class SafeFunctor f where

Start time

consistency via safeMap :: (Vt . Atta — At t B) —

timed values

At t (f a) = At t (f B)
instance SafeFunctor Behavior where . ..

instance SafeFunctor Event where . ..

No tensorial strength anymore

A Lightweight
Approach
to Start Time
Consistency
in Haskell

m remember our implementation of strength:
strength :: (Functor f) = (a,f B8) — f (o, B)
strength (x, f) = fmap ((,) x) f

m for any x :: o, we have ((,) x) :: 8 = (o, f)

m not suitable as an argument of safeMap

Start time

consistency via
timed values

A Ligh igh . .
Apronch we can lift that function:

to Start Time

Clz;n:'l:;izﬁv liftAy ((,) x) = At t 8 — At t (o, 5)

allows us to construct a “safe strength”:
safeStrength :: (SafeFunctor f) =
(a, At t (f B)) = At t (f (o, B))
safeStrength (x, f) = safeMap (liftA; ((,) x)) f
no problem if values of « are valid independently of time
but we can transform values that are already under an At:

liftA; safeStrength :: (SafeFunctor f) =
Start time At t (a’ At t/ (f /B)) —

consistency via

timed values At t (At t/ (f (Oé, 5)))

solution:

At-values are only assumed to be consistent
if they do not appear under another At

A Lightweight
Approach
to Start Time
Consistency
in Haskell

@ A lightweight solution

A lightweight
solution

The Q-functor

i values of types Vt . At t a — At t 3 everywhere
P m conversion from Vt . At t o — At t S to Vt . At t (a —)
in Hasiel should be safe
m opposite conversion is safe, because it is possible
via application of (®)
m introduce a type constructor @ with Q a =Vt . At t «
m instead of Vt . At t a« — At t S use Q (o —)
m Q@ is an applicative functor, because the /iftA, of At t
with type

(o1 — = ap — 5) —
(Attag — - = At ta, — At t)

A lightweight can be turned into a /iftA, of @, which has type

solution

(a1 — = —) —
((Vt.Attag) — - — (Vt. At ta,) — (Yt . At t B))

No universal quantification at the surface

A Lightweight
Approach

D SRS i m using applicative functor operations is enough

Consistency

i (Rl for working with Q
' m so we can hide the implementation of @

m no universal quantification at the surface anymore:

fuse :: Q ((Behavior o, Behavior) —
Behavior (o, 8))

Join 2 Q (Event (Event) —
Event)

sample :: Q ((Behavior «, Event B) —
Event («, 8))

A lighoveight class SafeFunctor f where
safeMap :: Q (o — B) — Q (f a — f)

No universal quantification internally

A Lightweight
Approach
to Start Time
Consistency
in Haskell

m library implementor can take care of ensuring consistency,
since implementation of @ is hidden

m no need for using universal quantification internally anymore
m @ can just be implemented as the identity functor:
newtype Q a = Q «

A lightweight
solution

A Lightweight
Approach
to Start Time
Consistency
in Haskell

Conclusions

o) euidlosh Conclusions and outlook

Conclusions and outlook

A Lightweight
Approach m lightweight technique for ensuring start time consistency:

to Start Time
Consistency H easy to use

in Hastell m easy to implement
m no need for language extensions
m open problems:
m Does it really work?
m Why does it work?
m What kind of “effect” is represented by the Q-functor?
m Is Q also a monad?

m future work:

m Q-functor technique seems to be more generally applicable

m use it to encode the Curry—Howard analog of linear logic
in Haskell

m leads to a more functional way of dealing with 1/0

Conclusions (hOpefu”y)
2nd outlook m see next theory seminar

	Introduction
	Categorical models
	FRP in Haskell, inconsistently
	Applicative functors
	Start time consistency via timed values
	A lightweight solution
	Conclusions and outlook

