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Modal logics

used to deal with things like possibility, belief, and time

in this talk only time

two new operators 2 and 3:

2ϕ now and at every future time, ϕ holds
3ϕ now or at some future time, ϕ holds

later also future-only variants:

2′ϕ at every future time, ϕ holds
3′ϕ at some future time, ϕ holds

2 and 3 dual and interdefinable in classical modal logics:

2ϕ := ¬3¬ϕ 3ϕ := ¬2¬ϕ
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Kripke semantics

used for classical modal logics

Kripke frame:

set W of worlds
accessibility relation R ⊆W ×W

Kripke model assigns truth values to formulas for each world

semantics of modal operators:

2ϕ true at w if ϕ is true at every w ′ with
(w ,w ′) ∈ R

3ϕ true at w if ϕ is true at some w ′ with
(w ,w ′) ∈ R

Kripke frames in the temporal case:

worlds are times
accessibility relation is reflexive order of times
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Concrete modal logics

some classical logics:

K axioms that have to hold in every modal logic
S4 additional axioms that ensure that

the accessibility relation is reflexive
and transitive

some intuitionistic logics and their categorical models:

IK BCCCs with additional structure
for modeling 2 and 3

CS4/IS4 additional structure that corresponds
to reflexivity and transitivity of accessibility
relations in the classical case
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This talk

categorical models of intuitionistic S4 based on categorical
models of CS4 and IS4

categorical models for an intuitionistic temporal logic:

additional structure for modeling future-only operators
additional structure that corresponds to totality
of accessibility orders in the classical case
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Basic structure

remember:
objects model propositions
if objects A and B model propositions ϕ and ψ,
morphisms f : A→ B model proofs of ϕ ` ψ

BCCCs as models of intuitionistic propositional logic:

1 =̂ > × =̂ ∧ 0 =̂ ⊥ + =̂ ∨ → =̂⇒

BCCCs with additional structure as models of modal logics

functors 2 and 3 for modeling logical operators 2 and 3

morphism maps correspond to the following logical rules:

ϕ ` ψ
2ϕ ` 2ψ

ϕ ` ψ
3ϕ ` 3ψ

ϕ ` ψ shall mean that at all times, ϕ implies ψ
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Monoidal functors

2 is a strong monoidal functor on the cartesian structure
(cartesian functor):

2A×2B ∼= 2(A× B)

1 ∼= 21

duality of 2 and 3 would mean that 3 is a strong
monoidal functor on the cocartesian structure:

3(A + B) ∼= 3A + 3B

30 ∼= 0

do not require this:
left-to-right transformations would transport information
about the future into the present
would make it impossible to use temporal logic
as a language for programs that run in real time (FRP)
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Comonads and monads

2 is a comonad:

εA : 2A→ A δA : 2A→ 22A

classical analog is that accessibility relations are orders:
type of ε corresponds to reflexivity axiom
type of δ corresponds to transitivity axiom

3 is a monad:

ηA : A→ 3A µA : 33A→ 3A

classical analog is also that accessibility relations are orders:
type of η corresponds to reflexivity axiom
type of µ corresponds to transitivity axiom

classically, only one reflexivity and one transitivity axiom
necessary (because 2 and 3 are interdefinable)
need both the comonad and the monad structure
in the intuitionistic case
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Relative tensorial strength

3 is 2-strong:

natural transformation s with

sA,B : 2A×3B → 3(2A× B)

exists
s is compatible with cartesian functor, comonad,
and monad structure

proposition corresponding to s holds automatically
in classical logic (because 2 and 3 are interdefinable)
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Future only

logic with future-only operators 2′ and 3′:

2ϕ = ϕ ∧2′ϕ

3ϕ = ϕ ∨3′ϕ

functors 2′ and 3′ with the following properties:

2A = A×2′A

3A = A + 3′A

2′ is an ideal comonad, and 3′ is an ideal monad:
natural transformations δ′ and µ′ with

δ′ : 2′A→ 2′2A

µ′ : 3′3A→ 3′A

exist
comonad and monad structure derived from δ′ and µ′
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Linear time

classically, accessibility order must be total

introduction of a natural transformation r with

rA,B : 3A×3B → 3(A� B) ,

where

A� B := A× B + A×3′B + 3′A× B
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A nicer solution

an operator 〈〈·, ·〉〉 with

f : C → 3A g : C → 3B

〈〈f , g〉〉 : C → 3(A� B)

looks a bit like the 〈·, ·〉-operator of a product
require A� B to be a product in the Kleisli category of 3
〈〈·, ·〉〉 is now the 〈·, ·〉-operator of that product
projections:

$1 : A× B + A×3′B + 3′A× B → A + 3′A

$2 : A× B + A×3′B + 3′A× B → B + 3′B

product axioms (in the Kleisli category) ensure that proofs
of 3A and 3B can be recovered from proof of 3(A� B):

µ(3$1)〈〈f , g〉〉 = f µ(3$2)〈〈f , g〉〉 = g

as a result, r is an isomorphism
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