
First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

First-Class Signals
for Functional Reactive Programming

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
October 13, 2011



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Functional Reactive Programming

I the ideal reactive system:
I continuous change
I immediate, atomic reactions on events

I not reflected by imperative implementations:
I discretization visible
I inconsistent intermediate states visible

I programmer confronted with technical details:
I polling loops
I event handlers

I goal of functional programming:

problem description instead of execution plan

I Functional Reactive Programming (FRP):

applying this principle to reactive systems



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Implementations

I two ways of implementing FRP:

pull-based system state is repeatedly recomputed
push-based state changes are triggered by events

I many Haskell EDSLs:
I pull-based:

I Fran
I Yampa

etc.
I push-based:

I FranTk
I Reactive
I Grapefruit

etc.

I EDSLs for other programming languages
(all push-based):

Java Frappé
Scheme FrTime

JavaScript Flapjax



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Grapefruit

I originally geared towards GUI programming

I push-based, because change is rare in GUIs
I problem with existing push-based implementations:

I no first-class descriptions of temporal behavior
I performance problems

I a new implementation for solving these issues



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Signals

I the heart of FRP

I describe temporal behavior

I three flavors:

discrete values associated with discrete times:

JDSignalK α ≈ [(Time, α)]

continuous arbitrary time-varying values:

JCSignalK α ≈ Time → α

segmented step functions over time:

JSSignalK α = (α, JDSignalK α)



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Examples of signals

discrete incoming network packets:

DSignal Packet

continuous time since the program has started:

CSignal DiffTime

segmented amount of network traffic:

SSignal Integer



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Signal combinators

I functions for constructing signals

I some examples:

union :: DSignal α→ DSignal α→ DSignal α

filter :: (α→ Bool)→ DSignal α→ DSignal α

scanl :: (β → α→ β)→ β → DSignal α
→ SSignal β

I application of these combinators:

p̈ :: DSignal Packet
p̈ = union p̈In p̈Out

p̈TCP :: DSignal Packet
p̈TCP = filter isTCPPacket p̈

v̄ :: SSignal Integer
v̄ = scanl (λv p → v + size p) 0 p̈



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Switching

I class Signal of all signal types

I switching combinator:

switch :: (Signal σ)⇒ SSignal (σ α)→ σ α

I possible application:
I two segmented signals that represent amount

of incoming and outgoing traffic:

v̄In, v̄Out :: SSignal Integer
I segmented signal that toggles between these two,

depending on user selection:
¯̄v :: SSignal (SSignal Integer)

I switching creates a signal that always gives
the respective amount of traffic:

v̄Sel :: SSignal Integer
v̄Sel = switch ¯̄v

I v̄Sel used as the input of a display component



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

A straightforward push-based implementation

I updates shall be event-driven

I signal consumers register event handlers

I discrete signal is registration action
(which yields unregistration action):

type Handler α = α→ IO ()

type DSignal α = Handler α→ IO (IO ())

I SSignal implementation directly mirrors the semantics:

type SSignal α = (α,DSignal α)



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Implementation of scanl

scanl :: (β → α→ β)→ β → DSignal α→ SSignal β
scanl f y0 ẍ = (y0, ÿ) where

ÿ = λh→ do
~y ← newIORef y0
ẍ (λx → do

y ← readIORef ~y
let

y ′ = f y x

writeIORef ~y y ′

h y ′)



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Generators, not signals

I registration actions executed once per consumer
I when using scanl , every consumer

I creates a mutable variable, initialized at
consumption time

I registers a handler that updates this variable

I two problems:

1. duplication of computations
2. signal values depending on consumption time

I intuition:
I values of signal types are in fact generators
I generator yields a new signal when consumed
I signals are not first-class anymore



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Using native memoization

I Haskell caches computed parts of a data structure
if a variable is bound to the structure

I problem:

values of DSignal do not contain event values

I changing the data structure:

type DSignal α = [(Time, α)]

I event streams must be interleaved when computing
signal unions:

union ((t1, x1) : ẍ1) ((t2, x2) : ẍ2) | t1 < t2 = · · ·
| t1 ≡ t2 = · · ·
| t1 > t2 = · · ·

I problem:

comparison of occurrence times must succeed
when the first event occurs

I our solution:

delegate event ordering to the consumers



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Representing discrete signals by vistas

I vista covers every possible event stream interleaving

I future behavior depends on which external event source
fires next:

type Vista α = Map EventSrc (Variant α)

type Variant α = (α,Vista α)

I vista for union p̈In p̈Out :

eIn
pIn,2

eOut
pOut,1

eIn
pIn,1

eIn
pIn,1

eOut
pOut,2

eOut
pOut,1

. . .

. . .

. . .

. . .



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Consuming vistas

I consumer knows about the order in which
event sources fire

I evaluates only the relevant path:

eIn
pIn,2

eOut
pOut,1

eIn
pIn,1

eIn
pIn,1

eOut
pOut,2

eOut
pOut,1

. . .

. . .

. . .

. . .



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Implementation of combinators

I functional representation of discrete signals leads to
functional implementations of combinators

I implementation of scanl :

scanl :: (β → α→ β)→ β → DSignal α
→ SSignal β

scanl f y0 ẍ = (y0, a y0 ẍ) where

a y = fmap (λ(x , ẍ)→ let

y ′ = f y x

in (y ′, a y ′ ẍ))

I problem with filter :

removing nodes would destroy structure of the vista

I solution:

make event values optional

I modified Variant type:

type Variant α = (Maybe α,DSignal α)



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Fixing start times

I technique inspired by Haskell’s ST monad

I signal types get an extra (phantom) type parameter
that represents signal start times

I signal combinators enforce start time equality:

union :: DSignal t0 α→ DSignal t0 α
→ DSignal t0 α

scanl :: (β → α→ β)→ β → DSignal t0 α
→ SSignal t0 β

I actions for producing and consuming signals
have a parameter representing execution time:

newtype Reactive t0 α = Reactive (IO α)

I signal production and consumption enforce
start time equality

I conversion to IO uses universal quantification:

toIO :: (∀t0.Reactive t0 α)→ IO α



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Safe switching

I safe switching combinator:

switch :: (Signal σ)⇒
SSignal t0 (∀t.σ t α)→ σ t0 α

I switches only to signals that don’t depend
on external events:

I empty discrete signal
I constant continuous signals
I constant segmented signals

I useless

I idea:

switching between signal functions
instead of signals



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Signal functions to the rescue

I functions on signals with identical start time:

SigFun t0 (σ1 ‘Of ‘ α1 7→ · · · 7→ σn ‘Of ‘ αn 7→ σ ‘Of ‘ α)

I empty data types for type indices:

data ϕ 7→ ϕ′

data σ ‘Of ‘ α

I SigFun defined as a GADT:

data SigFun t0 ϕ where

SigFun0 :: (Signal σ)
⇒ σ t0 α
→ SigFun t0 (σ ‘Of ‘ α)

SigFunsucc :: (Signal σ)
⇒ (σ t0 α→ SigFun t0 ϕ

′)
→ SigFun t0 (σ ‘Of ‘ α 7→ ϕ′)



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

Switching between signal functions

I type of the switching combinator:

switch :: SSignal t0 (∀t.SigFun t ϕ)
→ SigFun t0 ϕ

I how the combinator works (conceptionally):
I arguments of the result function are pruned to fit

the segments of the argument signal (ageing)
I each function from the argument signal is applied

to its corresponding slices
I resulting segments are concatenated



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

The traffic volume example again

I type of binary signal functions over a single signal type:

type BinSigFun t0 σ α = SigFun t0 (σ ‘Of ‘ α 7→
σ ‘Of ‘ α 7→
σ ‘Of ‘ α)

I projection functions:

π1, π2 :: BinSigFun t0 σ α
π1 = SigFunsucc $ λs1 →

SigFunsucc $ λ → SigFun0 s1
π2 = SigFunsucc $ λ →

SigFunsucc $ λs2 → SigFun0 s2
I segmented signal that toggles between these functions:

f̄ :: SSignal t0 (∀t.BinSigFun t σ α)

I switching yields time-varying projection:

f :: BinSigFun t0 σ α
f = switch f̄

I unpacking and applying to v̄In and v̄Out yields v̄Sel



First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time
consistency

First-Class Signals
for Functional Reactive Programming

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
October 13, 2011


	Introduction
	FRP concepts
	Generators
	Memoization
	Start time consistency

