First-Class Signals
for FRP

Wolfgang Jeltsch

First-Class Signals
for Functional Reactive Programming

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
October 13, 2011

First-Class Signals

Overview for FRP

Wolfgang Jeltsch

Introduction

FRP concepts

Generators

Memoization

Start time consistency

Overview

Introduction
FRP concepts

Generators

Memoization

Start time consistency

«O> «Fr «=>»

« =)

DA

First-Class Signals

Functional Reactive Programming for FRP

Wolfgang Jeltsch

Introduction

v

the ideal reactive system:

» continuous change
» immediate, atomic reactions on events

v

not reflected by imperative implementations:

» discretization visible
» inconsistent intermediate states visible

» programmer confronted with technical details:
» polling loops
» event handlers

v

goal of functional programming:
problem description instead of execution plan

v

Functional Reactive Programming (FRP):
applying this principle to reactive systems

Implementations

» two ways of implementing FRP:
pull-based system state is repeatedly recomputed
push-based state changes are triggered by events
» many Haskell EDSLs:
> pull-based:
» Fran
> Yampa
etc.
» push-based:
» FranTk
> Reactive

> Grapefruit
etc.

» EDSLs for other programming languages
(all push-based):
Java Frappé
Scheme FrTime
JavaScript Flapjax

First-Class Signals
for FRP

Wolfgang Jeltsch

Introduction

. First-Class Signals
Grapefruit for FRP
Wolfgang Jeltsch

Introduction

v

originally geared towards GUI programming

v

push-based, because change is rare in GUls
problem with existing push-based implementations:

» no first-class descriptions of temporal behavior
» performance problems

v

v

a new implementation for solving these issues

Overview

Introduction

FRP concepts
Generators

Memoization

Start time consistency

«O>» «Fr <

it
v
a
it

nae

First-Class Signals

Signals for FRP

Wolfgang Jeltsch

» the heart of FRP

» describe temporal behavior

FRP concepts

» three flavors:
discrete values associated with discrete times:

[DSignal] o = [(Time,)]
continuous arbitrary time-varying values:

[CSignal] o = Time — «
segmented step functions over time:

[SSignal] o = («, [DSignal])

First-Class Signals

Examples of signals for FRP

Wolfgang Jeltsch

FRP concepts

discrete incoming network packets:
DSignal Packet
continuous time since the program has started:
CSignal DiffTime
segmented amount of network traffic:

SSignal Integer

First-Class Signals

Signal combinators for FRP

Wolfgang Jeltsch

» functions for constructing signals
> some examples: FHE concepss
union :: DSignal a« — DSignal o — DSignal o
filter :: (oo — Bool) — DSignal oo — DSignal o
scanl :: (f — a — B) — B — DSignal «
— SSignal 8
> application of these combinators:
p :: DSignal Packet
p = union pi pout
prcp :: DSignal Packet
pr1cp = filter isTCPPacket p
v :: SSignal Integer
v=scanl (\v p— v+sizep)0p

First-Class Signals

Switching Clase ™)

Wolfgang Jeltsch

> class Signal of all signal types

» switching combinator:

FRP concepts

switch :: (Signal o) = SSignal (o0 o) = 0 «

» possible application:

>

two segmented signals that represent amount
of incoming and outgoing traffic:

Vin, Vout - SSignal Integer
segmented signal that toggles between these two,
depending on user selection:

v :: SSignal (SSignal Integer)
switching creates a signal that always gives
the respective amount of traffic:

Vsel =2 SSignal Integer

Vse = Sswitch v
Vse) used as the input of a display component

Overview

Introduction
FRP concepts
Generators

Memoization

Start time consistency

«O> «Fr «=>»

« =)

DA

A straightforward push-based implementation i

Wolfgang Jeltsch

Generators

v

updates shall be event-driven

v

signal consumers register event handlers

v

discrete signal is registration action
(which yields unregistration action):

type Handler o« = o — 10 ()

type DSignal o = Handler oo — 10 (10 ())
SSignal implementation directly mirrors the semantics:

type SSignal a = («, DSignal «)

v

Implementation of scanl/

scanl :: (8 — a —) — B — DSignal o — SSignal
scanl f yp X = (yo,y) where
y = Ah — do
y < newlORef yy
X (Ax — do
y < readlORef y
let

y'=fyx
writelORef y y'
hy')

First-Class Signals
for FRP

Wolfgang Jeltsch

Generators

Generators, not signals

> registration actions executed once per consumer
» when using scan/, every consumer

» creates a mutable variable, initialized at

consumption time

> registers a handler that updates this variable
> two problems:

1. duplication of computations

2. signal values depending on consumption time
> intuition:

» values of signal types are in fact generators
» generator yields a new signal when consumed
» signals are not first-class anymore

First-Class Signals
for FRP

Wolfgang Jeltsch

Generators

Overview

Introduction
FRP concepts
Generators

Memoization

Start time consistency

«O>» «Fr <

it
v
a
it

nae

First-Class Signals

Using native memoization for FRP

>

Wolfgang Jeltsch
Haskell caches computed parts of a data structure

if a variable is bound to the structure
problem:
values of DSignal do not contain event values emoiaation
changing the data structure:
type DSignal o = [(Time, cv)]
event streams must be interleaved when computing
signal unions:

union ((t1,x1) 1 %1) (2, x2) X)) |1 < to = ---

‘ th=tp="---
| tL>th=---
problem:
comparison of occurrence times must succeed
when the first event occurs
our solution:

delegate event ordering to the consumers

First-Class Signals

Representing discrete signals by vistas for FRP

. . . . Wolfgang Jeltsch
> vista covers every possible event stream interleaving

» future behavior depends on which external event source
fires next:
type Vista « = Map EventSrc (Variant o)

Memoization
type Variant o = (a, Vista «)

» vista for union py, pout:

Pout,2

. . irst-Class Signals
Consuming vistas e

for FRP

Wolfgang Jeltsch
» consumer knows about the order in which
event sources fire

> evaluates only the relevant path:

Memoization

€in
Pin,2

€in
Pin,1

€out
Pout,1

Ein
Pin,1
€0ut
Pout,1

Pout,2

First-Class Signals

Implementation of combinators for FRP

. . . . Wolfgang Jeltsch
» functional representation of discrete signals leads to

functional implementations of combinators
» implementation of scan/:

scanl :: (8 — a — B) — B — DSignal o
— SSignal B
scanl f yo X = (Yo, a yo X) where

Memoization

ay = fmap (A(x,x) — let
y'="rfyx
in(y',ay' X))

» problem with filter:

removing nodes would destroy structure of the vista
» solution:

make event values optional
» modified Variant type:

type Variant o = (Maybe «, DSignal o)

Overview

Introduction

FRP concepts

Generators

Memoization

Start time consistency

«O> «Fr «=>»

« =)

nae

Fixing start times

» technique inspired by Haskell's ST monad

> signal types get an extra (phantom) type parameter
that represents signal start times

» signal combinators enforce start time equality:
union :: DSignal ty o« — DSignal ty o
— DSignal ty o
scanl :: (f — a — () — [— DSignal ty o
— SSignal ty B

» actions for producing and consuming signals
have a parameter representing execution time:

newtype Reactive ty a« = Reactive (10 «)

» signal production and consumption enforce
start time equality

» conversion to /O uses universal quantification:
tolO :: (Vty.Reactive tyg o) — 10 «

First-Class Signals
for FRP

Wolfgang Jeltsch

Start time
consistency

First-Class Signals

Safe switching =

Wolfgang Jeltsch

» safe switching combinator:
switch :: (Signal o) =
SSignal ty (Vt.o t o) — 0 tg «

Start time

» switches only to signals that don't depend gy
on external events:

» empty discrete signal
» constant continuous signals
» constant segmented signals

> useless
> idea:

switching between signal functions
instead of signals

First-Class Signals

Signal functions to the rescue for FRP

Wolfgang Jeltsch

» functions on signals with identical start time:
SigFun ty (01 'Of ' ay =+ = 0, 'Of iy — 0 'Of')

» empty data types for type indices: S
data ® — SD/ consistency
data o 'Of' «

» SigFun defined as a GADT:
data SigFun ty © where

SigFuny 2 (Signal o)
=0ty «
— SigFun ty (0 'Of* «)
SigFung,.. :: (Signal o)
= (o to a — SigFun ty ¢')
— SigFun ty (0 'Of a — ')

First-Class Signals

Switching between signal functions for FRP

Wolfgang Jeltsch

> type of the switching combinator:

switch :: SSignal to (Vt.SigFun t ¢) Start time
_> S/gFun to SD consistency

» how the combinator works (conceptionally):
» arguments of the result function are pruned to fit
the segments of the argument signal (ageing)
» each function from the argument signal is applied
to its corresponding slices
» resulting segments are concatenated

The traffic volume example again

>

type of binary signal functions over a single signal type:
type BinSigFun ty o oo = SigFun ty (0 ‘Of ' a —
o'Of a—
o 'Of' a)
projection functions:
w1, T 2 BinSigFun ty o «
m1 = SigFung,.. $ As1 —
SigFung,.. $ \- — SigFuny 51
o = SigFung,.. $A\. —
SigFung,.. $ As, — SigFung s,
segmented signal that toggles between these functions:
f :: SSignal to (Vt.BinSigFun t o «)

switching yields time-varying projection:

succ

f 2 BinSigFun ty 0 «
f = switch f
unpacking and applying to vy, and Vo, yields Vse

First-Class Signals
for FRP

Wolfgang Jeltsch

Start time
consistency

First-Class Signals
for FRP

Wolfgang Jeltsch

First-Class Signals
for Functional Reactive Programming

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
October 13, 2011

	Introduction
	FRP concepts
	Generators
	Memoization
	Start time consistency

