
Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Emulating Linear Types in Haskell

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
February 16, 2012

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Linear logic

useful for reasoning about resources

each hypothesis must be used exactly once

very different from the normal understanding of logic

classical and intuitionistic variant

in this talk, only intuitionistic linear logic

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Linear logic formulas

language:

F ::= F ⊗ F | 1 | F & F | > | F ⊕ F | 0 | F (F | !F

meanings:

α⊗ β α and β hold simultaneously
1 nothing holds

α & β α and β hold (not necessarily simultaneously)
> tautology

α⊕ β α or β holds
0 absurdity

α(β if α holds in addition, then β holds
!α α holds arbitrarily often

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Linear logic example

atomic propositions:

e I have one euro.
s/p/i I get a soup/a pancake/an icecream.

derived propositions:
For four euros, I get a soup and a pancake:

e ⊗ e ⊗ e ⊗ e (s ⊗ p

For two euros, I get a soup or a pancake (my choice):

e ⊗ e (s & p

For two euros, I get a pancake or an icecream
(cafeteria’s choice):

e ⊗ e (p ⊕ i

I am the central bank:
!e

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Comparison of the two conjunctions

these propositions hold:

α(α & α

α & β (α

α & β (β

these do not hold in general:

α(α⊗ α
α⊗ β (α

α⊗ β (β

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Linear λ-calculus

the Curry–Howard analog of intuitionistic linear logic
values have to be used exactly once:

a value can represent the current state of an object
changes to the state (destructive updates) expressible
as pure functions

some functions with destructive updates:
array update:

idx ⊗ el ⊗ Array idx el (Array idx el

opening a file:

FileName ⊗World (File ⊗World

writing to an opened file:

String ⊗ File (File

closing a file:
File ⊗World (World

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Linearity in functional programming languages

variant of linear types implemented in Clean
(uniqueness types)

no direct support for anything like this in Haskell:

ability to duplicate and destroy values is present
by default
seems impossible to emulate linear types
under these circumstances
but emulation is possible nevertheless

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Products and coproducts

bicartesian closed categories (BCCCs) as models
of intuitionistic logic:

finite products for ∧ and >
finite coproducts for ∨ and ⊥
exponentials for →

finite products and coproducts also used in models
of intuitionistic linear logic:

finite producs for & and >
finite coproducts for ⊕ and 0

seems strange that ∧ and & are modelled by the same
construction, although they denote different things

however, analogous propositions hold for ∧ and &:

α(α & α α→ α ∧ α
α & β (α α ∧ β → α

α & β (β α ∧ β → β

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Structure for ⊗, 1 and (

⊗ and 1 modelled by a monoidal category structure:

⊗ is associative and commutative
1 is its neutral element
nothing more

monoidal closed category for also modelling (:

we have a natural transformation e with

eA,B : (A (B)⊗ A→ B

and an isomorphism

Λ : Hom(C ⊗ A,B) ∼= Hom(C ,A (B)

that fulfill certain conditions
corresponds to the definition of exponentials
with × replaced by ⊗

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Using products and sums

finite products and sums in Haskell can be modelled
by finited products and coproducts in category theory

thus we can use products and sums for encoding
&, >, ⊕, and 0

algebraic data types can be used

(x , y) now represents two possible resources of which
we have to use exactly one

framework has to make sure that we use exactly one

duplication and disposal of values is possible, but intuition
is different:

λx → (x , x) if we have x , we can choose between x and x
λ(x , y)→ x if we have the choice between x and y ,

we can choose x

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Encoding ⊗, 1, and (

use (,), (), and → internally:

newtype Blank = LinUnit ()

newtype α ⊗ β = LinPair (α, β)

newtype α(β = LinFunction (α→ β)

export only operations from categorical models:

bimap :: (α→ α′)→ (β → β′)→ (α⊗ β → α′ ⊗ β′)
assoc :: (α⊗ β)⊗ γ → α⊗ (β ⊗ γ)

drop1 :: Blank ⊗ α→ α

drop2 :: α⊗ Blank → α

swap :: α⊗ β → β ⊗ α
apply :: (α(β)⊗ α→ β

curry :: (γ ⊗ α→ β)→ (γ → α(β)

and the inverses of assoc, drop1, and drop2

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

A problem with tensorial strength

as shown last week, Haskell gives us tensorial strength
automatically

reason is that → is used for both morphisms and
functions on morphisms

the latter are thus morphisms themselves

example of unsafe operator that can be derived
from tensorial strength:

λp → bimap (const p) id p :: α⊗ β → (α⊗ β)⊗ β

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

A solution using the Q-functor

last week’s talk introduced applicative functor Q
for ensuring start time consistency in FRP

technique can be generalized to work with other
extensions of BCCCs

if type α is modelled by object A, then Q α corresponds
to Hom(1,A), where 1 is the initial object of the category

therefore if α and β are modelled by A and B,
Q (α→ β) corresponds to Hom(1,BA) ∼= Hom(A,B)

represent morphisms from A to B by values
of type Q (α→ β)

illegal values can only be constructed under at least
two layers of Q

make sure that values under two Q-layers are not used

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Arrow instead of applicative functor

use an arrow 7→ instead of the Q-functor:
makes more sense
seems easier to use

if α and β are modelled by objects A and B,
then α 7→ β corresponds to Hom(A,B)
making 7→ an instance of the Arrow and ArrowChoice
classes makes the following operations available:

transformation from → to 7→:

arr :: (α→ β)→ (α 7→ β)

composition of morphisms:

(≫) :: (α 7→ β)→ (β 7→ γ)→ (α 7→ γ)

bifunctor applications for products and sums:

(∗∗∗) :: (α 7→ α′)→ (β 7→ β′)→
((α, β) 7→ (α′, β′))

(+++) :: (α 7→ α′)→ (β 7→ β′)→
(Either α β 7→ Either α′ β′)

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Encoding further operations

operations for dealing with ⊗, Blank, and (:

bimap :: (α 7→ α′)→ (β 7→ β′)→ (α⊗ β 7→ α′ ⊗ β′)
assoc :: (α⊗ β)⊗ γ 7→ α⊗ (β ⊗ γ)

drop1 :: Blank ⊗ α 7→ α

drop2 :: α⊗ Blank 7→ α

swap :: α⊗ β 7→ β ⊗ α
apply :: (α(β)⊗ α 7→ β

curry :: (γ ⊗ α 7→ β)→ (γ 7→ α(β)

and the inverses of assoc, drop1, and drop2

a variant of curry for (,) and →:

curry :: ((γ, α) 7→ β)→ (γ 7→ α→ β)

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Purity is not enough

arrows used for computations with some effect

effects are the controversial thing that must be safely
encapsulated

so arr is perhaps the most uncontroversial arrow operation,
as it only makes effectless computations available

however, we do not want to encapsulate effects

we want even less than ordinary pure computations,
as we do not want tensorial strength

so arr is actually controversial in our case

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

How we can ensure consistency

analogy to Q:
illegal values can occur
but only under at least two layers of 7→

for example, this is possible:

α 7→ (() 7→ α⊗ α)

but this one is not:

α 7→ α⊗ α

this is possible, but unproblematic, as we cannot construct
resource values out of nothing:

α→ (() 7→ α⊗ α)

make sure that values under two 7→-layers are not used

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

6 Conclusions and outlook

Emulating
Linear Types
in Haskell

Wolfgang
Jeltsch

Linear logic

Linear types

Categorical
models

An
inconsistent
encoding in
Haskell

Solving the
consistency
problem

Conclusions
and outlook

Conclusions and outlook

the Curry–Howard analog to intuitionistic linear logic
can be encoded in Haskell

enables us to deal with stateful computations
in a more functional way

ongoing effort to combine this with FRP

possible application:

purely functional programming of GUIs
with highly dynamic structure

experimental Haskell code in the following
darcs repositories:

http://darcs.wolfgang.jeltsch.info/haskell/

categorical-computing/main

http://darcs.wolfgang.jeltsch.info/haskell/

linear/main

http://darcs.grapefruit-project.org/

grapefruit-frp/main

http://darcs.wolfgang.jeltsch.info/haskell/categorical-computing/main
http://darcs.wolfgang.jeltsch.info/haskell/categorical-computing/main
http://darcs.wolfgang.jeltsch.info/haskell/linear/main
http://darcs.wolfgang.jeltsch.info/haskell/linear/main
http://darcs.grapefruit-project.org/grapefruit-frp/main
http://darcs.grapefruit-project.org/grapefruit-frp/main

	Linear logic
	Linear types
	Categorical models
	An inconsistent encoding in Haskell
	Solving the consistency problem
	Conclusions and outlook

