Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

A

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

Emulating Linear Types in Haskell

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar February 16, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An inconsister encoding i Haskell

Solving the consistency problem

Conclusions and outlook

1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

イロト 不得 トイヨト イヨト

э

- 5 Solving the consistency problem
- 6 Conclusions and outlook

Linear logic

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorica models

An

encoding i Haskell

Solving the consistency problem

Conclusions and outlook

- useful for reasoning about resources
- each hypothesis must be used exactly once
- very different from the normal understanding of logic

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- classical and intuitionistic variant
- in this talk, only intuitionistic linear logic

Linear logic formulas

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear type

Categorical models

Ar

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

_ _ _....

$F ::= F \otimes F \mid 1 \mid F \And F \mid \top \mid F \oplus F \mid 0 \mid F \multimap F \mid !F$

meanings:

Ianguage:

- $\alpha \otimes \beta ~~\alpha$ and β hold simultaneously
 - 1 nothing holds
- α & β α and β hold (not necessarily simultaneously)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- ⊤ tautology
- $\alpha \oplus \beta \;\; \alpha \; {\rm or} \; \beta \; {\rm holds}$
 - 0 absurdity

 $\alpha \multimap \beta$ if α holds in addition, then β holds $!\alpha \ \alpha$ holds arbitrarily often

Linear logic example

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

Ar

inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook atomic propositions:

e I have one euro.

s/p/i | get a soup/a pancake/an icecream.

• derived propositions:

• For four euros, I get a soup and a pancake:

 $e \otimes e \otimes e \otimes e \multimap s \otimes p$

• For two euros, I get a soup or a pancake (my choice):

 $e\otimes e \multimap s \& p$

• For two euros, I get a pancake or an icecream (cafeteria's choice):

$$e \otimes e \multimap p \oplus i$$

!e 《ロ》 4週》 4 注》 4 注》 注 のへで

• I am the central bank:

Comparison of the two conjunctions

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorica models

Ar

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook • these propositions hold:

 $\alpha \multimap \alpha \& \alpha$ $\alpha \& \beta \multimap \alpha$ $\alpha \& \beta \multimap \beta$

• these do not hold in general:

 $\begin{array}{c} \alpha \multimap \alpha \otimes \alpha \\ \alpha \otimes \beta \multimap \alpha \\ \alpha \otimes \beta \multimap \beta \end{array}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Wolfgang Jeltsch

Linear logic

Linear types

Categorica models

An inconsister encoding i Haskell

Solving the consistency problem

Conclusions and outlook

Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

イロト 不得 トイヨト イヨト

э

5 Solving the consistency problem

6 Conclusions and outlook

Linear λ -calculus

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

Ar

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

- the Curry–Howard analog of intuitionistic linear logic
 values have to be used exactly once:
 - a value can represent the current state of an object
 - changes to the state (destructive updates) expressible as pure functions
- some functions with destructive updates:
 - array update:

 $idx \otimes el \otimes Array idx el \multimap Array idx el$

• opening a file:

 $\mathit{FileName} \otimes \mathit{World} \multimap \mathit{File} \otimes \mathit{World}$

• writing to an opened file:

String \otimes File \multimap File

• closing a file:

File & World - World

Linearity in functional programming languages

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorica models

Ar

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

- variant of linear types implemented in Clean (uniqueness types)
- no direct support for anything like this in Haskell:
 - ability to duplicate and destroy values is present by default

- seems impossible to emulate linear types under these circumstances
- but emulation is possible nevertheless

Wolfgang Jeltsch

Linear logic

Categorical models

An inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook 1 Linear logic

2 Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

イロト 不得 トイヨト イヨト

э.

- 5 Solving the consistency problem
- 6 Conclusions and outlook

Products and coproducts

Emulating Linear Types in Haskell

> Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An incons

encoding i Haskell

Solving the consistency problem

Conclusions and outlook

- bicartesian closed categories (BCCCs) as models of intuitionistic logic:
 - $\, \bullet \,$ finite products for $\wedge \,$ and $\, \top \,$
 - finite coproducts for \vee and \perp
 - $\bullet~{\rm exponentials}~{\rm for}$ \rightarrow
- finite products and coproducts also used in models of intuitionistic linear logic:
 - finite producs for & and \top
 - finite coproducts for \oplus and 0
- seems strange that ∧ and & are modelled by the same construction, although they denote different things
- \bullet however, analogous propositions hold for \wedge and &:

 $\begin{array}{ccc} \alpha \multimap \alpha \& \alpha & \alpha \to \alpha \land \alpha \\ \alpha \& \beta \multimap \alpha & \alpha \land \beta \to \alpha \\ \alpha \& \beta \multimap \beta & \alpha \land \beta \to \beta \\ \end{array}$

Structure for \otimes , 1 and \multimap

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

Ar

inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook

- $\bullet \ \otimes$ and 1 modelled by a monoidal category structure:
 - ${\scriptstyle \bullet } \, \otimes \,$ is associative and commutative
 - 1 is its neutral element
 - nothing more
- \bullet monoidal closed category for also modelling —o:
 - we have a natural transformation e with

$$e_{A,B}: (A \multimap B) \otimes A \to B$$

and an isomorphism

 $\Lambda: \operatorname{Hom}(C \otimes A, B) \cong \operatorname{Hom}(C, A \multimap B)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

that fulfill certain conditions

 $\bullet\,$ corresponds to the definition of exponentials with $\times\,$ replaced by $\otimes\,$

Wolfgang Jeltsch

Linear logic

Categorical models

An inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook

1 Linear logic

Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

6 Conclusions and outlook

Using products and sums

Emulating Linear Types in Haskell

> Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook

- finite products and sums in Haskell can be modelled by finited products and coproducts in category theory
- thus we can use products and sums for encoding &, \top, \oplus , and 0
- algebraic data types can be used
- (x, y) now represents two possible resources of which we have to use exactly one
- framework has to make sure that we use exactly one
- duplication and disposal of values is possible, but intuition is different:

 $\lambda x \to (x, x)$ if we have x, we can choose between x and x $\lambda(x, y) \to x$ if we have the choice between x and y, we can choose x

Encoding \otimes , 1, and \multimap

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear type

Categorical models

An

inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook • use (,), (), and \rightarrow internally: **newtype** Blank = LinUnit () **newtype** $\alpha \otimes \beta = LinPair$ (α, β) **newtype** $\alpha \multimap \beta = LinFunction (\alpha \rightarrow \beta)$ export only operations from categorical models: bimap :: $(\alpha \to \alpha') \to (\beta \to \beta') \to (\alpha \otimes \beta \to \alpha' \otimes \beta')$ assoc :: $(\alpha \otimes \beta) \otimes \gamma \to \alpha \otimes (\beta \otimes \gamma)$ $drop_1$:: $Blank \otimes \alpha \rightarrow \alpha$ $drop_2 :: \alpha \otimes Blank \rightarrow \alpha$ swap :: $\alpha \otimes \beta \rightarrow \beta \otimes \alpha$ apply :: $(\alpha \multimap \beta) \otimes \alpha \to \beta$ curry :: $(\gamma \otimes \alpha \to \beta) \to (\gamma \to \alpha \multimap \beta)$ and the inverses of assoc, $drop_1$, and $drop_2$

A problem with tensorial strength

Emulating Linear Types in Haskell

Wolfgang Jeltsch

- Linear logic
- Linear types
- Categorical models

An inconsistent encoding in Haskell

Solving the consistency problem

Conclusions and outlook

- as shown last week, Haskell gives us tensorial strength automatically
- $\bullet\,$ reason is that \to is used for both morphisms and functions on morphisms
- the latter are thus morphisms themselves
- example of unsafe operator that can be derived from tensorial strength:

 $\lambda p \rightarrow bimap \ (const \ p) \ id \ p :: \alpha \otimes \beta \rightarrow (\alpha \otimes \beta) \otimes \beta$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

Linear logic

Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

イロト 不得 トイヨト イヨト

э.

5 Solving the consistency problem

Conclusions and outlook

A solution using the Q-functor

Emulating Linear Types in Haskell

> Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An

encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

- last week's talk introduced applicative functor Q for ensuring start time consistency in FRP
- technique can be generalized to work with other extensions of BCCCs
- if type α is modelled by object A, then Q α corresponds to Hom(1, A), where 1 is the initial object of the category
- therefore if α and β are modelled by A and B, $Q (\alpha \rightarrow \beta)$ corresponds to $\text{Hom}(1, B^A) \cong \text{Hom}(A, B)$
- represent morphisms from A to B by values of type Q $(\alpha \rightarrow \beta)$
- \bullet illegal values can only be constructed under at least two layers of Q
- make sure that values under two Q-layers are not used

Arrow instead of applicative functor

Emulating Linear Types in Haskell

> Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An

encoding in Haskell

Solving the consistency problem

Conclusions and outlook

• use an arrow \mapsto instead of the *Q*-functor:

- makes more sense
- seems easier to use
- if α and β are modelled by objects A and B, then α → β corresponds to Hom(A, B)
- making → an instance of the Arrow and ArrowChoice classes makes the following operations available:
 - transformation from \rightarrow to \mapsto :

arr ::
$$(\alpha \rightarrow \beta) \rightarrow (\alpha \mapsto \beta)$$

• composition of morphisms:

 $(\gg) \quad :: (\alpha \mapsto \beta) \to (\beta \mapsto \gamma) \to (\alpha \mapsto \gamma)$

• bifunctor applications for products and sums:

$$(***) ::: (\alpha \mapsto \alpha') \to (\beta \mapsto \beta') \to ((\alpha, \beta) \mapsto (\alpha', \beta'))$$
$$(+++) :: (\alpha \mapsto \alpha') \to (\beta \mapsto \beta') \to (Either \ \alpha \ \beta \mapsto Either \ \alpha' \ \beta')$$

Encoding further operations

Emulating Linear Types in Haskell

Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An

inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook • operations for dealing with \otimes , *Blank*, and $-\infty$: bimap :: $(\alpha \mapsto \alpha') \to (\beta \mapsto \beta') \to (\alpha \otimes \beta \mapsto \alpha' \otimes \beta')$ assoc :: $(\alpha \otimes \beta) \otimes \gamma \mapsto \alpha \otimes (\beta \otimes \gamma)$ $drop_1$:: Blank $\otimes \alpha \mapsto \alpha$ $drop_2 :: \alpha \otimes Blank \mapsto \alpha$ swap :: $\alpha \otimes \beta \mapsto \beta \otimes \alpha$ apply :: $(\alpha \multimap \beta) \otimes \alpha \mapsto \beta$ curry :: $(\gamma \otimes \alpha \mapsto \beta) \to (\gamma \mapsto \alpha \multimap \beta)$ and the inverses of assoc, $drop_1$, and $drop_2$ • a variant of *curry* for (,) and \rightarrow : curry :: $((\gamma, \alpha) \mapsto \beta) \to (\gamma \mapsto \alpha \to \beta)$

Purity is not enough

Emulating Linear Types in Haskell

- Wolfgang Jeltsch
- Linear logic
- Linear types
- Categorica models
- An inconsisten encoding ir Haskell
- Solving the consistency problem
- Conclusions and outlook

- arrows used for computations with some effect
- effects are the controversial thing that must be safely encapsulated
- so *arr* is perhaps the most uncontroversial arrow operation, as it only makes effectless computations available

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- however, we do not want to encapsulate effects
- we want even less than ordinary pure computations, as we do not want tensorial strength
- so arr is actually controversial in our case

How we can ensure consistency

Emulating Linear Types in Haskell

- Wolfgang Jeltsch
- Linear logic

Linear types

Categorical models

An inconsisten encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

- analogy to Q:
 - illegal values can occur
 - $\bullet\,$ but only under at least two layers of $\mapsto\,$
- for example, this is possible:

$$\alpha \mapsto (() \mapsto \alpha \otimes \alpha)$$

• but this one is not:

$$\alpha\mapsto \alpha\otimes \alpha$$

• this is possible, but unproblematic, as we cannot construct resource values out of nothing:

$$\alpha \rightarrow (() \mapsto \alpha \otimes \alpha)$$

• make sure that values under two \mapsto -layers are not used

Wolfgang Jeltsch

Linear logic

Linear types

Categorica models

An inconsister encoding i Haskell

Solving the consistency problem

Conclusions and outlook

Linear logic

Linear types

3 Categorical models

4 An inconsistent encoding in Haskell

5 Solving the consistency problem

イロト 不得 トイヨト イヨト

э.

Conclusions and outlook

Emulating Linear Types in Haskell

> Wolfgang Jeltsch

Linear logic

Linear types

Categorical models

An

encoding ir Haskell

Solving the consistency problem

Conclusions and outlook

- the Curry–Howard analog to intuitionistic linear logic can be encoded in Haskell
- enables us to deal with stateful computations in a more functional way
- ongoing effort to combine this with FRP
- o possible application:

purely functional programming of GUIs with highly dynamic structure

- experimental Haskell code in the following darcs repositories:
 - http://darcs.wolfgang.jeltsch.info/haskell/ categorical-computing/main
 - http://darcs.wolfgang.jeltsch.info/haskell/ linear/main
 - http://darcs.grapefruit-project.org/
 grapefruit-frp/main