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From set theory to universal algebra

I classical set theory (for example, Zermelo–Fraenkel):
I sets
I functions from sets to sets
I composition of functions yields function
I identity functions exist

I adding structure and preserving it:
I vector spaces
I linear maps from vector spaces to vector spaces
I composition of linear maps yields linear map
I identity functions are linear maps

I generalization of this idea in universal algebra:
I certain algebras with the same signature
I homomorphisms from such algebras

to other such algebras
I composition of homomorphisms yields homomorphism
I identity functions are homomorphisms
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Beyond universal algebra

I topology based on the Kuratowski axioms:
I topological space is a set X and a closure operator

cl : P(X )→ P(X )

that fulfills certain axioms
I continuous function from (X , cl) to (X ′, cl′)

is a function f : X → X ′ with

f (cl(A)) ⊆ cl′(f (A))

I does not fit into the universal algebra framework:
I closure operator operates on sets

instead of single elements
I continuity axiom uses ⊆ instead of =

I will fit into the categorical framework
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No elements anymore

I revision control system darcs:
I repository states
I patches that turn repository states into repository states
I composition of patches yields patch
I empty patches exist

I repository states do not have elements

I will fit into the categorical framework nevertheless

I more about a categorical approach to darcs in [Swierstra]
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Categories
I components of a category:

I a class of objects
I class of morphisms, each having a unique domain

and a unique codomain, which are objects
I composition of morphisms:

f : A→ B g : B → C

gf : A→ C

I identity morphisms:

idA : A→ A

I axioms that have to hold:
I composition is associative
I id is left and right unit

I classes of objects and morphism are not necessarily sets:
allows categories of sets, vector spaces, etc.

I composition is partial:
codomain and domain must match

I above constructions lead to categories Set, Vec, etc.
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Duality

I axioms still hold after doing the following:
I swapping domain and codomain of each morphism
I changing the argument order of composition

I opposite category Cop for every category C:
I objects of Cop are the ones of C
I morphisms f : A→ B of Cop are the morphism

f : B → A of C
I compositions gf in Cop are the compositions fg in C
I identities in Cop are the same as in C

I consequences:
I for every categorical notion N, there is a dual notion Nop

such that something is an Nop in C if it is an N in Cop
I for every theorem, there is a dual theorem that refers

to the dual notions
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Products of categories

I product category C ×D for any two categories C and D:
I objects

(A,B)

where A is an object of C, and B is an object of D
I morphisms

(f , g) : (A,B)→ (A′,B ′)

where f : A→ A′ and g : B → B ′

I compositions and identities defined componentwise:

(f ′, g ′)(f , g) = (f ′f , g ′g)

id(A,B) = (idA, idB)

I neutral element is the category 1:
I exactly one object
I exactly one morphism (the identity of that object)
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Categories and elements

I in general, no notion of element of an object

I however, elements can be recovered for specific kinds
of categories

I furthermore, some concepts that seem to require
the notion of element actually do not
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Injectivity

Definition (Injectivity)

A function f : A→ B is injective if and only if

∀x1, x2 ∈ A . f (x1) = f (x2)⇒ x1 = x2 .

Theorem
A function f : A→ B is injective if and only if

∀C . ∀g1, g2 : C → A . fg1 = fg2 ⇒ g1 = g2 .

I above definition relies on the notion of element
I theorem gives us another property for defining injectivity:

I does not mention elements, but only sets and functions
(point-free style)

I can therefore be generalized to arbitrary categories
I leads to the notion of monomorphism
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Surjectivity

Definition (Surjectivity)

A function f : A→ B is surjective if and only if

∀y ∈ B . ∃x ∈ A . f (x) = y .

Theorem
A function f : A→ B is surjective if and only if

∀C . ∀g1, g2 : B → C . g1f = g2f ⇒ g1 = g2 .

I theorem gives us point-free definition

I generalization to arbitrary categories leads to the notion
of epimorphism

I point-free style makes it clear that monomorphism
and epimorphism (injectivity and surjectivity) are duals
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Isomorphisms

I generalization of bijections

I morphism f : A→ B is an isomorphism
if there is an f −1 : B → A such that

f −1f = idA ff −1 = idB

I objects A and B are isomorphic (A ∼= B)
if there exists an isomorphism f : A→ B
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Cartesian products

I pair construction:

x ∈ A y ∈ B

(x , y) ∈ A× B

I pair destruction:

π1 : A× B → A π2 : A× B → B

I destruction is point-free, construction is not

I construction can be made point-free:

f : C → A g : C → B

〈f , g〉 : C → A× B

where
∀z ∈ C . 〈f , g〉(z) = (f (z), g(z))
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Products

I generalization of cartesian products

I a product of A and B is an object A× B together
with morphisms

π1 : A× B → A π2 : A× B → B

(called projections) for which the following holds:
I for every object C , we have

f : C → A g : C → B

〈f , g〉 : C → A× B

I the following holds:

π1〈f , g〉 = f π2〈f , g〉 = g

I the morphism 〈f , g〉 is unique

I two objects A and B may not have a product

I products of two specific objects are unique
up to isomorphism
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Coproducts

I duals of products

I a coproduct of A and B is an object A + B together
with morphisms

ι1 : A→ A + B ι2 : B → A + B

(called injections) for which the following holds:
I for every object C , we have

f : A→ C g : B → C

[f , g ] : A + B → C

I the following holds:

[f , g ]ι1 = f [f , g ]ι2 = g

I the morphism [f , g ] is unique

I two objects A and B may not have a coproduct

I coproducts of two specific objects are unique
up to isomorphism
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Terminal and initial objects

I nullary versions of products and coproducts

I 1 is a terminal object if there is a unique morphism

! : C → 1

for every object C

I 0 is an initial object if there is a unique morphism

? : 0→ C

for every object C

I terminal and initial objects are unique up to isomorphism

I if terminal object exists, A× 1 and 1× A exist
for every object A, and we have

A× 1 ∼= A ∼= 1× A

I analogously for initial object
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Function spaces

I for sets A and B, we have

BA = {f | f : A→ B}

I Currying:
f : C × A→ B

λf : C → BA

I function application:

ε : BA × A→ B

where
ε(f , x) = f (x)
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Exponentials
I generalization of function spaces
I defined for categories where all (binary) products exist
I an exponential of A and B is an object BA together

with a morphism

ε : BA × A→ B

for which the following holds:
I for every object C , we have

f : C × A→ B

λf : C → BA

I the following holds:

ε〈λf π1, π2〉 = f

I the morphism λf is unique

I two objects A and B may not have an exponential
I exponentials of two specific objects are unique

up to isomorphism
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Cartesian closed categories and beyond

Definition (Cartesian closed category)

A category is a cartesian closed category (CCC) if it has
all (binary) products, a terminal object, and all exponentials.

Definition (Bicartesian closed category)

A category is a bicartesian closed category (BCCC),
sometimes called cocartesian closed category (CCCC),
if it is a CCC and has all (binary) coproducts
and an initial object.
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Categorical logic basics

I categories as models of logics
I general idea:

I objects model propositions
I if objects A and B model propositions ϕ and ψ,

morphisms f : A→ B model proofs of ϕ ` ψ
I composition models composition of proofs:

ϕ ` ψ ψ ` χ
ϕ ` χ

I identities model identity rule:

ϕ ` ϕ

I BCCCs are the models of intuitionistic propositional logic

I for modeling other intuitionistic logics, extend BCCCs
with additional structure

I even linear logic can be modeled by extended BCCCs
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Products and conjunctions

I × models ∧:

I 〈·, ·〉 proves conjunction introduction:

χ ` ϕ χ ` ψ
χ ` ϕ ∧ ψ

I projections prove conjunction elimination:

ϕ ∧ ψ ` ϕ ϕ ∧ ψ ` ψ

I 1 models >:

I ! proves truth:

χ ` >
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Coproducts and disjunctions

I + models ∨:

I [·, ·] proves disjunction elimination:

ϕ ` χ ψ ` χ
ϕ ∨ ψ ` χ

I injections prove disjunction introduction:

ϕ ` ϕ ∨ ψ ψ ` ϕ ∨ ψ

I 0 models ⊥:

I ? proves ex falso quodlibet:

⊥ ` χ
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Exponentials and implications

I exponentiation models ⇒:

I λ proves implication introduction:

χ ∧ ϕ ` ψ
χ ` ϕ⇒ ψ

I ε proves implication elimination:

(ϕ⇒ ψ) ∧ ϕ ` ψ
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Functors
I structure-preserving maps between categories

(“category homomorphisms”)
I functor F : C → D actually consists of two maps:

I a map from objects of C to objects of D
I a map from morphisms of C to morphisms of D

I notation for application of these maps
uses juxtaposition of functor and argument:

I application of F ’s object map to object A is FA
I application of F ’s morphism map to morphism f is Ff

I axioms:
I transformation of domains and codomains:

f : A→ B

Ff : FA→ FB
I compatibility with composition:

F (gf ) = (Fg)(Ff )

I compatibility with identities:

F idA = idFA
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Functor examples
I power set functor from Set to itself:

I object map turns sets into their power sets:

PA = {M | M ⊆ A}
I morphism map turns functions into elementwise

applications of them:

(Pf )(M) = {f (x) | x ∈ M}
I list functor from functional programming is similar:

I object map turns element types into list types
I morphism map turns functions into elementwise

applications of them
I projections of product categories:

I object maps turn pairs of objects into objects:

Π1(A,B) = A Π2(A,B) = B

I morphism maps turn pairs of morphisms into morphisms:

Π1(f , g) = f Π2(f , g) = g
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Functor intuitions

I container intuition:
I object map turns types/sets of elements into types/sets

of containers
I morphism map turns functions into elementwise

applications of them

I effect intuition:
I object map turns types/sets of results into types/sets

of effectful computations
I morphism map turns functions into functions

that append the former functions to effectful
computations

I application to power set functor:
I sets are containers
I sets denote nondeterministic computations



An Introduction to
Category Theory
and Categorical

Logic

Wolfgang Jeltsch

Category theory
basics

Products,
coproducts, and
exponentials

Categorical logic

Functors and
natural
transformations

Monoidal
categories and
monoidal functors

Monads and
comonads

References

Category of small categories

I composition GF : C → E of functors F : C → D
and G : D → E :

I object map is composition of object maps of F and G
I morphism map is composition of morphism maps

of F and G

I identity functor Id : C → C:
I object map is identity function on objects
I morphism map is identity function on morphism

I category Cat of categories and functors:
I objects are all categories
I morphisms F : C → D are the functors F : C → D
I composition is functor composition
I identities are the identity functors

I set theory in use might not allow for the class
of all categories

I objects of Cat are only all small categories:
I object classes are sets
I morhpism classes are sets
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Natural transformations

I natural transformation τ from functor F to functor G
is an indexed family of morphisms

τA : FA→ GA ,

one for each object A

I compatibility with morphism maps:

τB(Ff ) = (Gf )τA
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Functor categories

I important properties of natural transformations:
I pointwise composition yields natural transformation
I pointwise identities are natural transformations

I functor category:
I objects are all functors from a certain source

to a certain target category
I morphisms τ : F → G are the natural transformations

from F to G
I compositions and identities constructed pointwise

I natural isomorphisms:
I are the isomorphisms of functor categories
I are exactly those natural transformations

that consist only of isomorphisms
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Revisiting products and coproducts

I products:
I × is a functor from C × C to C with

f × g = 〈f π1, gπ2〉

I π1 and π2 are natural transformations:

π1 : × → Π1 π2 : × → Π2

I coproducts:
I + is a functor from C × C to C with

f + g = [ι1f , ι2g ]

I ι1 and ι2 are natural transformations:

ι1 : Π1 → + ι2 : Π2 → +
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Revisiting exponentials

I exponentiation is a functor E : Cop × C → C with

g f = λgε(id
BA×f )

I ε is a natural transformation

ε : E × Π1 → Π2 ,

where E × Π1 is the functor with

(E × Π1)A = EA× Π1A

and
(E × Π1)f = Ef × Π1f
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Monoidal categories
I categories C that have the following additional structure:

I a functor
⊗ : C × C → C ,

called the tensor product
I an object I , called the unit object
I a natural isomorphism α establishing associativity of ⊗:

αA,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C )

I two natural isomorphisms λ and ρ establishing the fact
that I is a left and right unit of ⊗:

λA : I ⊗ A→ A ρA : A⊗ I → A

I axiom:

For any objects A and B , all morphisms from A to B
that are built solely from ⊗, α, λ, and ρ are equal.

I three dedicated equalities actually enough, since the rest
follows from Mac Lane’s coherence theorem
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Monoidal functors

I monoidal functor F from monoidal category (C,⊗, I )
to monoidal category (C′,⊗′, I ′) consists of the following:

I a functor from C to C′ (also named F )
I two natural transformations m and n, called

coherence maps:

mA,B : FA⊗′ FB → F (A⊗ B)

n : I ′ → FI

I axioms ensure compatibility of coherence maps
with α, λ, and ρ

I F is called strong if coherence maps are isomorphisms

I comonoidal functor is dual of monoidal functor
(coherence maps go into opposite direction)
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Monoidal category and functor examples

I monoidal category examples:
I if C has all finite products, (C,×, 1) is a monoidal

category
I if C has all finite coproducts, (C,+, 0) is a monoidal

category

I monoidal functor examples:
I list functor is a monoidal functor from (C,×, 1) to itself:

I m corresponds to uncurry zip in Haskell
I n corresponds to repeat in Haskell

I if C is a category with all finite products and F : C → C,
then F is a comonoidal functor from (C,×, 1) to itself:

m = 〈Fπ1,Fπ2〉 n = !F1

I infinite list functor is a strong monoidal functor
from (C,×, 1) to itself:

I coherence maps as for lists
I inverses of coherence maps are the coherence maps

of the abovementioned comonoidal functor
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Monads

I monad on a category C consists of the following:
I a functor T : C → C
I two natural transformations

η : Id→ T µ : TT → T

I axioms:

µA(TµA) = µAµTA : TTTA→ TA

1TA = µA(T ηA) = µAηTA : TA→ TA

I consequences:
I For every n, there are natural transformations

from T n to T that are built solely from T , η, and µ.
I For every n, all such transformations are equal.
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Monad examples

I power set monad:
I µ is general union ⋃

: P(PA)→ PA

I η is singleton construction

{·} : A→ PA

I list monad:
I µ corresponds to concat in Haskell
I η corresponds to λx → [x ] in Haskell
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Monad intuitions

I container that can be built from arbitrarily nested
containers:

I µ turns a two-level nested container into a flat container
I η turns a single value (zero-level nested container)

into a singleton container

I effectful computations that can be built from sequences
of computations:

I µ turns a sequence of two computations into a single
computation

I η turns a result value into a computation without effect
that just returns this value
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Comonads

I duals of monads
I comonad on a category C consists of the following:

I a functor U : C → C
I two natural transformations

ε : U → Id δ : U → UU

I axioms:

(UδA)δA = δUAδA : UA→ UUUA

1UA = (UεA)δA = εUAδA : UA→ UA

I consequences:
I For every n, there are natural transformations

from U to Un that are built solely from U, ε, and δ.
I For every n, all such transformations are equal.
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Comonad example and intuition

I infinite list comonad as an example:
I δ corresponds to tails in Haskell
I ε corresponds to head in Haskell

I intuition is that of containers that can be turned
into arbitrarily nested containers:

I δ turns a flat container into a two-level nested container
I ε turns a flat container into a single value,

which is taken from a special position inside the container
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Kleisli and Co-Kleisli categories

I Kleisli category of a monad (T , η, µ) on a category C:
I objects of the Kleisli category are the objects of C
I morphisms f : A→ B of the Kleisli category

are the morphisms f : A→ TB of C
I compositions gf in the Kleisli category correspond

to morphisms µ(Tg)f in C
I identities in the Kleisli category correspond to η in C

I Kleisli category intuition:

morphisms are effectful computations
that also have an input

I Co-Kleisli categories are the duals of Kleisli categories
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