Record Type
Families

Wolfgang Jeltsch

Record Type Families:
A Key to Generic Record Combinators

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
October 20, 2011

Record Type

OVGereW Families

Wolfgang Jeltsch

Introduction

A simple selfmade record system

Record type families

Record scheme induction

Record Type

OVGereW Families

Wolf Jeltsch

Introduction

Introduction

Record Type

A typical system of extensible records s

> records map names to values:

> types of records map names to types:

>

age .. Integer,
place :: String}
» only field-related operations:
selection
modification
addition
removal

>
| 4
>

» no support for combinators, i.e., functions that work
with complete records

Wolfgang Jeltsch

Introduction

wolfgang = {surname = "Jeltsch",
age = 33,
place = "Cottbus"}

wolfgang :: {surname :: String,

Record Type

An example combinator Familis

Wolfgang Jeltsch

» record of modifications:

Introduction
mods = {surname = id,

age =(+1),
place = const "Tallinn"}

> type of the modification record:

mods :: {surname :: String — String,
age :: Integer — Integer,
place :: String — String }

» function modify that performs the modification:

modify mods wolfgang = {surname = "Jeltsch",
age = 34,
place = "Tallinn"}

Record Type

Generic record combinators Fomilice

Introduction

» modify shall work with all modification and data records
whose types match:

» modify must be generic
» type of modify must be able to express necessary
relationships between the argument types

» modify works with complete records

» topic of this talk:
a record system that allows us to define
combinators like modify

» implemented as a Haskell library:

» works with standard GHC
» key to success are advanced type system features

Overview

A simple selfmade record system

Record Type
Families

Wolf Jeltsch

A simple selfmade
record system

Record Type

Heterogeneous lists s

> types for building heterogeneous lists: A simple selfmade

record system

> the empty list:
data X = X

» non-empty lists, each consisting of an initial list
and a last element:

datad:&e=0:&e¢

» example list:
X :& "Jeltsch" :& 33 :& "Cottbus"
> type of this list:

X :& String :& Integer :& String

Record Type

Records Families

A simple selfmade
record system

v

record is heterogeneous list of fields:

field a pair of a name and a value
field type a pair of a name and a type

> names appear at the value level and at the type level

> represent names by a type and a data constructor:
data N =N

type of fields:

v

datav::a=v:=qa

The example data record

» field names:
data Surname = Surname
data Age = Age

data Place

» data record:

= Place

wolfgang = X :& Surname :

& Age
:& Place

> type of the data record:

wolfgang :: X :& Surname ::: String

& Age
:& Place

Record Type
Families

A simple selfmade
record system

"Jeltsch"
33
"Cottbus"

i1 Integer
2o String

Overview

Record type families

Record Type
Families

Jeltsch

Record type
families

Record Type

Record type families s

» allow us to specify relationships between record types

» record type now built from two ingredients:

scheme a list of pairs, each consisting of a name Ree] e

families

and a so-called sort:
X&vyiigr:&...:&vyiig,

style a type-level function o

> types of field values are generated on the fly by applying
the style to the sorts:

061,---,0 Cn

» families of related record types can be generated
by combining the same scheme with different styles

Implementation

v

record scheme is a type with a sort parameter

> type p o is the record type with scheme p and sort o

v

type declarations:
data X oc=X

data(p&p)o=po&ypo

data (v::¢) o=vi=0¢

» class Record of all record schemes:
class Record p
instance Record X

instance (Record p) = Record (p :& v ::: <)

Record Type
Families

Wolfgang Jeltsch

Record type
families

The type of modify

v

record styles:
data Aa — «
modification Aa — (o — «)

v

type of modify:

(Record p) = p (Aa = (@ — a)) —
p (Ao — a) —
p (Ao — a)

v

problem:
no A-expressions at the type level

solution:

v

defunctionalization at the type level

Record Type
Families

Wolfgang Jeltsch

Record type
families

Defunctionalization at the type level

v

type-level functions represented by (empty) types

> type synonym family that describes function application:

type family App ¢
> representation of a type-level function Aa — 7
(where o may occur free in 7):
data /

type instance App Ao =71

v

modified declaration of the type of record fields:
data (v::¢)o=v:=Appog

Record Type
Families

Wolfgang Jeltsch

Record type
families

The type of modify with defunctionalization

> representations of the two record styles:
data 3 pj,jy
data 3 .q
type instance App Xp,i, o = «
type instance App Xpjoqd a0 = a — @
> type of modify:

(Record p) = p Zptod = P Zpiain = P ZPiain

Record Type
Families

Wolfgang Jeltsch

Record type
families

Overview

Record scheme induction

Record Type
Families

Wolf Jeltsch

Record scheme
induction

Implementation of modify

» make modify a method of the Record class:
class Record p where
modify :: p Xnod = P ZPlain — P ZPlain

» implement modify within the instance declarations
of Record:

instance Record X where
modify X X = X
instance (Record p) =
Record (p :& v :::) where
modify (q :& _ :=f)
(r:&v:=x) =modify gr:&v:="fx
» definition of modify uses induction over record schemes
> problem:
impossible to add further methods later

Record Type
Families

ang Jeltsch

Record scheme
induction

A fold combinator for record schemes

» induction principles are captured by fold combinators
» all inductive definitions on record schemes expressible
as applications of a record scheme fold operator
» implement such a combinator:
class Record p where
fold :: 0 X —
(Vp v s.(Record p) =
Op—0(p&v:ig))—

0 p
instance Record X where
fold fx _= fx

instance (Record p) = Record (p :& v ::: <) where
fold fX f—(:&) = f(;&) (fO/d fX f(;&))

Record Type
Families

Wolfgang Jeltsch

Record scheme
induction

Implementation of modify using fold

» replacement type for the #-variable:
type @modify p=p 2 Mod — P 2 Plain — P 2 Plain
» implementation of modify:
modify :: (Record p) =
P XMod —> P LPlain — P ZPlain
modify = fold fx f.g) where
fx i1 Omodiy X
fx XX=X
fr.e) = (Record p) =
Omodify P — Omodify (p & v :::5)
fre) &8 = Mq:& v :=f)
(ri&_=x)=gqr&vi=rfx
» cheated a bit:
Omodify Must be a proper type, not a type synonym

Record Type
Families

Wolfgang Jeltsch

Record scheme
induction

Is it

>

really a fold?

compare the record fold combinator to a fold combinator
for lists

heads of non-empty lists and complete list show up
as function arguments:

0—(a—0—0)—a]—0
analogies between both folds:

head <= name and sort of last field
complete list <= complete record scheme

last name, last sort, and complete record scheme
do not show up as arguments:

0 X —
(Vpvs.(Record p) = 60 p— 6 (p:&v:ig)) —
0 p

they cannot, since they are not values

Record Type
Families

rzang Jeltsch

Record scheme
induction

Yes, it is!
» applying equivalences to the type of fold:
Vazér)=(az€) — 1)
Va:ér = 1) (r > Va: &) ifag FV(r)

» original type with explicit global quantification of p
(where Zgecord denotes “the kind of all records”):

V(p = :_Record) .

0 X —
(Vpvs.(Record p) = 60 p— 0 (p:&v:ig)) —
0p

» transformation result contains the last name, the last
sort, and the complete record scheme as arguments:

0 X —
(Vp.(Record p) =

Op—(vix)—=(cux*x)—0(p:&rvig))—
(/) b —:Record) —
0p

Record Type
Families

Wolfgang Jeltsch

Record scheme
induction

Record Type
Families

Wolfgang Jeltsch

Record Type Families:
A Key to Generic Record Combinators

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
October 20, 2011

	Introduction
	A simple selfmade record system
	Record type families
	Record scheme induction

