
Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Record Type Families:
A Key to Generic Record Combinators

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
October 20, 2011



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Overview

Introduction

A simple selfmade record system

Record type families

Record scheme induction



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Overview

Introduction

A simple selfmade record system

Record type families

Record scheme induction



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

A typical system of extensible records

I records map names to values:

wolfgang = {surname = "Jeltsch",
age = 33,
place = "Cottbus"}

I types of records map names to types:

wolfgang :: {surname :: String ,
age :: Integer ,
place :: String }

I only field-related operations:
I selection
I modification
I addition
I removal

I no support for combinators, i.e., functions that work
with complete records



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

An example combinator

I record of modifications:

mods = {surname = id ,
age = (+1),
place = const "Tallinn"}

I type of the modification record:

mods :: {surname :: String → String ,
age :: Integer → Integer ,
place :: String → String }

I function modify that performs the modification:

modify mods wolfgang = {surname = "Jeltsch",
age = 34,
place = "Tallinn"}



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Generic record combinators

I modify shall work with all modification and data records
whose types match:

I modify must be generic
I type of modify must be able to express necessary

relationships between the argument types

I modify works with complete records

I topic of this talk:

a record system that allows us to define
combinators like modify

I implemented as a Haskell library:
I works with standard GHC
I key to success are advanced type system features



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Overview

Introduction

A simple selfmade record system

Record type families

Record scheme induction



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Heterogeneous lists

I types for building heterogeneous lists:
I the empty list:

data X = X
I non-empty lists, each consisting of an initial list

and a last element:

data δ :& ε = δ :& ε

I example list:

X :& "Jeltsch" :& 33 :& "Cottbus"

I type of this list:

X :& String :& Integer :& String



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Records

I record is heterogeneous list of fields:

field a pair of a name and a value
field type a pair of a name and a type

I names appear at the value level and at the type level

I represent names by a type and a data constructor:

data N = N

I type of fields:

data ν ::: α = ν := α



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

The example data record

I field names:

data Surname = Surname

data Age = Age

data Place = Place

I data record:

wolfgang = X :& Surname := "Jeltsch"

:& Age := 33
:& Place := "Cottbus"

I type of the data record:

wolfgang :: X :& Surname ::: String
:& Age ::: Integer
:& Place ::: String



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Overview

Introduction

A simple selfmade record system

Record type families

Record scheme induction



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Record type families

I allow us to specify relationships between record types

I record type now built from two ingredients:

scheme a list of pairs, each consisting of a name
and a so-called sort:

X :& ν1 ::: ς1 :& . . . :& νn ::: ςn

style a type-level function σ

I types of field values are generated on the fly by applying
the style to the sorts:

σ ς1, . . . , σ ςn

I families of related record types can be generated
by combining the same scheme with different styles



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Implementation

I record scheme is a type with a sort parameter

I type ρ σ is the record type with scheme ρ and sort σ

I type declarations:

data X σ = X

data (ρ :& ϕ) σ = ρ σ :& ϕ σ

data (ν ::: ς) σ = ν := σ ς

I class Record of all record schemes:

class Record ρ

instance Record X

instance (Record ρ)⇒ Record (ρ :& ν ::: ς)



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

The type of modify

I record styles:

data λα→ α
modification λα→ (α→ α)

I type of modify :

(Record ρ)⇒ ρ (λα→ (α→ α))→
ρ (λα→ α) →
ρ (λα→ α)

I problem:

no λ-expressions at the type level

I solution:

defunctionalization at the type level



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Defunctionalization at the type level

I type-level functions represented by (empty) types

I type synonym family that describes function application:

type family App ϕ α

I representation of a type-level function λα→ τ
(where α may occur free in τ):

data Λ

type instance App Λ α = τ

I modified declaration of the type of record fields:

data (ν ::: ς) σ = ν := App σ ς



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

The type of modify with defunctionalization

I representations of the two record styles:

data ΣPlain

data ΣMod

type instance App ΣPlain α = α

type instance App ΣMod α = α→ α

I type of modify :

(Record ρ)⇒ ρ ΣMod → ρ ΣPlain → ρ ΣPlain



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Overview

Introduction

A simple selfmade record system

Record type families

Record scheme induction



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Implementation of modify

I make modify a method of the Record class:

class Record ρ where

modify :: ρ ΣMod → ρ ΣPlain → ρ ΣPlain

I implement modify within the instance declarations
of Record :

instance Record X where

modify X X = X

instance (Record ρ)⇒
Record (ρ :& ν ::: α) where

modify (q :& := f )
(r :& ν := x) = modify q r :& ν := f x

I definition of modify uses induction over record schemes

I problem:

impossible to add further methods later



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

A fold combinator for record schemes

I induction principles are captured by fold combinators

I all inductive definitions on record schemes expressible
as applications of a record scheme fold operator

I implement such a combinator:

class Record ρ where

fold :: θ X →
(∀ρ ν ς.(Record ρ)⇒

θ ρ→ θ (ρ :& ν ::: ς))→
θ ρ

instance Record X where

fold fX = fX

instance (Record ρ)⇒ Record (ρ :& ν ::: ς) where

fold fX f(:&) = f(:&)

(
fold fX f(:&)

)



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Implementation of modify using fold

I replacement type for the θ-variable:

type Θmodify ρ = ρ ΣMod → ρ ΣPlain → ρ ΣPlain

I implementation of modify :

modify :: (Record ρ)⇒
ρ ΣMod → ρ ΣPlain → ρ ΣPlain

modify = fold fX f(:&) where

fX :: Θmodify X
fX X X = X

f(:&) :: (Record ρ)⇒
Θmodify ρ→ Θmodify (ρ :& ν ::: ς)

f(:&) g = λ(q :& ν := f )

(r :& := x) = g q r :& ν := f x

I cheated a bit:

Θmodify must be a proper type, not a type synonym



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Is it really a fold?
I compare the record fold combinator to a fold combinator

for lists
I heads of non-empty lists and complete list show up

as function arguments:

θ → (α→ θ → θ)→ [α]→ θ

I analogies between both folds:

head⇐⇒ name and sort of last field

complete list⇐⇒ complete record scheme

I last name, last sort, and complete record scheme
do not show up as arguments:

θ X →
(∀ρ ν ς.(Record ρ)⇒ θ ρ→ θ (ρ :& ν ::: ς))→
θ ρ

I they cannot, since they are not values



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Yes, it is!
I applying equivalences to the type of fold :

(∀α :: ξ.τ) ∼= ((α :: ξ)→ τ)

(∀α :: ξ.τ → τ ′) ∼= (τ → ∀α :: ξ.τ ′) if α /∈ FV(τ)

I original type with explicit global quantification of ρ
(where ΞRecord denotes “the kind of all records”):

∀(ρ :: ΞRecord).
θ X →
(∀ρ ν ς.(Record ρ)⇒ θ ρ→ θ (ρ :& ν ::: ς))→
θ ρ

I transformation result contains the last name, the last
sort, and the complete record scheme as arguments:

θ X →
(∀ρ.(Record ρ)⇒

θ ρ→ (ν :: ∗)→ (ς :: ∗)→ θ (ρ :& ν ::: ς))→
(ρ :: ΞRecord) →
θ ρ



Record Type
Families

Wolfgang Jeltsch

Introduction

A simple selfmade
record system

Record type
families

Record scheme
induction

Record Type Families:
A Key to Generic Record Combinators

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar
October 20, 2011


	Introduction
	A simple selfmade record system
	Record type families
	Record scheme induction

