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Identity-based encryption
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■ Public-key encryption, where “public key” = “name”

◆ no PKI necessary

■ Formally, 4-tuple of algorithms:

◆ Master public key Generation

◆ Secret Key construction

◆ Encryption

◆ Decryption



IBE algorithms
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■ G(msk) outputs mpk .

◆ Master secret key → master public key

■ K(msk , ID) outputs sk ID.

■ E(m,mpk , ID; r) outputs c.

◆ We always take m ∈ {0, 1}.

■ D(mpk , sk ID, c) outputs m.

Functionality: For all msk , ID, m, r:

D(G(msk),K(msk , ID),E(m,G(msk), ID; r)) = m



Weak IND-CPA security for IBE
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■ The environment randomly generates msk ∈ {0, 1}ℓ(η). Computes
mpk = G(msk) and sends it to the adversary.

◆ η — the security parameter, determining the lengths and
runtime bounds of everything.

■ The adversary picks the identities ID1, . . . , ID qη , ID
⋆ as bit-strings

of length ℓ(η) and gives them to the environment.

■ The environment generates m ∈ {0, 1} and the randomness r,
computes sk IDi

= K(msk , IDi).

■ Gives sk ID1
, . . . , sk IDq

,E(m,mpk , ID⋆; r) to the adversary.

The adversary must guess m. The scheme is weakly IND-CPA-secure if
the guess is correct only with probability 1/2 + 1/negl(η).



Generic group model
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■ A cyclic group where “all details of representation are hidden /
unusable”.

■ One can only

◆ generate a random element of the group;

◆ perform algebraic operations with the constructed elements.

■ Group size may also be known.

■ Can be used to analyse group-theory-related hardness assumptions
in a generic manner.

■ Introduced by Nechayev, Shoup, Schnorr in late 1990s.



Generic group model (GGM)
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■ A machine M, accessible to all parties of a protocol.

◆ Similar to random oracles in this sense.

■ Internally keeps a partial map µ : {0, . . . , pη − 1} → {0, 1}ℓ(η).

◆ pη — size of the group for security parameter η.

■ Accepts queries of the form (op, h1, . . . , hk).

◆ Returns µ(op(µ−1(h1), . . . , µ
−1(hk)))

◆ Undefined points of µ will be randomly defined.

■ op — one of “addition”, “inverse”, “unit”.



Example: CDH is hard in generic group

model
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■ CDH: Environment generates g, a, b. Defines ga = M((a·), g) and
gb = M((b·), g). Gives g, ga, gb to adversary which returns h.

Environment checks h
?
= M((ab·), g).

■ Adversary can only create group elements of the form
gxag

y
b g

z = gax+by+z for x, y, z chosen by him.

■ For randomly chosen a, b: gax+by+z = gax
′+by′+z′ implies

x = x′, y = y′, z = z′ with high probability.

■ For randomly chosen a, b: gax+by+z 6= gab with high probability.

◆ Schwartz-Zippel lemma

DDH is similarly hard.



Things to notice
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■ The attacker’s computational power was not constrained.

◆ The attacker only had to pay for the access to M.

■ The proof was all about polynomials in the exponents of g.

◆ Indeed, we could change M: let the domain of µ be
polynomials, not {0, . . . , p− 1}.

◆ This change would be indistinguishable.

■ All other hardness assumptions for cyclic groups are also true in
GGM.

◆ Otherwise the cryptographic community wouldn’t accept them.



Example: public-key encryption in GGM
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■ Generate a ∈ {0, . . . , p− 1}, g ∈ {0, 1}ℓ. Let h = M((a·), g).
(g, h) is public key. a is secret key.

■ Encryption:

◆ Generate r ∈ {0, . . . , p− 1}. Let

■ c1 = M((r·), g);

■ c2 = M(+,M((m·), g),M((r·), h)).

◆ Send (c1, c2).

■ Decryption: Compare M(+,M((−a·), c1), c2) with M(0).

That’s El-Gamal.



No IBE in GGM
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Theorem. There are no weakly IND-CPA-secure identity-based
encryption schemes in the generic group model.

■ I.e. a computationally unconstrained adversary will break any IBE
scheme.

◆ Only constraint — must pay for the access to M.

■ What does this mean?

■ Must use other hardness assumptions for IBE

◆ Bilinear pairings and associated hardness assumptions

◆ Factorization-related hardness assumptions

◆ . . .



A possible setup for IBE in GGM
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Master public key generation:

■ input — msk — a bit-string.

■ G is given by functions

◆ P1, . . . , Pt : {0, 1}
∗ → {0, . . . , p− 1};

◆ P0 : {0, 1}
∗ → {0, 1}∗.

■ MPK is 〈gP1(msk), . . . , gPt(msk), P0(msk)〉

(that’s almost completely generic)



A possible setup for IBE in GGM
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Secret key generation:

■ input — msk and ID — bit-strings.

■ K is given by functions

◆ Q1, . . . , Qu : ({0, 1}∗)2 → {0, . . . , p− 1};

◆ Q0 : ({0, 1}
∗)2 → {0, 1}∗.

■ sk ID is 〈gQ1(msk ,ID), . . . , gQu(msk ,ID), Q0(msk , ID)〉

(that’s also almost completely generic)



A possible setup for IBE in GGM
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Encryption:

■ input: 〈g1, . . . , gt, G0〉, m ∈ {0, 1}, ID, r ∈ {0, 1}∗.

■ E is given by functions eij(ID, G0,m, r).

■ The encryption of m is a tuple of group elements
〈

t∏

j=1

g
eij(ID,G0,m,r)
j

〉v

i=1

.

(now we’re losing genericity, but still resemble existing schemes of
various kinds)



A possible setup for IBE in GGM
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Decryption:

■ input: 〈g1, . . . , gt, G0〉, 〈ḡ1, . . . , ḡu, Ḡ0〉, 〈h1, . . . , hv〉, ID.

■ D is given by functions di, d
′
i, d

′′
i : ({0, 1}

∗)3 → {0, . . . , p− 1}.

■ Decryption computes

t∏

i=1

g
di(G0,Ḡ0,ID))
i ·

u∏

i=1

ḡ
d′i(G0,Ḡ0,ID)
i ·

v∏

i=1

h
d′′i (G0,Ḡ0,ID)
i

if the result is the unit element in M then the plaintext was 0,
otherwise it was 1.



Substitute, expand, collect similar terms. . .
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■ K(msk , ID) may return

◆ coefficients DID,1, . . . , DID,v;

◆ a group element HID.

■ Decryption checks whether

v∏

i=1

h
DID,i

i = HID .



Attack
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■ sk ID = 〈DID,1, . . . , DID,v, HID〉.

◆ Let s̃k ID = 〈DID,1, . . . , DID,v〉.

■ Attacker has sk ID1
, . . . , sk IDq

.

■ Randomly sample msk ′ that agrees with all DIDi,j and the master
public key.

■ Compute 〈DID⋆,1, . . . , DID⋆,v, ·〉 = K(msk ′, ID⋆).

■ Encrypt 0 for ID⋆. Decrypt it in order to find HID⋆ .

◆ Maybe do it several times.



Why does the attack work?
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■ X — set of all msk .

■ Let ρi ∈ Eqv(X) be the kernel of K̃(·, IDi).

■ If msk and msk ′ are randomly chosen, such that msk ρi msk ′ for
each i ∈ {1, . . . , q}, what is the probability that msk ρ⋆ msk ′?

◆ Probability taken over choices of msk ,msk ′ and
ID1, . . . , IDq, ID

⋆.

■ For ρ ∈ Eqv(X) define |ρ| =
∑k

i=1 |Xi|
2, where X1, . . . ,Xk ⊆ X

are the equivalence classes of ρ.

■ For fixed ID1, . . . , IDq, ID
⋆, the interesting probability is

|ρ1 ∧ · · · ∧ ρq ∧ ρ⋆|

|ρ1 ∧ · · · ∧ ρq|
.



Averaging over ID1, . . . , IDq, ID
⋆
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■ Let w ∈ N. Let ρ1, . . . , ρw ∈ Eqv(X). Let W ⊆ {1, . . . , w}.

◆ Let ρW =
∧

i∈W ρi.

■ Let PW =
1

|W |

∑

i∈W

|ρW |

|ρW\{i}|
.

■ Theorem. If PW ≤ 1/c for some constant c and each W , then
w = O(log |X|, 1

log c
).

■ The attacker can choose W , such that PW is large.



Random oracle
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■ A machine accessible to all parties in the protocol.

■ Implements a random function ρ : {0, 1}ℓ(η) → {0, 1}ℓ(η).

■ On input x, returns ρ(x).

■ If ρ(x) does not exist yet, it is randomly generated.



Public key encryption

20 / 24

■ Algorithms:

◆ pk = K(sk),

◆ c = E(pk ,m; r), (m ∈ {0, 1})

◆ m = D(sk , c).

■ IND-CPA security:

◆ The adversary is given pk and c.

◆ The adversary must guess m.



No PKE in ROM
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■ Theorem. There is no public key encryption scheme in the random
oracle model that is secure against a computationally unbounded
adversary.

◆ The adversary only pays for oracle access.

■ A consequence of Russell Impagliazzo, Steven Rudich. Limits on
the Provable Consequences of One-way Permutations. STOC ’89.



Proof idea
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■ Alice generates pk and sends it to Bob. Bob encrypts m and sends
c to Alice. Alice decrypts.

■ Computationally unbounded Eve sees pk and c.

■ Everybody can access the RO.

■ Let RA, RB and ρ be the randomness used by Alice, Bob, and RO.

■ Eve samples runs of Alice and Bob consistent with pk and c.

■ Eve probably finds all RO queries that Alice and Bob both made.

■ RO query made only by Alice or only by Bob does not help in
transmitting m.



Also relevant
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■ Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff,

Yevgeniy Vahlis, Brent Waters. On The Impossibility of Basing
Identity Based Encryption on Trapdoor Permutations. FOCS ’08.

■ No black-box construction of IBE from trapdoor permutations.

■ Shows the existence of an oracle relative to which trapdoor
permutations exist but IBE does not.

◆ Considering computationally unbounded adversary.

■ Steven Rudich. The Use of Interaction in Public Cryptosystems.
CRYPTO ’91.

■ Considers the helpfulness of queries made by Alice and Bob.



Future work
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■ Get the details right in here.

■ Consider other primitives.

■ Consider the generic bilinear group.
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