Identity-based encryption and

Generic group model (work in progress)

Peeter Laud
Arvutiteaduse teooriaseminar
Tallinn, 05.01.2012

Identity-based encryption

■ Public-key encryption, where "public key" = "name"

- no PKI necessary

■ Formally, 4-tuple of algorithms:

- Master public key Generation
- Secret Key construction
- Encryption
- Decryption

IBE algorithms

■ $\mathbf{G}(m s k)$ outputs $m p k$.

- Master secret key \rightarrow master public key

■ $\mathbf{K}(m s k$, ID $)$ outputs $s k_{\mathrm{ID}}$.
■ $\mathbf{E}(m, m p k, I D ; r)$ outputs c.

- We always take $m \in\{0,1\}$.

■ $\mathbf{D}\left(m p k, s k_{\mathrm{ID}}, c\right)$ outputs m.
Functionality: For all $m s k$, ID, m, r :
$\mathbf{D}(\mathbf{G}(m s k), \mathbf{K}(m s k, \mathrm{ID}), \mathbf{E}(m, \mathbf{G}(m s k), \mathrm{ID} ; r))=m$

Weak IND-CPA security for IBE

■ The environment randomly generates $m s k \in\{0,1\}^{\ell(\eta)}$. Computes $m p k=\mathbf{G}(m s k)$ and sends it to the adversary.

- η - the security parameter, determining the lengths and runtime bounds of everything.

■ The adversary picks the identities $I D_{1}, \ldots, I D_{q_{\eta}}, I D^{\star}$ as bit-strings of length $\ell(\eta)$ and gives them to the environment.

■ The environment generates $m \in\{0,1\}$ and the randomness r, computes $s k_{\mathrm{ID}_{i}}=\mathbf{K}\left(m s k, \mathrm{ID}_{i}\right)$.

■ Gives $s k_{\mathrm{ID}_{1}}, \ldots, s k_{\mathrm{ID}_{q}}, \mathbf{E}\left(m, m p k, \mathrm{ID}^{\star} ; r\right)$ to the adversary.
The adversary must guess m. The scheme is weakly IND-CPA-secure if the guess is correct only with probability $1 / 2+1 / \operatorname{negl}(\eta)$.

Generic group model

■ A cyclic group where "all details of representation are hidden / unusable".

■ One can only

- generate a random element of the group;
- perform algebraic operations with the constructed elements.

■ Group size may also be known.
■ Can be used to analyse group-theory-related hardness assumptions in a generic manner.

■ Introduced by Nechayev, Shoup, Schnorr in late 1990s.

Generic group model (GGM)

■ A machine \mathcal{M}, accessible to all parties of a protocol.

- Similar to random oracles in this sense.

■ Internally keeps a partial map $\mu:\left\{0, \ldots, p_{\eta}-1\right\} \rightarrow\{0,1\}^{\ell(\eta)}$.

- p_{η} — size of the group for security parameter η.

■ Accepts queries of the form (op, h_{1}, \ldots, h_{k}).

- Returns $\mu\left(\operatorname{op}\left(\mu^{-1}\left(h_{1}\right), \ldots, \mu^{-1}\left(h_{k}\right)\right)\right)$
- Undefined points of μ will be randomly defined.

■ op — one of "addition", "inverse", "unit".

Example: CDH is hard in generic group model

■ CDH: Environment generates g, a, b. Defines $g_{a}=\mathcal{M}((a \cdot), g)$ and $g_{b}=\mathcal{M}((b \cdot), g)$. Gives g, g_{a}, g_{b} to adversary which returns h. Environment checks $h \stackrel{?}{=} \mathcal{M}((a b \cdot), g)$.

■ Adversary can only create group elements of the form $g_{a}^{x} g_{b}^{y} g^{z}=g^{a x+b y+z}$ for x, y, z chosen by him.

■ For randomly chosen $a, b: g^{a x+b y+z}=g^{a x^{\prime}+b y^{\prime}+z^{\prime}}$ implies $x=x^{\prime}, y=y^{\prime}, z=z^{\prime}$ with high probability.

■ For randomly chosen $a, b: g^{a x+b y+z} \neq g^{a b}$ with high probability.

- Schwartz-Zippel lemma

DDH is similarly hard.

Things to notice

■ The attacker's computational power was not constrained.

- The attacker only had to pay for the access to \mathcal{M}.
- The proof was all about polynomials in the exponents of g.
- Indeed, we could change \mathcal{M} : let the domain of μ be polynomials, not $\{0, \ldots, p-1\}$.
- This change would be indistinguishable.

■ All other hardness assumptions for cyclic groups are also true in GGM.

- Otherwise the cryptographic community wouldn't accept them.

Example: public-key encryption in GGM

■ Generate $a \in\{0, \ldots, p-1\}, g \in\{0,1\}^{\ell}$. Let $h=\mathcal{M}((a \cdot), g)$. (g, h) is public key. a is secret key.

- Encryption:
- Generate $r \in\{0, \ldots, p-1\}$. Let
- $c_{1}=\mathcal{M}((r \cdot), g)$;
- $c_{2}=\mathcal{M}(+, \mathcal{M}((m \cdot), g), \mathcal{M}((r \cdot), h))$.
- Send (c_{1}, c_{2}).

■ Decryption: Compare $\mathcal{M}\left(+, \mathcal{M}\left((-a \cdot), c_{1}\right), c_{2}\right)$ with $\mathcal{M}(0)$.
That's El-Gamal.

No IBE in GGM

Theorem. There are no weakly IND-CPA-secure identity-based encryption schemes in the generic group model.

■ I.e. a computationally unconstrained adversary will break any IBE scheme.

- Only constraint — must pay for the access to \mathcal{M}.

■ What does this mean?
■ Must use other hardness assumptions for IBE

- Bilinear pairings and associated hardness assumptions
- Factorization-related hardness assumptions

A possible setup for IBE in GGM

Master public key generation:
■ input - msk - a bit-string.
■ G is given by functions
$-P_{1}, \ldots, P_{t}:\{0,1\}^{*} \rightarrow\{0, \ldots, p-1\} ;$

- $P_{0}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$.

■ MPK is $\left\langle g^{P_{1}(m s k)}, \ldots, g^{P_{t}(m s k)}, P_{0}(m s k)\right\rangle$
(that's almost completely generic)

A possible setup for IBE in GGM

Secret key generation:
■ input - msk and ID - bit-strings.
$\square \mathbf{K}$ is given by functions
$-Q_{1}, \ldots, Q_{u}:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0, \ldots, p-1\} ;$

- $Q_{0}:\left(\{0,1\}^{*}\right)^{2} \rightarrow\{0,1\}^{*}$.

■ $s k_{\mathrm{ID}}$ is $\left\langle g^{Q_{1}(m s k, \mathrm{ID})}, \ldots, g^{Q_{u}(m s k, \mathrm{ID})}, Q_{0}(m s k, \mathrm{ID})\right\rangle$
(that's also almost completely generic)

A possible setup for IBE in GGM

Encryption:

■ input: $\left\langle g_{1}, \ldots, g_{t}, G_{0}\right\rangle, m \in\{0,1\}, \mathrm{ID}, r \in\{0,1\}^{*}$.
■ \mathbf{E} is given by functions $e_{i j}\left(\mathrm{ID}, G_{0}, m, r\right)$.
■ The encryption of m is a tuple of group elements

$$
\left\langle\prod_{j=1}^{t} g_{j}^{e_{i j}\left(\mathrm{ID}, G_{0}, m, r\right)}\right\rangle_{i=1}^{v}
$$

(now we're losing genericity, but still resemble existing schemes of various kinds)

A possible setup for IBE in GGM

Decryption:
■ input: $\left\langle g_{1}, \ldots, g_{t}, G_{0}\right\rangle,\left\langle\bar{g}_{1}, \ldots, \bar{g}_{u}, \bar{G}_{0}\right\rangle,\left\langle h_{1}, \ldots, h_{v}\right\rangle$, ID.
$\square \mathbf{D}$ is given by functions $d_{i}, d_{i}^{\prime}, d_{i}^{\prime \prime}:\left(\{0,1\}^{*}\right)^{3} \rightarrow\{0, \ldots, p-1\}$.

- Decryption computes

$$
\prod_{i=1}^{t} g_{i}^{\left.d_{i}\left(G_{0}, \bar{G}_{0}, \mathrm{ID}\right)\right)} \cdot \prod_{i=1}^{u} \bar{g}_{i}^{d_{i}^{\prime}\left(G_{0}, \bar{G}_{0}, \mathrm{ID}\right)} \cdot \prod_{i=1}^{v} h_{i}^{d_{i}^{\prime \prime}\left(G_{0}, \bar{G}_{0}, \mathrm{ID}\right)}
$$

if the result is the unit element in \mathcal{M} then the plaintext was 0 , otherwise it was 1.

Substitute, expand, collect similar terms...

■ K ($m s k$, ID) may return

- coefficients $D_{\mathrm{ID}, 1}, \ldots, D_{\mathrm{ID}, v}$;
- a group element $H_{\text {ID }}$.

■ Decryption checks whether

$$
\prod_{i=1}^{v} h_{i}^{D_{\mathrm{ID}, i}}=H_{\mathrm{ID}}
$$

Attack

■ $s k_{\mathrm{ID}}=\left\langle D_{\mathrm{ID}, 1}, \ldots, D_{\mathrm{ID}, v}, H_{\mathrm{ID}}\right\rangle$.

- Let $\widetilde{s k}_{\mathrm{ID}}=\left\langle D_{\mathrm{ID}, 1}, \ldots, D_{\mathrm{ID}, v}\right\rangle$.

■ Attacker has $s k_{\mathrm{ID}_{1}}, \ldots, s k_{\mathrm{ID}_{q}}$.
■ Randomly sample $m s k^{\prime}$ that agrees with all $D_{\mathrm{ID}_{i}, j}$ and the master public key.

■ Compute $\left\langle D_{\mathrm{ID}^{\star}, 1}, \ldots, D_{\mathrm{ID}^{\star}, v}, \cdot\right\rangle=\mathbf{K}\left(m s k^{\prime}, \mathrm{ID}^{\star}\right)$.
■ Encrypt 0 for ID*. Decrypt it in order to find $H_{\mathrm{ID}^{\star}}$.

- Maybe do it several times.

Why does the attack work?

■ X - set of all msk.
■ Let $\rho_{i} \in \operatorname{Eqv}(X)$ be the kernel of $\widetilde{\mathbf{K}}\left(\cdot, \mathrm{ID}_{i}\right)$.
■ If $m s k$ and $m s k^{\prime}$ are randomly chosen, such that $m s k \rho_{i} m s k^{\prime}$ for each $i \in\{1, \ldots, q\}$, what is the probability that $m s k \rho^{\star} m s k^{\prime}$?

- Probability taken over choices of $m s k, m s k^{\prime}$ and $\mathrm{ID}_{1}, \ldots, \mathrm{ID}_{q}, \mathrm{ID}^{\star}$.

■ For $\rho \in \operatorname{Eqv}(X)$ define $|\rho|=\sum_{i=1}^{k}\left|X_{i}\right|^{2}$, where $X_{1}, \ldots, X_{k} \subseteq X$ are the equivalence classes of ρ.

■ For fixed $\mathrm{ID}_{1}, \ldots, \mathrm{ID}_{q}$, ID^{\star}, the interesting probability is $\frac{\left|\rho_{1} \wedge \cdots \wedge \rho_{q} \wedge \rho^{\star}\right|}{\left|\rho_{1} \wedge \cdots \wedge \rho_{q}\right|}$.

Averaging over $\mathrm{ID}_{1}, \ldots, \mathrm{ID}_{q}, \mathrm{ID}^{\star}$

■ Let $w \in \mathbb{N}$. Let $\rho_{1}, \ldots, \rho_{w} \in \operatorname{Eqv}(X)$. Let $W \subseteq\{1, \ldots, w\}$.

- Let $\rho^{W}=\bigwedge_{i \in W} \rho_{i}$.

■ Let $P^{W}=\frac{1}{|W|} \sum_{i \in W} \frac{\left|\rho^{W}\right|}{\mid \rho^{W \backslash\{i\} \mid}}$.
■ Theorem. If $P^{W} \leq 1 / c$ for some constant c and each W, then $w=O\left(\log |X|, \frac{1}{\log c}\right)$.

■ The attacker can choose W, such that P^{W} is large.

Random oracle

- A machine accessible to all parties in the protocol.

■ Implements a random function $\rho:\{0,1\}^{\ell(\eta)} \rightarrow\{0,1\}^{\ell(\eta)}$.
■ On input x, returns $\rho(x)$.
■ If $\rho(x)$ does not exist yet, it is randomly generated.

Public key encryption

- Algorithms:
- $p k=\mathbf{K}(s k)$,
- $c=\mathbf{E}(p k, m ; r), \quad(m \in\{0,1\})$
- $m=\mathbf{D}(s k, c)$.

■ IND-CPA security:

- The adversary is given $p k$ and c.
- The adversary must guess m.

No PKE in ROM

■ Theorem. There is no public key encryption scheme in the random oracle model that is secure against a computationally unbounded adversary.

- The adversary only pays for oracle access.

■ A consequence of Russell Impagliazzo, Steven Rudich. Limits on the Provable Consequences of One-way Permutations. STOC '89.

Proof idea

■ Alice generates $p k$ and sends it to Bob. Bob encrypts m and sends c to Alice. Alice decrypts.

■ Computationally unbounded Eve sees $p k$ and c.
■ Everybody can access the RO.
■ Let R_{A}, R_{B} and ρ be the randomness used by Alice, Bob, and RO.
■ Eve samples runs of Alice and Bob consistent with $p k$ and c.
■ Eve probably finds all RO queries that Alice and Bob both made.

- RO query made only by Alice or only by Bob does not help in transmitting m.

Also relevant

■ Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, Brent Waters. On The Impossibility of Basing Identity Based Encryption on Trapdoor Permutations. FOCS '08.

■ No black-box construction of IBE from trapdoor permutations.

- Shows the existence of an oracle relative to which trapdoor permutations exist but IBE does not.
- Considering computationally unbounded adversary.

■ Steven Rudich. The Use of Interaction in Public Cryptosystems. CRYPTO '91.

■ Considers the helpfulness of queries made by Alice and Bob.

Future work

■ Get the details right in here.
■ Consider other primitives.

- Consider the generic bilinear group.

