Identity-based encryption and Generic group model (work in progress)

Peeter Laud Arvutiteaduse teooriaseminar Tallinn, 05.01.2012

Identity-based encryption

 \blacksquare Public-key encryption, where "public key" = "name"

♦ no PKI necessary

■ Formally, 4-tuple of algorithms:

- ◆ Master public key Generation
- ◆ Secret Key construction
- ◆ Encryption
- ◆ **D**ecryption

IBE algorithms

G(msk) outputs mpk.

 $\blacklozenge \mathsf{Master \ secret \ key} \to \mathsf{master \ public \ key}$

• $\mathbf{K}(msk, \mathsf{ID})$ outputs sk_{ID} .

E(m, mpk, ID; r) outputs c.

• We always take $m \in \{0, 1\}$.

D (mpk, sk_{ID}, c) outputs m.

Functionality: For all msk, ID, m, r:

 $\mathbf{D}(\mathbf{G}(msk), \mathbf{K}(msk, \mathsf{ID}), \mathbf{E}(m, \mathbf{G}(msk), \mathsf{ID}; r)) = m$

Weak IND-CPA security for IBE

- The environment randomly generates $msk \in \{0, 1\}^{\ell(\eta)}$. Computes $mpk = \mathbf{G}(msk)$ and sends it to the adversary.
 - η the security parameter, determining the lengths and runtime bounds of everything.
- The adversary picks the identities $ID_1, \ldots, ID_{q_\eta}, ID^*$ as bit-strings of length $\ell(\eta)$ and gives them to the environment.
- The environment generates $m \in \{0, 1\}$ and the randomness r, computes $sk_{\mathsf{ID}_i} = \mathbf{K}(msk, \mathsf{ID}_i)$.
- Gives $sk_{\mathsf{ID}_1}, \ldots, sk_{\mathsf{ID}_q}, \mathbf{E}(m, mpk, \mathsf{ID}^*; r)$ to the adversary.

The adversary must guess m. The scheme is weakly IND-CPA-secure if the guess is correct only with probability $1/2 + 1/negl(\eta)$.

Generic group model

- A cyclic group where "all details of representation are hidden / unusable".
- One can only
 - ◆ generate a random element of the group;
 - ◆ perform algebraic operations with the constructed elements.
- Group size may also be known.
- Can be used to analyse group-theory-related hardness assumptions in a generic manner.
- Introduced by Nechayev, Shoup, Schnorr in late 1990s.

Generic group model (GGM)

 \blacksquare A machine $\mathcal M$, accessible to all parties of a protocol.

- Similar to random oracles in this sense.
- Internally keeps a partial map $\mu : \{0, \ldots, p_{\eta} 1\} \rightarrow \{0, 1\}^{\ell(\eta)}$.
 - p_{η} size of the group for security parameter η .

• Accepts queries of the form (op, h_1, \ldots, h_k) .

- Returns $\mu(\operatorname{op}(\mu^{-1}(h_1),\ldots,\mu^{-1}(h_k)))$
- \blacklozenge Undefined points of μ will be randomly defined.

 \blacksquare op — one of "addition", "inverse", "unit".

Example: CDH is hard in generic group model

CDH: Environment generates g, a, b. Defines $g_a = \mathcal{M}((a \cdot), g)$ and $g_b = \mathcal{M}((b \cdot), g)$. Gives g, g_a, g_b to adversary which returns h. Environment checks $h \stackrel{?}{=} \mathcal{M}((ab \cdot), g)$.

Adversary can only create group elements of the form $g_a^x g_b^y g^z = g^{ax+by+z}$ for x, y, z chosen by him.

For randomly chosen a, b: $g^{ax+by+z} = g^{ax'+by'+z'}$ implies x = x', y = y', z = z' with high probability.

- For randomly chosen $a, b: g^{ax+by+z} \neq g^{ab}$ with high probability.
 - Schwartz-Zippel lemma

DDH is similarly hard.

Things to notice

The attacker's computational power was not constrained.

 \blacklozenge The attacker only had to pay for the access to $\mathcal M.$

 \blacksquare The proof was all about polynomials in the exponents of g.

• Indeed, we could change \mathcal{M} : let the domain of μ be polynomials, not $\{0, \ldots, p-1\}$.

◆ This change would be indistinguishable.

- All other hardness assumptions for cyclic groups are also true in GGM.
 - ◆ Otherwise the cryptographic community wouldn't accept them.

Example: public-key encryption in GGM

Generate $a \in \{0, \dots, p-1\}$, $g \in \{0, 1\}^{\ell}$. Let $h = \mathcal{M}((a \cdot), g)$. (g, h) is public key. a is secret key.

Encryption:

■ Decryption: Compare $\mathcal{M}(+, \mathcal{M}((-a \cdot), c_1), c_2)$ with $\mathcal{M}(0)$.

That's El-Gamal.

No IBE in GGM

Theorem. There are no weakly IND-CPA-secure identity-based encryption schemes in the generic group model.

- I.e. a computationally unconstrained adversary will break any IBE scheme.
 - Only constraint must pay for the access to \mathcal{M} .
- What does this mean?
- Must use other hardness assumptions for IBE
 - Bilinear pairings and associated hardness assumptions
 - Factorization-related hardness assumptions

Master public key generation:

 \blacksquare input — msk — a bit-string.

 \blacksquare G is given by functions

$$\blacksquare \mathsf{MPK} \text{ is } \langle g^{P_1(msk)}, \dots, g^{P_t(msk)}, P_0(msk) \rangle$$

(that's almost completely generic)

Secret key generation:

 \blacksquare input — msk and ID — bit-strings.

 \blacksquare K is given by functions

$$\blacksquare sk_{\mathsf{ID}} \text{ is } \langle g^{Q_1(msk,\mathsf{ID})}, \dots, g^{Q_u(msk,\mathsf{ID})}, Q_0(msk,\mathsf{ID}) \rangle$$

(that's also almost completely generic)

Encryption:

■ input:
$$\langle g_1, \ldots, g_t, G_0 \rangle$$
, $m \in \{0, 1\}$, ID, $r \in \{0, 1\}^*$.

E is given by functions $e_{ij}(\mathsf{ID}, G_0, m, r)$.

 \blacksquare The encryption of m is a tuple of group elements

$$\left\langle \prod_{j=1}^{t} g_{j}^{e_{ij}(\mathsf{ID},G_{0},m,r)} \right\rangle_{i=1}^{v}$$

(now we're losing genericity, but still resemble existing schemes of various kinds)

Decryption:

Input:
$$\langle g_1, \ldots, g_t, G_0 \rangle$$
, $\langle \bar{g}_1, \ldots, \bar{g}_u, \bar{G}_0 \rangle$, $\langle h_1, \ldots, h_v \rangle$, ID.

■ **D** is given by functions $d_i, d'_i, d''_i : (\{0, 1\}^*)^3 \to \{0, \dots, p-1\}.$

Decryption computes

$$\prod_{i=1}^{t} g_i^{d_i(G_0,\bar{G}_0,\mathsf{ID}))} \cdot \prod_{i=1}^{u} \bar{g}_i^{d'_i(G_0,\bar{G}_0,\mathsf{ID})} \cdot \prod_{i=1}^{v} h_i^{d''_i(G_0,\bar{G}_0,\mathsf{ID})}$$

if the result is the unit element in ${\mathcal M}$ then the plaintext was 0, otherwise it was 1.

Substitute, expand, collect similar terms...

\blacksquare K(*msk*, ID) may return

- coefficients $D_{\mathsf{ID},1}, \ldots, D_{\mathsf{ID},v}$;
- a group element H_{ID} .

Decryption checks whether

$$\prod_{i=1}^{v} h_i^{D_{\mathsf{ID},i}} = H_{\mathsf{ID}}$$

Attack

•
$$sk_{\mathsf{ID}} = \langle D_{\mathsf{ID},1}, \dots, D_{\mathsf{ID},v}, H_{\mathsf{ID}} \rangle.$$

• Let $\widetilde{sk}_{\mathsf{ID}} = \langle D_{\mathsf{ID},1}, \dots, D_{\mathsf{ID},v} \rangle.$

- Attacker has $sk_{\mathsf{ID}_1}, \ldots, sk_{\mathsf{ID}_q}$.
- Randomly sample msk' that agrees with all D_{ID_i,j} and the master public key.
- Compute $\langle D_{\mathsf{ID}^{\star},1}, \ldots, D_{\mathsf{ID}^{\star},v}, \cdot \rangle = \mathbf{K}(msk', \mathsf{ID}^{\star}).$

Encrypt 0 for ID^{*}. Decrypt it in order to find H_{ID^*} .

◆ Maybe do it several times.

Why does the attack work?

 $\blacksquare \ \mathfrak{X} - \mathsf{set of all} \ msk.$

• Let $\rho_i \in \mathbf{Eqv}(\mathfrak{X})$ be the kernel of $\widetilde{\mathbf{K}}(\cdot, \mathsf{ID}_i)$.

If msk and msk' are randomly chosen, such that $msk \rho_i msk'$ for each $i \in \{1, \ldots, q\}$, what is the probability that $msk \rho^* msk'$?

• Probability taken over choices of msk, msk' and ID_1, \ldots, ID_q, ID^* .

For $\rho \in \mathbf{Eqv}(\mathfrak{X})$ define $|\rho| = \sum_{i=1}^{k} |\mathfrak{X}_i|^2$, where $\mathfrak{X}_1, \ldots, \mathfrak{X}_k \subseteq \mathfrak{X}$ are the equivalence classes of ρ .

■ For fixed ID₁,..., ID_q, ID^{*}, the interesting probability is $\frac{|\rho_1 \wedge \cdots \wedge \rho_q \wedge \rho^*|}{|\rho_1 \wedge \cdots \wedge \rho_q|}.$

Averaging over ID_1, \ldots, ID_q, ID^*

Let
$$w \in \mathbb{N}$$
. Let $\rho_1, \ldots, \rho_w \in \mathbf{Eqv}(\mathfrak{X})$. Let $W \subseteq \{1, \ldots, w\}$.

• Let
$$\rho^W = \bigwedge_{i \in W} \rho_i$$
.

• Let
$$P^W = \frac{1}{|W|} \sum_{i \in W} \frac{|\rho^W|}{|\rho^{W \setminus \{i\}}|}.$$

■ Theorem. If $P^W \leq 1/c$ for some constant c and each W, then $w = O(\log |\mathcal{X}|, \frac{1}{\log c}).$

• The attacker can choose W, such that P^W is large.

Random oracle

- A machine accessible to all parties in the protocol.
- Implements a random function $\rho: \{0,1\}^{\ell(\eta)} \to \{0,1\}^{\ell(\eta)}$.
- On input x, returns $\rho(x)$.
- If $\rho(x)$ does not exist yet, it is randomly generated.

Public key encryption

■ Algorithms:

pk = K(sk), c = E(pk, m; r), (m ∈ {0, 1}) m = D(sk, c).

■ IND-CPA security:

- The adversary is given pk and c.
- The adversary must guess m.

No PKE in ROM

- Theorem. There is no public key encryption scheme in the random oracle model that is secure against a computationally unbounded adversary.
 - ◆ The adversary only pays for oracle access.
- A consequence of *Russell Impagliazzo, Steven Rudich*. Limits on the Provable Consequences of One-way Permutations. STOC '89.

Proof idea

- Alice generates pk and sends it to Bob. Bob encrypts m and sends c to Alice. Alice decrypts.
- Computationally unbounded Eve sees pk and c.
- Everybody can access the RO.
- Let R_A , R_B and ρ be the randomness used by Alice, Bob, and RO.
- Eve samples runs of Alice and Bob consistent with pk and c.
- Eve probably finds all RO queries that Alice and Bob both made.
- RO query made only by Alice or only by Bob does not help in transmitting m.

Also relevant

- Dan Boneh, Periklis A. Papakonstantinou, Charles Rackoff, Yevgeniy Vahlis, Brent Waters. On The Impossibility of Basing Identity Based Encryption on Trapdoor Permutations. FOCS '08.
- No black-box construction of IBE from trapdoor permutations.
- Shows the existence of an oracle relative to which trapdoor permutations exist but IBE does not.
 - Considering computationally unbounded adversary.
- Steven Rudich. The Use of Interaction in Public Cryptosystems. CRYPTO '91.
- Considers the helpfulness of queries made by Alice and Bob.

Future work

- Get the details right in here.
- Consider other primitives.
- Consider the generic bilinear group.