
A Semantics for Network-Adaptive Execution of Distributed Objects

A Semantics for Network-Adaptive Execution of
Distributed Objects

Karl Palmskog
palmskog@kth.se

KTH Royal Institute of Technology
Joint work with Mads Dam

2011-11-15

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

Introduction

“ABS [is] an abstract behavioral specification language
for designing executable models of distributed
object-oriented systems.”

c l a s s Node implements Peer {
F i l e g e t F i l e (S e r v e r s I d , F i l enam e f I d) {

Fut<I n t> l 1 = s I d ! g e t L e n g t h () ;
a w a i t l 1 ? ;
I n t l t h = l 1 . g e t ;
F i l e f i l e = new cog F i l e I m p l (l t h , f I d) ;
r e t u r n f i l e ;

}
}

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

Properties of ABS

Unit of concurrency: concurrent object group (cog)

Cooperative scheduling of tasks inside a cog

Asynchronous method calls translate to message passing

Result of method calls are obtained by resolving futures

Communication graph can be seen as a full mesh

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

ABS Object Level Syntax

P ::= program
| Dd F IF CL{T x ; s; }

IF ::= interface definition
| interface I{Sg}

CL ::= class definition
| classC [(T x)] [implements I]{T x ′; M}

M ::= method definition
| Sg{T x ; s; return e; }

Sg ::= method signature
| T m(T x)

g ::= guard
| b
| e?
| g ∧ g ′

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

ABS Object Level Syntax, continued

s ::= statement
| s; s ′ composition
| x = rhs assignment
| suspend suspend
| await g await guard
| skip skip
| if b{s} if
| if b{s} else {s ′} if else
| while b{s} while loop

rhs ::= assignment right-hand side
| e expression
| newC (e) new object
| new cogC (e) new object and cog
| e!m(e) asynchronous call
| e.m(e) synchronous call
| e. get future value

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

ABS Runtime Syntax

cn ::= configuration
| ε
| fut
| object
| invoc
| cog
| cn cn′

cog ::= concurrent object group
| cog (c , act)

fut ::= future
| fut (f , val)

val ::= value
| v
| ⊥

object ::= object
| ob (o, a, p, q)

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

ABS Runtime Syntax, continued

a, l ::= substitution
| T x v
| a, a′

process ::= process
| {a|sp}
| error

p ::= active process
| process
| idle

q ::= pool of suspended processes
| ∅
| process
| q q′

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

ABS Runtime Syntax, continued

v ::= value
| o
| c
| f
| t

invoc ::= method invocation
| invoc (o, f ,m, v)

act ::= active object
| o
| ε

sp ::= process statement
| return e return
| cont (f) continue other process
| s statement
| sp; s ′p composition
| ε empty string

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

Start Configurations

start(Dd F IF CL{T x ; s; }) =

cog (main, start) ob (start, cog cogmain, {T x atts (T)|s; ε}, ∅)

start

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

A Sample of ABS Operational Semantics

fresh (o ′)
fresh (c ′)
init (C) = p
atts (C , JeKa ◦ l , o ′, c ′) = a′

ob (o, a, {l |x = new cogC (e); sp}, q)
→ ob (o, a, {l |x = o ′; sp}, q) ob (o ′, a′, p, ∅) cog (c ′, o ′)

new cog object

A Semantics for Network-Adaptive Execution of Distributed Objects

Introduction

Abstract Behavioural Specification

A Sample of ABS Operational Semantics, continued

JeKa ◦ l = o ′

JeKa ◦ l = v
fresh (f)

ob (o, a, {l |x = e!m(e); sp}, q)
→ ob (o, a, {l |x = f ; sp}, q) invoc (o ′, f ,m, v) fut (f ,⊥)

async call

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Motivation

The ABS-NET Semantics

Work enhances (Core) ABS semantics with

nodes

arcs

message routing

When implemented, enables ABS programs to execute

concurrently across a network

adaptively based on resource availability

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Motivation

Goals

To run efficiently run ABS programs in a network, we want:

Migration of cogs and objects between nodes

Location-independent object addressing

Transparent handling of method calls

Preservation of Core ABS behaviour

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Objects

o0

o1

o2

oi : object

o3

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Objects Inside Cogs

o0

o1

o2

c0

c1

oi : object ci : cog

o3

c2

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Cogs Inside Nodes

o0

o1

o2

u0

c0

c1

oi : object ci : cog

t0 :c0, c1 7→ 〈u0, 0〉,
c2 7→ 〈u1, 1〉

o3

u1

c2

ui : node

t1 :c0, c1 7→ 〈u0, 1〉,
c2 7→ 〈u1, 0〉

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Mobility

o0

o1

o2

u0 c1

oi : object ci : cog

t0 :c1 7→ 〈u0, 0〉,
c2, c0 7→ 〈u1, 1〉

o3

u1

c2

ui : node

t1 :c0, c1 7→ 〈u0, 1〉,
c2 7→ 〈u1, 0〉

Cog (c0, act, q, q′,Σ)

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Mobility, continued

o0

o1

o2

u0 c1

oi : object ci : cog

t0 :c1 7→ 〈u0, 0〉,
c2, c0 7→ 〈u1, 1〉

o3

u1

c2

c0

ui : node

t1 :c1 7→ 〈u0, 1〉,
c2, c0 7→ 〈u1, 0〉

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Mobility, continued

o1

o2

u0 c1

oi : object ci : cog

t0 :c1 7→ 〈u0, 0〉,
c2, c0 7→ 〈u1, 1〉

o3

u1

c2

c0

ui : node

t1 :c1 7→ 〈u0, 1〉,
c2, c0 7→ 〈u1, 0〉

Object (o0, a, p, q)

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Migration

Mobility, continued

o1

o2

u0 c1

oi : object ci : cog

t0 :c1 7→ 〈u0, 0〉,
c2, c0 7→ 〈u1, 1〉

o3

o0

u1

c2

c0

ui : node

t1 :c1 7→ 〈u0, 1〉,
c2, c0 7→ 〈u1, 0〉

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Asynchrony

Asynchronous Calls

o1

o2

u0 c1

oi : object ci : cog

ob (o1, a, {l |x = o3!m(v); sp}, q, u0)

o3

o0

u1

c2

c0

ui : node

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Asynchrony

Asynchronous Calls, continued

o1

o2

u0 c1

oi : object ci : cog

ob (o1, a, {l |x = f ; sp}, q, u0)

o3

o0

u1

c2

c0

ui : node

Call (o3, c1, f ,m, v)

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Asynchrony

Asynchronous Calls, continued

o1

o2

u0 c1

oi : object ci : cog

ob (o1, a, {l ′|y = f . get; s ′p}, q, u0)

o3

o0

u1

c2

c0

ui : node

Future (c1, f , v)

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Asynchrony

Asynchronous Calls, continued

o1

o2

u0 c1

oi : object ci : cog

ob (o1, a, {l ′|y = v ; s ′p}, q, u0)

o3

o0

u1

c2

c0

ui : node

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Runtime Configurations

Runtime Configurations

Type Core ABS ABS-NET
node - nd (u, t)
arc - ar (u, q, u′)
cog cog (c , act) cog (c , act, u, qin, qout ,Σ)

object ob (o, a, p, q) ob (o, a, p, q, u)
fut fut (f , val) -

invoc invoc (o, f ,m, v) -

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Runtime Syntax

Runtime Syntax

sp ::= process statement
| return e return
| cont (f) continue other process
| s statement
| sp; s ′p composition
| ε empty string
| forward (f , c) forward future value to cog

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Typing

Well-Typed Configurations

∆ `R cn ok
cn2graph(cn) = G
proper (G)
connected (G)
symmetric (G)

∆ `N cn ok
net t configuration

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Rule Async-Call-Send

JeKa ◦ l = o ′

JeKa ◦ l = v
forwards (v , c , cogof (o ′)) = q′

fresh (f)

qout
enqueue (Call (o′,c,f ,m,v))−−−−−−−−−−−−−−−−−→ q′out

cog (c , o, u, qin, qout ,Σ) ob (o, a, {l |x = e!m(e); sp}, q, u)
→ cog (c , o, u, qin, q

′
out ,Σ) ob (o, a, {l |x = f ; sp}, q ∪ q′, u)

net async call send

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Rule Async-Call-Recv

qin
dequeue (Call (o,c ′,f ,m,v))−−−−−−−−−−−−−−−−−→ q′in

bind (o, f ,m, v , class (o)) = {l |sp; ε}
cog (c , act, u, qin, qout ,Σ) ob (o, a, p, q, u)

→ cog (c , act, u, q′in, qout ,Σ) ob (o, a, p, q ∪ {l |sp; forward (f , c ′)}, u)

net async call recv

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Rule Future-Send

qout
enqueue (Future (c ′,f ,v))−−−−−−−−−−−−−−−−→ q′out

Σ(f) = v

cog (c , o, u, qin, qout ,Σ) ob (o, a, {l |forward (f , c ′)}, q, u)
→ cog (c , o, u, qin, q

′
out ,Σ) ob (o, a, idle, q, u)

net future send

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Rule Future-Recv

qin
dequeue (Future (c,f ,v))−−−−−−−−−−−−−−−→ q′in

cog (c , act, u, qin, qout ,Σ)
→ cog (c , act, u, q′in, qout ,Σ[f 7→ v])

net future recv

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Rule Read-Fut

JeKa ◦ l = f
Σ(f) = v

cog (c , o, u, qin, qout ,Σ) ob (o, a, {l |x = e. get; sp}, q, u)
→ cog (c , o, u, qin, qout ,Σ) ob (o, a, {l |x = v ; sp}, q, u)

net read fut

A Semantics for Network-Adaptive Execution of Distributed Objects

ABS-NET

Operational Semantics

Starting Configurations

graph2cn((V ,E)) = cn
u ∈ V

start(Dd F IF CL{T x ; s; }, (V ,E), u) =
cog (main, start, u, nil , nil , []) ob (start, cog cogmain, {T x atts (T)|s; ε}, ∅, u) cn

net start

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Main Problems

Main Problems

1 Preservation of Core ABS behaviour by ABS-NET

define runtime interaction with the environment
prove bisimilarity for behaviour

2 Applications of ABS-NET for adaptibility

nodes as resource-bounded deployment components
migration of cogs based on resource availability

3 Efficiency of an ABS-NET implementation

publish/subscribe system for futures
garbage collection of behaviourally irrelevant entities

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Environmental Transitions for ABS-NET

Env Config

Future(c , f , v)

Call(o, f ,m, v)

Future(f , v)

Call(o, c , f ,m, v)

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Observability

Definition

For a config cn and an environment transition µ, the observability
predicate ↓µ is defined by

(1) cn ↓µ if cn can perform the input transition µ

(2) cn ↓µ if cn can perform the output transition µ

Definition

For a config cn and an environment transition µ, the weak
observability predicate ⇓µ is defined by

(1) cn ⇓µ if cn can perform the input transition µ after zero or
more “silent” transitions (→)

(2) cn ⇓µ if cn can perform the output transition µ after zero or
more “silent” transitions (→)

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Simulation

Definition

A relation R is a (weak) barbed simulation if whenever
(cni , cnj) ∈ R,

(1) cni ↓µ implies cnj ⇓µ
(2) cni → cn′i implies cnj →∗ cn′j for some cn′j with (cn′i , cn′j) ∈ R.

We say that cnj simulates cni .

Definition

A relation R is a (weak) barbed bisimulation if both R and R−1

is a (weak) barbed simulation. The largest such relation is called
(weak) bisimilarity.

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Main Result (in progress)

Theorem

Let

P be an ABS program,

G be a directed graph,

u be a node,

∆ be a typing context,

cn be the ABS-NET start configuration start (P,G , u),

cn′ be the ABS start configuration start (P).

Then, if ∆ ` P and ∆ `N cn ok, cn simulates cn′.

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Bisimulation for Message-Free Configurations

Lemma

The ABS-NET configuration cn is bisimilar to the configuration cn′

which is obtained from cn by first replacing all routes with optimal
routes and then processing all remaining messages.

o0

c0

Cog (c1, act, q, q′,Σ)

Call (o0, c2, f ,m, v)

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Bisimulation for Message-Free Configurations

Lemma

The ABS-NET configuration cn is bisimilar to the configuration cn′

which is obtained from cn by first replacing all routes with optimal
routes and then processing all remaining messages.

o0

c0 c1

Cog (c1, act, q, q′,Σ)

Call (o0, c2, f ,m, v)

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Proof Idea

cn nf(cn)

cn′′

cn′ nf(cn′)

∗

∗

∗

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Simulation of Single-Node Configurations

Lemma

The ABS-NET configuration cn with stable routing and only
empty queues is simulates the configuration cn′ which is obtained
from cn by coalescing all nodes into one and removing all arcs.

o0

c0 c1

Cog (c1, act, q, q′,Σ)

Call (o0, c2, f ,m, v)

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Simulation of Single-Node Configurations

o0

c0

c1

A Semantics for Network-Adaptive Execution of Distributed Objects

Analysis

Barbed Simulations

Simulation of Core ABS Configurations

Lemma

A single-node ABS-NET configuration cn with empty queues
simulates the corresponding Core ABS configuration cn′.

A Semantics for Network-Adaptive Execution of Distributed Objects

Extensions

Nodes as Deployment Components

Nodes as Deployment Components

Nodes can act as deployment components1 by adding the currently
available resources r to the runtime configuration:

x ∈ dom (l)
JeKa ◦ l = v
vp = l(x)
cost (e) ≤ r

nd (u, t, r) ob (o, a, {l |x = e; sp}, q, u)
→ nd (u, t, r + |vp| − |v |) ob (o, a, {l [x 7→ v]|sp}, q, u)

net assign local resource

1E. Albert, S. Genaim, M. Gómez-Zamalloa, E. B. Johnsen, R. Schlatte, S. L.
Tapia Tarifa. Simulating Concurrent Behaviors with Worst-Case Cost Bounds.

A Semantics for Network-Adaptive Execution of Distributed Objects

Extensions

Nodes as Deployment Components

Resource-Based Migration of Cogs

A cog can migrate to a less loaded node when the available
resources are below a threshold K :

r < K
r < available (t, u′)

t
replace (c,u′,1)−−−−−−−−−→ t′

q
enqueue (Cog (c,act,qin,qout ,Σ))−−−−−−−−−−−−−−−−−−−→ q′

nd (u, t, r) ar (u, q, u′) cog (c , act, u, qin, qout ,Σ)
→ nd (u, t′, r + |Σ|) ar (u, q′, u′)

net cog send resource

A Semantics for Network-Adaptive Execution of Distributed Objects

Extensions

Publish/Subscribe Systems for Futures

Publish/Subscribe Systems for Futures

o0

c0

o1

c1

o2

c2

1 o0 calls o1, obtains f

2 o0 calls o2 with f

3 o1 sends v to o0

4 o0 forwards v to o2

5 o2 sends v ′ to o0

Channels between c1 and c2
are never used!

c2 must subscribe to future f .

A Semantics for Network-Adaptive Execution of Distributed Objects

Extensions

Garbage Collection

Garbage Collection

Large programs need garbage collection of obsolete entities

Similar to garbage collection for actors

Currently investigated option: distributed reference counting

A Semantics for Network-Adaptive Execution of Distributed Objects

Current and Future Work

Current and Future Work

1 Detailed proofs of bisimulations

2 Extend work on deployment components

3 Implementation of ABS-NET on top of IoC’s Scala ABS
backend

4 Formalize garbage collection

5 Network is currently assumed to be static

add rules for node crashes, node joins, add replication
extend behavioural similarity proofs

	Introduction
	Abstract Behavioural Specification

	ABS-NET
	Motivation
	Migration
	Asynchrony
	Runtime Configurations
	Runtime Syntax
	Typing
	Operational Semantics

	Analysis
	Main Problems
	Barbed Simulations

	Extensions
	Nodes as Deployment Components
	Publish/Subscribe Systems for Futures
	Garbage Collection

	Current and Future Work

