A Semantics for Network-Adaptive Execution of Distributed Objects

A Semantics for Network-Adaptive Execution of

Distributed Objects

Karl Palmskog
palmskog@kth.se
KTH Royal Institute of Technology
Joint work with Mads Dam

2011-11-15

A Semantics for Network-Adaptive Execution of Distributed Objects
LIntroduction

L Abstract Behavioural Specification

Introduction

“ABS [is] an abstract behavioral specification language
for designing executable models of distributed
object-oriented systems."

class Node implements Peer {
File getFile(Server sld, Filename fld) {
Fut<int> 11 sld ! getLength ();
await 117;
Int Ith = I11.get;

File file = new cog Filelmpl(lth, fld);
return file;

A Semantics for Network-Adaptive Execution of Distributed Objects
L

‘— Introduction

L Abstract Behavioural Specification

Properties of ABS

Unit of concurrency: concurrent object group (cog)
Cooperative scheduling of tasks inside a cog
Asynchronous method calls translate to message passing

Result of method calls are obtained by resolving futures

Communication graph can be seen as a full mesh

A Semantics for Network-Adaptive Execution of Distributed Objects

L Introduction

L Abstract Behavioural Specification

ABS Object Level Syntax

IF

CL

Sg

DAFIFCL{T x;5;}

interface /{Sg}

class C[(T x)] [implements /]{T X'; M}
Sg{T x;s; returne; }

Tm(T x)

b

e?
gng

program

interface definitior
class definition
method definition
method signature

guard

A Semantics for Network-Adaptive Execution of Distributed Objects

L Introduction

L Abstract Behavioural Specification

ABS Object Level Syntax, continued

rhs

s; s’

x = rhs
suspend
await g

skip

if b{s}

if b{s} else {s'}
while b{s}

e
new C(€)
new cog C(e€)
elm(€)
e.m(€)

e.get

statement

composition
assignment
suspend
await guard
skip

if

if else

while loop

assignment right-hand side

expression

new object

new object and cog
asynchronous call
synchronous call
future value

A Semantics for Network-Adaptive Execution of Distributed Objects

L Introduction

L Abstract Behavioural Specification

ABS Runtime Syntax

cn

cog
fut

val

object

€
fut
object
invoc
cog
cncn’

cog (¢, act)
fut (f, val)

v

1

ob(o,a,p,q)

configuration

concurrent object group
future

value

object

A Semantics for Network-Adaptive Execution of Distributed Objects

‘— Introduction

L Abstract Behavioural Specification

ABS Runtime Syntax, continued

a, |

process

Txv

a,a

{alsp}

error

process
idle

0

process
qq’

substitution

process

active process

pool of suspended processes

A Semantics for Network-Adaptive Execution of Distributed Objects

‘— Introduction

L Abstract Behavioural Specification

ABS Runtime Syntax, continued

invoc

act

value

=+ 0O O

method invocation
invoc (o, f, m, V)
active object

€
process statement
returne return
cont (f) continue other process
s statement
L e
Spi Sp composition

€ empty string

A Semantics for Network-Adaptive Execution of Distributed Objects
LIntroduction

L Abstract Behavioural Specification

Start Configurations

e STAR
start(Dd F IF CL{T x;s; }) =

cog (main, start) ob (start, cog cog main, { T x atts (T)|s; €},0)

A Semantics for Network-Adaptive Execution of Distributed Objects
LIntroduction

L Abstract Behavioural Specification

A Sample of ABS Operational Semantics

fresh (o')
fresh (¢’)
init (C) =p
atts (C, [€]aoy,0',c") =4
ob (o, a, {/|x = new cog C(€); s,}, q)
— ob(0,a,{l[x =0";sp},q) ob(0’,d, p, D) cog (', 0')

NEW_COG_OE

A Semantics for Network-Adaptive Execution of Distributed Objects
LIntroduction

L Abstract Behavioural Specification

A Sample of ABS Operational Semantics, continued

[[e]]aol =0
[[E]]aol =V
fresh (f)

ASYNC_CALI

ob(o,a,{l|x = e!m(€);sp}, q)
— ob(o0,a,{l|x = f;sp},q) invoc (o, f, m, V) fut (f, L)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Motivation

The ABS-NET Semantics

Work enhances (Core) ABS semantics with
® nodes
m arcs
B message routing
When implemented, enables ABS programs to execute
m concurrently across a network

m adaptively based on resource availability

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Motivation

Goals

To run efficiently run ABS programs in a network, we want:
m Migration of cogs and objects between nodes
m Location-independent object addressing
m Transparent handling of method calls

m Preservation of Core ABS behaviour

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

O

o;j: object

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Objects Inside Cogs

o;j: object Ci: cog

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Cogs Inside Nodes

o;j: object Ci: cog uj: node

to :co, C1 — <U0,0>7 t; :co,C1 — <U071>7

Co —> <Ll1,1> Co > <U1,0>

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Mobility

o;j: object Ci: cog uj: node

to :c1 — <U0,0>, t1 :co,C1 — <Ll0,1>,

C2,Co H— <U17 1> Co — <U1,0>

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Mobility, continued

o;j: object Ci: cog uj: node

to :c1 — <U0,0>, t1 a1 — (uo,l),

C2,Co H— <U17 1> C2,Co — <U1,0>

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Mobility, continued

o;j: object Ci: cog uj: node

OBJECT (00, 3, p, q)

to :c1 — <U0,0>, t1 a1 — (uo,l),

C2,Co H— <U17 1> C2,Co — <U1,0>

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Migration

Mobility, continued

o;j: object Ci: cog uj: node

to :c1 — <U0,0>, t1 a1 — (uo,l),

C2,Co H— <U17 1> C2,Co — <U1,0>

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
LAsynchrony

Asynchronous Calls

o;j: object Ci: cog uj: node

ob (o1, a,{l|x = 03'm(V); sp}, q, o)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
LAsynchrony

Asynchronous Calls, continued

o;j: object Ci: cog uj: node

ob (o1, a,{l|[x = f;sp}, q, uo)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
LAsynchrony

Asynchronous Calls, continued

o;j: object Ci: cog uj: node

FUTURE (ci, f, v)

ob(o1,a,{l'ly = f.get;s,}, q, uo)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
LAsynchrony

Asynchronous Calls, continued

o;j: object Ci: cog uj: node

ob(o1,a,{l'ly = v;sy}, q, uo)

A Semantics for Network-Adaptive Execution of Distributed Objects

L ABS-NET
L Runtime Configurations

Runtime Configurations

Type Core ABS ABS-NET
node - nd (u, t)
arc - ar (u,q, u)
cog cog (c, act) cog (c, act, u, Qin, dout, =)
object | ob(o,a,p,q) ob(o,a,p,q,u)
fut fut (f, val) -
invoc | invoc(o,f,m,V) -

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Runtime Syntax

Runtime Syntax

Sp = process statement
| returne return
| cont(f) continue other process
| s statement
| sps, composition
G empty string
|

forward (f, c) forward future value to cog

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
L Typing

Well-Typed Configurations

AbFg cnok
cn2graph(cn) = G
proper (G)
connected (G)
symmetric (G)
Ay cnok

NET_T_CONFIGURATION

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET
LOperational Semantics

Rule Async-Call-Send

~

IIe]]aol =0
[[E]]aol =V
forwards (v, ¢, cogof (o)) = ¢’
fresh (f)
enqueue (CALL (0',c,f,mV))
Jout out
NET_ASY

cog (¢, 0, u,qin, dout, L) ob (0, a, {/|x = e!m(€); sp}, q, u)
— COg(C, 0, U,qijn, qi)uta z) Ob(07 a, {/|X - fv Sp}7 q U q ’ U)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET

L Operational Semantics

Rule Async-Call-Recv

dequeue (CALL (0,c’,f,mVv))

Qin

bind (o, f, m, v, class (0)) = {/|sp; €}

COg (C7 aCt7 U,9in; Qout; Z) Ob (07 a,p,q, U)
— cog (¢, act, u,q’,, dout, 2) ob (0, a, p, g U {/|sp; forward (f, c’)}, u)

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET

L Operational Semantics

Rule Future-Send

enqueue (FUTURE (¢/,f,v))
Qout YQout
Y(f)=v
cog (¢, 0, U, qin, out, =) ob (0, a, {/|forward (f, ')}, q, u)
— cog (Ca 0, U,qin, q/outa Z) ob (07 a, idle? q, U)

NET_FUTUI

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET

L Operational Semantics

Rule Future-Recv

dequeue (FUTURE (¢,f,v))
in in
cog (Cv act, U, Qin, dout; Z)
— cog (¢, act, u,q’, Qout, L[f +> Vv])

NET_FUTURE_RECV

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET

L Operational Semantics

Rule Read-Fut

He]]aol =f

Y(fy=v
cog (c,0,u,qin, dout, L) ob (0, a, {/|x = e.get; sy}, q, u)
— cog (C7 O, U,qin, Yout, z) ob (07 a, {/|X =V 5p}7 q, U)

NET_READ_I

A Semantics for Network-Adaptive Execution of Distributed Objects
L ABS-NET

L Operational Semantics

Starting Configurations

graph2cen((V, E)) = ¢n
uecV

start(Dd F IF CL{T x;s; }, (V, E),ﬂ) =
cog (main, start, u, nil, nil, []) ob (start, cog cog main, { T X atts (T)|s; €}, 0, u)

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Main Problems

Main Problems

Preservation of Core ABS behaviour by ABS-NET

m define runtime interaction with the environment
m prove bisimilarity for behaviour
Applications of ABS-NET for adaptibility
m nodes as resource-bounded deployment components
m migration of cogs based on resource availability
Efficiency of an ABS-NET implementation

m publish/subscribe system for futures
m garbage collection of behaviourally irrelevant entities

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Environmental Transitions for ABS-NET

FuTURE(c, f, V)

7

Carr(o,f,m,v)
Env Config
FUTURE(f, v)

<

Cavrr(o,c,f,m,v)

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
LBarbed Simulations

Observability

For a config cn and an environment transition u, the observability
predicate |, is defined by

(1) cn |, if cn can perform the input transition 1

(2) cn g if cn can perform the output transition 7z

Definition

For a config cn and an environment transition p, the weak
observability predicate |, is defined by

(1) cn), if cn can perform the input transition . after zero or
more “silent” transitions (—)

(2) cn |z if cn can perform the output transition 7z after zero or
more “silent” transitions (—)

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Simulation

Definition

A relation R is a (weak) barbed simulation if whenever

(cni,cnj) € R,

(1) cnj |, implies cn; |,

(2) cni — cn} implies cnj —* cn’ for some cn’ with (cn}, cn’) € R.
We say that cn; simulates cn;.

Definition

A relation R is a (weak) barbed bisimulation if both R and R~!
is a (weak) barbed simulation. The largest such relation is called
(weak) bisimilarity.

A Semantics for Network-Adaptive Execution of Distributed Objects

LAnalysis

L Barbed Simulations

Main Result (in progress)

Let
m P be an ABS program,
m G be a directed graph,
m u be a node,
m A be a typing context,
m cn be the ABS-NET start configuration start (P, G, u),
m cn’ be the ABS start configuration start (P).
Then, if A+ P and Ay cnok, cn simulates cn’.

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Bisimulation for Message-Free Configurations

Lemma

The ABS-NET configuration cn is bisimilar to the configuration cn’
which is obtained from cn by first replacing all routes with optimal
routes and then processing all remaining messages.

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Bisimulation for Message-Free Configurations

Lemma

The ABS-NET configuration cn is bisimilar to the configuration cn’
which is obtained from cn by first replacing all routes with optimal
routes and then processing all remaining messages.

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Proof Idea

cn —————— nf(cn)

/!

cn’ ———— nf(cn)

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Simulation of Single-Node Configurations

Lemma

The ABS-NET configuration cn with stable routing and only
empty queues is simulates the configuration cn’ which is obtained
from cn by coalescing all nodes into one and removing all arcs.

A Semantics for Network-Adaptive Execution of Distributed Objects
LAnalysis
L Barbed Simulations

Simulation of Single-Node Configurations

A Semantics for Network-Adaptive Execution of Distributed Objects

LAnalysis

L Barbed Simulations

Simulation of Core ABS Configurations

A single-node ABS-NET configuration cn with empty queues
simulates the corresponding Core ABS configuration cn'.

A Semantics for Network-Adaptive Execution of Distributed Objects
L Extensions

Lches as Deployment Components

Nodes as Deployment Components

Nodes can act as deployment components® by adding the currently
available resources r to the runtime configuration:

x € dom (/)
[[e]]aol =V
vp = I(x)
cost (e) < r
nd (u,t,r) ob(o,a,{l/|x =e;sp},q,u)
— nd (u,t,r + |vp| —|v|) ob (o, a,{/[x — V]|sp}, q, u)

NET_ASSIGN_I

g, Albert, S. Genaim, M. Gémez-Zamalloa, E. B. Johnsen, R. Schlatte, S. L.
Tapia Tarifa. Simulating Concurrent Behaviors with Worst-Case Cost Bounds.

A Semantics for Network-Adaptive Execution of Distributed Objects
L Extensions

Lches as Deployment Components

Resource-Based Migration of Cogs

A cog can migrate to a less loaded node when the available
resources are below a threshold K:

r<K
r < available (t,)

¢ replace (c,u’,1)
—

t
enqueue (COG (c,act,qin,dout, X))

NET_COG_SEND_RES

nd (Ll,t, r) ar(u7qa ul) COg(C, aCta U, qin; dout Z)
—nd(u,t',r+|X|) ar(u,q’,)

A Semantics for Network-Adaptive Execution of Distributed Objects

L Extensions

LPublish/Subscribe Systems for Futures

Publish /Subscribe Systems for Futures

oo calls o1, obtains f
oo calls oy with f
o1 sends v to o

op forwards v to o2

BoENE

02 sends v/ to o

Channels between ¢; and ¢
are never used!

c2 must subscribe to future f.

A Semantics for Network-Adaptive Execution of Distributed Objects
L Extensions

LGarbage Collection

Garbage Collection

m Large programs need garbage collection of obsolete entities
m Similar to garbage collection for actors

m Currently investigated option: distributed reference counting

A Semantics for Network-Adaptive Execution of Distributed Objects
LCurrent and Future Work

Current and Future Work

Detailed proofs of bisimulations
Extend work on deployment components

Implementation of ABS-NET on top of loC's Scala ABS
backend

B Formalize garbage collection

~

H Network is currently assumed to be static

m add rules for node crashes, node joins, add replication
m extend behavioural similarity proofs

(&)]

	Introduction
	Abstract Behavioural Specification

	ABS-NET
	Motivation
	Migration
	Asynchrony
	Runtime Configurations
	Runtime Syntax
	Typing
	Operational Semantics

	Analysis
	Main Problems
	Barbed Simulations

	Extensions
	Nodes as Deployment Components
	Publish/Subscribe Systems for Futures
	Garbage Collection

	Current and Future Work

