From multiplicity awareness to computation correlation

Jacques Sakarovitch
LTCI - CNRS/ENST

The results presented in this talk are taken from a joint work with
Marie-Pierre Béal and Sylvain Lombardy, IGM, Université Paris-Est, Marne-la-Vallée,
published in
On the equivalence and conjugacy of weighted automata.
in Proc. of CSR'06, LNCS 3967. The complete journal version is still in preparation. Some of the results have been included in the chapter

Rational and recognizable series
of the Handbook of Weighted Automata, Springer, 2009.

Part I

An introductory result

The Rational Bijection Theorem

Proposition
If two regular languages have the same growth function, then there exists a letter-to-letter rational bijection that maps one language onto the other.

An example: a first language

$$
K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

An example: a first language

$$
K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

\mathcal{B}

An example: a first language

$$
K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

\mathcal{B}

c	$c d c$	$c d c c$	$d c d d$
	$c d d$	$c d d c$	$d d c c$
$d c$	$d c c$	$d c c c$	$d d d c$
$d d$	$d d c$	$d c d c$	$d d d d$

An example: a first language

$$
K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

\mathcal{B}

c	$c d c$	$c d c c$	$d c d d$
	$c d d$	$c d d c$	$d d c c$
$d c$	$d c c$	$d c c c$	$d d d c$
$d d$	$d d c$	$d c d c$	$d d d d$

$$
\forall n \in \mathbb{N} \quad g_{K}(n)=\operatorname{Card}\left(K \cap\{c, d\}^{n}\right)=2^{n-1}
$$

An example: a second language

$$
L=a(a+b)^{*}
$$

An example: a second language

$$
L=a(a+b)^{*}
$$

An example: a second language

$$
L=a(a+b)^{*}
$$

a	$a a a$	$a a a a$	$a b a a$
$a a$	$a a b$	$a a a b$	$a b a b$
$a b$	$a b b$	$a a b b$	$a b b b$

An example: a second language

$$
\begin{aligned}
& L=a(a+b)^{*} \\
& \forall n \in \mathbb{N} \quad g_{L}(n)=\operatorname{Card}\left(L \cap\{a, b\}^{n}\right)=2^{n-1}
\end{aligned}
$$

An example: the rational bijection

$$
L=a(a+b)^{*} \quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

a	aаa	aaaa	abaa	c	$c d c$	$c d c c$	$d c d d$
	$a a b$	aaab	$a b a b$		$c d d$	$c d d c$	$d d c c$
aa	$a b a$	$a a b a$	$a b b a$	$d c$	$d c c$	$d c c c$	$d d d c$
$a b$	$a b b$	$a a b b$	$a b b b$	$d d$	$d d c$	$d c d c$	$d d d d$

An example: the rational bijection

$$
L=a(a+b)^{*} \quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

a	aaa	aaaa	abaa	c	$c d c$	$c d c c$	$d c d d$
	$a a b$	aaab	$a b a b$		$c d d$	$c d d c$	$d d c c$
$a a$	$a b a$	$a a b a$	$a b b a$	$d c$	$d c c$	$d c c c$	$d d d c$
$a b$	$a b b$	$a a b b$	$a b b b$	$d d$	$d d c$	$d c d c$	$d d d d$

An example: the rational bijection

$$
L=a(a+b)^{*} \quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

a	aaa	aaaa	abaa	c	$c d c$	$c d c c$	$d c d d$
	$a a b$	aaab	$a b a b$		$c d d$	$c d d c$	$d d c c$
aa	$a b a$	$a a b a$	$a b b a$	$d c$	$d c c$	$d c c c$	$d d d c$
$a b$	$a b b$	$a a b b$	$a b b b$	$d d$	$d d c$	$d c d c$	$d d d d$

An example: the rational bijection

$$
L=a(a+b)^{*} \quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

a	aaa	aaaa	abaa	c	$c d c$	$c d c c$	$d c d d$
	$a a b$	aaab	$a b a b$		$c d d$	$c d d c$	$d d c c$
aa	$a b a$	$a a b a$	$a b b a$	$d c$	$d c c$	$d c c c$	$d d d c$
$a b$	$a b b$	$a a b b$	$a b b b$	$d d$	$d d c$	$d c d c$	$d d d d$

An example: the rational bijection

$$
L=a(a+b)^{*} \quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\}
$$

a	aaa	aaaa	abaa	c	$c d c$	$c d c c$	$d c d d$
	$a a b$	aaab	$a b a b$		$c d d$	$c d d c$	$d d c c$
$a a$	$a b a$	$a a b a$	$a b b a$	$d c$	$d c c$	$d c c c$	$d d d c$
$a b$	$a b b$	$a a b b$	$a b b b$	$d d$	$d d c$	$d c d c$	$d d d d$

The result on this example: how to construct the transducer

from the automata

\mathcal{A}

\mathcal{B}

Part II

The link between growth functions and automata

The generating function

A language $\quad K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\} \quad$ that is,

The generating function

A language $K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\} \quad$ that is,
an unambiguous automaton

The generating function

A language $K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\} \quad$ that is,
an unambiguous automaton

is transformed into an automaton over $\{z\}^{*}$ with weight in \mathbb{N}

The generating function

A language $K=(c+d c+d d)^{*} \backslash\left\{c c(c+d)^{*} \cup 1_{B^{*}}\right\} \quad$ that is,
an unambiguous automaton

is transformed into an automaton over $\{z\}^{*}$ with weight in \mathbb{N}

which realises the generating function $\mathrm{G}_{K}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{K}(n) z^{n}$

Two regular languages with equal growth functions

(i) Two finite automata \mathcal{A} and \mathcal{B}, preferably unambiguous,

\mathcal{A}

\mathcal{B}

Two regular languages with equal growth functions

(i) Two finite automata \mathcal{A} and \mathcal{B}, preferably unambiguous,
(ii) transformed into \mathcal{A}^{\prime} and \mathcal{B}^{\prime}, over $\{z\}^{*}$ with multiplicity in \mathbb{N}, which realise the generating functions $G_{L}(z)$ and $G_{K}(z)$:

$$
\mathrm{G}_{L}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{L}(n) z^{n} \quad \text { and } \quad \mathrm{G}_{K}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{K}(n) z^{n}
$$

\mathcal{A}

\mathcal{B}

Two regular languages with equal growth functions

(i) Two finite automata \mathcal{A} and \mathcal{B}, preferably unambiguous,
(ii) transformed into \mathcal{A}^{\prime} and \mathcal{B}^{\prime}, over $\{z\}^{*}$ with multiplicity in \mathbb{N}, which realise the generating functions $G_{L}(z)$ and $G_{K}(z)$:

$$
\mathrm{G}_{L}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{L}(n) z^{n} \quad \text { and } \quad \mathrm{G}_{K}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{K}(n) z^{n}
$$

\mathcal{A}^{\prime}
\mathcal{B}^{\prime}

Two regular languages with equal growth functions

(i) Two finite automata \mathcal{A} and \mathcal{B}, preferably unambiguous,
(ii) transformed into \mathcal{A}^{\prime} and \mathcal{B}^{\prime}, over $\{z\}^{*}$ with multiplicity in \mathbb{N}, which realise the generating functions $G_{L}(z)$ and $G_{K}(z)$:

$$
\mathrm{G}_{L}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{L}(n) z^{n} \quad \text { and } \quad \mathrm{G}_{K}(z)=\sum_{n \in \mathbb{N}} \mathrm{~g}_{K}(n) z^{n}
$$

(iii) and whose equivalence is decidable
(Schützenberger 1961, Eilenberg 1974).

\mathcal{B}^{\prime}

Two regular languages with equal growth functions

Generating functions

are realised
by weighted automata

Weighted automata, a first look

bab
$5 \quad \forall w \in A^{*}$
$w \quad \longmapsto \quad\langle w\rangle_{2}$
$s: A^{*} \longrightarrow \mathbb{N}$
$s: w \longmapsto\langle s, w\rangle$
$s \in \mathbb{N}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
$s=b+a b+2 b a+3 b b+a a b$
$+2 a b a+3 a b b+4 b a a+5 b a b+\ldots$

Series play the role of languages

$\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ plays the role of $\mathfrak{P}\left(A^{*}\right)$

Richness of the model of weighted automata

- \mathbb{B} 'classic' automata
- \mathbb{N} 'usual' counting
- $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \quad$ numerical multiplicity
- $\mathcal{M}=\langle\mathbb{N}, \min ,+\rangle \quad$ Min-plus automata
- $\mathfrak{P}\left(B^{*}\right)=\mathbb{B}\left\langle\left\langle B^{*}\right\rangle\right\rangle \quad$ transducers
- $\mathbb{N}\left\langle\left\langle B^{*}\right\rangle\right\rangle$
- $\mathfrak{P}(F(B))$
weighted transducers
pushdown automata

Equivalence of weighted automata

The equivalence of weighted automata with weights in

Equivalence of weighted automata

The equivalence of weighted automata with weights in the Boolean semiring \mathbb{B} is decidable

Equivalence of weighted automata

The equivalence of weighted automata with weights in

$$
\begin{array}{r}
\text { the Boolean semiring } \mathbb{B} \\
\text { a field }
\end{array} \text { is } \begin{aligned}
& \text { decidable } \\
& \text { decidable }
\end{aligned}
$$

Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B} decidable
a subsemiring of a field is decidable

Equivalence of weighted automata

The equivalence of weighted automata with weights in

Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B}	decidable
a subsemiring of a field	decidable
$(\mathbb{Z}, \min ,+)$	undecidable
$\operatorname{Rat} B^{*}$	is
undecidable	

The equivalence of
transducers is undecidable

Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B}	decidable
a subsemiring of a field	decidable
$(\mathbb{Z}, \min ,+)$	undecidable
$\operatorname{Rat} B^{*}$	undecidable
\mathbb{N} Rat B^{*}	is
decidable	

The equivalence of
transducers undecidable transducers with multiplicity in \mathbb{N} is decidable

Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B}	decidable
a subsemiring of a field	decidable
$(\mathbb{Z}, \min ,+)$	undecidable
$\operatorname{Rat} B^{*}$	undecidable
\mathbb{N} Rat B^{*}	decidable

The equivalence of
transducers undecidable decidable functional transducers is decidable

Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring \mathbb{B}	decidable
a subsemiring of a field	decidable
$(\mathbb{Z}, \min ,+)$	undecidable
$\operatorname{Rat} B^{*}$	undecidable
$\mathbb{N R a t} B^{*}$	decidable

The equivalence of
transducers undecidable
transducers with multiplicity in \mathbb{N} functional transducers
$(\mathbb{Z}, \min ,+)$-unambiguous automata decidable decidable
is decidable

Part III

Proof of the Rational Bijection Theorem

The Rational Bijection Theorem

Proposition
If two regular languages have the same growth function, then there exists a letter-to-letter rational bijection that maps one language onto the other.

The Conjugacy Theorem

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata are equivalent if, and only if they are conjugate to a same third \mathbb{N}-automaton.

The Conjugacy Theorem

A confession
Automata are matrices

\mathcal{B}^{\prime}

The Conjugacy Theorem

A confession
Automata are matrices

$$
\mathcal{A}^{\prime}=\langle I, E, T\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & z \\
0 & 2 z
\end{array}\right),\binom{0}{1}\right\rangle
$$

The Conjugacy Theorem

A confession
Automata are matrices

$$
\mathcal{A}^{\prime}=\langle I, E, T\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & z \\
0 & 2 z
\end{array}\right),\binom{0}{1}\right\rangle
$$

$$
\left|\mathcal{A}^{\prime}\right|=I E^{*} T
$$

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata are equivalent if, and only if they are conjugate to a same third \mathbb{N}-automaton.

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata are equivalent if, and only if they are conjugate to a same third \mathbb{N}-automaton.

Definition
Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata. \mathcal{A} is conjugate to \mathcal{B}
if there exists a \mathbb{K}-matrix X such that:

$$
I X=J, \quad E X=X F, \quad \text { and } \quad T=X U
$$

This is denoted as $\mathcal{A} \xlongequal{X} \mathcal{B}$.

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata are equivalent if, and only if they are conjugate to a same third \mathbb{N}-automaton.

Definition
Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.

$$
\mathcal{A} \text { is conjugate to } \mathcal{B}
$$

if there exists a \mathbb{K}-matrix X such that:

$$
I X=J, \quad E X=X F, \quad \text { and } \quad T=X U .
$$

This is denoted as $\mathcal{A} \xrightarrow{X} \mathcal{B}$.
Conjugacy is a preorder
(transitive and reflexive, but not symmetric).

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata are equivalent if, and only if they are conjugate to a same third \mathbb{N}-automaton.

Definition
Let $\mathcal{A}=\langle I, E, T\rangle$ and $\mathcal{B}=\langle J, F, U\rangle$ be two \mathbb{K}-automata.
\mathcal{A} is conjugate to \mathcal{B}
if there exists a \mathbb{K}-matrix X such that:

$$
I X=J, \quad E X=X F, \quad \text { and } \quad T=X U
$$

This is denoted as $\mathcal{A} \xrightarrow{X} \mathcal{B}$.
$\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ implies that \mathcal{A} and \mathcal{B} are equivalent.
$I E E T=I E E X U=I E X F U=I X F F U=J F F U$

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist an \mathbb{N}-automaton \mathcal{C} (and \mathbb{N}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\rightleftharpoons} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist an \mathbb{N}-automaton \mathcal{C} (and \mathbb{N}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\rightleftharpoons} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

\mathcal{A}^{\prime}

The Conjugacy Theorem

Theorem (BLS)
Two \mathbb{N}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist an \mathbb{N}-automaton \mathcal{C} (and \mathbb{N}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\Longleftarrow} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

$$
\text { with } \quad X=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad Y=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

\mathcal{A}^{\prime}

\mathcal{C}^{\prime}

The Conjugacy Theorem

$$
\mathcal{C}^{\prime}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
0 & z & 0 \\
0 & 0 & z \\
0 & 0 & 2 z
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\rangle \quad \mathcal{A}^{\prime}=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & z \\
0 & 2 z
\end{array}\right),\binom{0}{1}\right\rangle
$$

The Conjugacy Theorem

$$
\mathcal{C}^{\prime}=\left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & z & 0 \\
0 & 0 & z \\
0 & 0 & 2 z
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)\right\rangle \quad \mathcal{A}^{\prime}=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & z \\
0 & 2 z
\end{array}\right),\binom{0}{1}\right\rangle
$$

$$
\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
0 & z & 0 \\
0 & 0 & z \\
0 & 0 & 2 z
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & z \\
0 & 2 z
\end{array}\right)
$$

$$
\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 2
\end{array}\right) \cdot\binom{0}{1}
$$

$$
\mathcal{A}^{\prime} \quad \stackrel{X}{\rightleftharpoons} \quad \mathcal{C}^{\prime} \quad \stackrel{Y}{\Longrightarrow} \quad \mathcal{B}^{\prime}
$$

The Finite Equivalence Theorem for automata

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{gathered}
\text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
\text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} . \\
\text { Moreover, } \mathcal{D} \text { is effectively computable from } \mathcal{A} \text { and } \mathcal{B} .
\end{gathered}
$$

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{aligned}
& \text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
& \qquad \text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} .
\end{aligned}
$$

Moreover, \mathcal{D} is effectively computable from \mathcal{A} and \mathcal{B}.

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{gathered}
\text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
\text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} . \\
\text { Moreover, } \mathcal{D} \text { is effectively computable from } \mathcal{A} \text { and } \mathcal{B} .
\end{gathered}
$$

$\mathcal{D}^{\prime} \quad \mathcal{E}^{\prime}$

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{gathered}
\text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
\text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} . \\
\text { Moreover, } \mathcal{D} \text { is effectively computable from } \mathcal{A} \text { and } \mathcal{B} .
\end{gathered}
$$

$\mathcal{D}^{\prime} \quad \mathcal{E}^{\prime}$

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{aligned}
& \text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
& \text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} .
\end{aligned}
$$

Moreover, \mathcal{D} is effectively computable from \mathcal{A} and \mathcal{B}.

The Finite Equivalence Theorem for automata

A structural interpretation of conjugacy
Theorem (BLS)
Let \mathcal{A} and \mathcal{B} be two conjugate \mathbb{N}-automata.
Then, there exist an \mathbb{N}-automaton \mathcal{D}

$$
\begin{gathered}
\text { such that } \mathcal{A} \text { is a co-quotient of } \mathcal{D} \\
\text { and } \mathcal{B} \text { is an quotient of } \mathcal{D} . \\
\text { Moreover, } \mathcal{D} \text { is effectively computable from } \mathcal{A} \text { and } \mathcal{B} .
\end{gathered}
$$

A technical proposition

A technical proposition

A technical proposition

The harvest

Part IV

The foundations

The conjugacy theorems

Theorem
Let \mathbb{K} be $\mathbb{B}, \mathbb{N}, \mathbb{Z}$, or any (skew) fields.
Two \mathbb{K}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist a \mathbb{K}-automaton \mathcal{C} (and \mathbb{K}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\Longleftarrow} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

The conjugacy theorems

Theorem

Let \mathbb{K} be $\mathbb{B}, \mathbb{N}, \mathbb{Z}$, or any (skew) fields.
Two \mathbb{K}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist a \mathbb{K}-automaton \mathcal{C} (and \mathbb{K}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\Longleftarrow} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

Theorem
Two functional transducers \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist a functional transducer \mathcal{C} (and word-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\rightleftharpoons} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

The conjugacy theorems

Theorem
Let \mathbb{K} be $\mathbb{B}, \mathbb{N}, \mathbb{Z}$, or any (skew) fields.
Two \mathbb{K}-automata \mathcal{A} and \mathcal{B} are equivalent if, and only if, there exist a \mathbb{K}-automaton \mathcal{C} (and \mathbb{K}-matrices X and Y) such that

$$
\mathcal{A} \stackrel{X}{\rightleftharpoons} \mathcal{C} \stackrel{Y}{\Longrightarrow} \mathcal{B}
$$

Moreover, \mathcal{C} is effectively computable from \mathcal{A} and \mathcal{B}.

The path to the theorem:

- understanding reduction
- understanding reduction as a conjugacy
- performing joint reduction

Finite Equivalence Theorems for weighted automata

The Finite Equivalence Theorem
A standard result in symbolic dynamics
Theorem
Two irreducible sofic shifts are finitely equivalent
if, and only if, they have the same entropy.

Finite Equivalence Theorems for weighted automata

Theorem
Let $\mathbb{K}=\mathbb{B}$ or \mathbb{N}, \mathcal{A} and \mathcal{B} two trim \mathbb{K}-automata.
Then $\mathcal{A} \xlongequal{X} \mathcal{B}$ if, and only if, there exists a \mathbb{K}-automaton \mathcal{C} which is a co- \mathbb{K}-covering of \mathcal{A} and a \mathbb{K}-covering of \mathcal{B}.

Finite Equivalence Theorems for weighted automata

Theorem
Let $\mathbb{K}=\mathbb{B}$ or \mathbb{N}, \mathcal{A} and \mathcal{B} two trim \mathbb{K}-automata.
Then $\mathcal{A} \xlongequal{X} \mathcal{B}$ if, and only if, there exists a \mathbb{K}-automaton \mathcal{C} which is a co- \mathbb{K}-covering of \mathcal{A} and a \mathbb{K}-covering of \mathcal{B}.

Definition

\mathcal{C} is a \mathbb{K}-covering of \mathcal{B} if $\mathcal{C} \xlongequal{H_{\varphi}} \mathcal{B}$ where H_{φ} is the matrix of a surjective map.
\mathcal{C} is a co- \mathbb{K}-covering of \mathcal{A} if \mathcal{C}^{t} is a \mathbb{K}-covering of \mathcal{A}^{t}
that is, if $\mathcal{A} \stackrel{H_{\psi}^{t}}{\Longrightarrow} \mathcal{C}$ where H_{ψ} is the matrix of a surjective map.

Finite Equivalence Theorems for weighted automata

Theorem
Let $\mathbb{K}=\mathbb{B}$ or \mathbb{N}, \mathcal{A} and \mathcal{B} two trim \mathbb{K}-automata.
Then $\mathcal{A} \xlongequal{X} \mathcal{B}$ if, and only if, there exists a \mathbb{K}-automaton \mathcal{C} which is a co- \mathbb{K}-covering of \mathcal{A} and a \mathbb{K}-covering of \mathcal{B}.

Theorem
Let $\mathbb{K}=\mathbb{Z}$ or a field \mathbb{F}, \mathcal{A} and \mathcal{B} two \mathbb{K}-automata.
Then $\mathcal{A} \stackrel{X}{\Longrightarrow} \mathcal{B}$ if, and only if,
$\exists \mathbb{K}$-automata \mathcal{C} and \mathcal{D} and a circulation matrix D
\mathcal{C} co- \mathbb{K}-covering of $\mathcal{A}, \mathcal{D} \mathbb{K}$-covering of \mathcal{B}, and $\mathcal{C} \xlongequal{D} \mathcal{D}$.

