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IGM, Université Paris-Est, Marne-la-Vallée,

published in

On the equivalence and conjugacy of weighted automata.

in Proc. of CSR’06, LNCS 3967. The complete journal version is
still in preparation. Some of the results have been included in the
chapter

Rational and recognizable series

of the Handbook of Weighted Automata, Springer, 2009.



Part I

An introductory result



The Rational Bijection Theorem

Proposition
If two regular languages have the same growth function,

then there exists a letter-to-letter rational bijection
that maps one language onto the other.



An example: a first language

K = (c + d c + d d)∗ \ {c c (c + d)∗ ∪ 1B∗}



An example: a first language

K = (c + d c + d d)∗ \ {c c (c + d)∗ ∪ 1B∗}

r s t u

B
c d

d
c + d

d

c



An example: a first language

K = (c + d c + d d)∗ \ {c c (c + d)∗ ∪ 1B∗}

r s t u

B
c d

d
c + d

d

c

c cdc cdcc dcdd

cdd cddc ddcc

dc dcc dccc dddc

dd ddc dcdc dddd



An example: a first language

K = (c + d c + d d)∗ \ {c c (c + d)∗ ∪ 1B∗}

r s t u

B
c d

d
c + d

d

c

c cdc cdcc dcdd

cdd cddc ddcc

dc dcc dccc dddc

dd ddc dcdc dddd

∀n ∈ N gK (n) = Card (K ∩ {c , d}n) = 2n−1



An example: a second language

L = a (a + b)∗



An example: a second language

L = a (a + b)∗

p q

A

a

a

b



An example: a second language

L = a (a + b)∗

p q

A

a

a

b

a aaa aaaa abaa

aab aaab abab

aa aba aaba abba

ab abb aabb abbb



An example: a second language

L = a (a + b)∗

p q

A

a

a

b

a aaa aaaa abaa

aab aaab abab

aa aba aaba abba

ab abb aabb abbb

∀n ∈ N gL (n) = Card (L ∩ {a, b}n) = 2n−1



An example: the rational bijection

L = a (a+b)∗ K = (c+d c+d d)∗\{c c (c + d)∗ ∪ 1B∗}

prx

qsy

qty

qtz2

quz21

quz22

qtz1

quz12

quz11

a |c

a |d

a |d

b |da |c

b |c a |d

b |d

b |c

b |c

b |d

a |d
b |d

b |d

a |d

b |d

a |c

a |c

a |c

a |c

a aaa aaaa abaa c cdc cdcc dcdd

aab aaab abab cdd cddc ddcc

aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L = a (a+b)∗ K = (c+d c+d d)∗\{c c (c + d)∗ ∪ 1B∗}

prx

qsy

qty

qtz2

quz21

quz22

qtz1

quz12

quz11

a |c

a |d

a |d

b |da |c

b |c a |d

b |d

b |c

b |c

b |d

a |d
b |d

b |d

a |d

b |d

a |c

a |c

a |c

a |c
a |ca |c

a aaa aaaa abaa c cdc cdcc dcdd

aab aaab abab cdd cddc ddcc

aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L = a (a+b)∗ K = (c+d c+d d)∗\{c c (c + d)∗ ∪ 1B∗}

prx

qsy

qty

qtz2

quz21

quz22

qtz1

quz12

quz11

a |c

a |d

a |d

b |da |c

b |c a |d

b |d

b |c

b |c

b |d

a |d
b |d

b |d

a |d

b |d

a |c

a |c

a |c

a |c

a |d

b |d

a |d

b |d

a aaa aaaa abaa c cdc cdcc dcdd

aab aaab abab cdd cddc ddcc

aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L = a (a+b)∗ K = (c+d c+d d)∗\{c c (c + d)∗ ∪ 1B∗}

prx

qsy

qty

qtz2

quz21

quz22

qtz1

quz12

quz11

a |c

a |d

a |d

b |da |c

b |c a |d

b |d

b |c

b |c

b |d

a |d
b |d

b |d

a |d

b |d

a |c

a |c

a |c

a |c
a |c

b |d

b |d
a |c

b |d

b |d

a aaa aaaa abaa c cdc cdcc dcdd

aab aaab abab cdd cddc ddcc

aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd



An example: the rational bijection

L = a (a+b)∗ K = (c+d c+d d)∗\{c c (c + d)∗ ∪ 1B∗}

prx

qsy

qty

qtz2

quz21

quz22

qtz1

quz12

quz11

a |c

a |d

a |d

b |da |c

b |c a |d

b |d

b |c

b |c

b |d

a |d
b |d

b |d

a |d

b |d

a |c

a |c

a |c

a |c

a |d

b |c

a |d

b |c

a |d

b |c

a |d

b |c

a aaa aaaa abaa c cdc cdcc dcdd

aab aaab abab cdd cddc ddcc

aa aba aaba abba dc dcc dccc dddc

ab abb aabb abbb dd ddc dcdc dddd
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Part II

The link between growth functions and automata
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gK (n) zn
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(ii) transformed into A′ and B′ , over {z}∗ with multiplicity in N,
which realise the generating functions GL (z) and GK (z) :

GL (z) =
∑
n∈N

gL (n) zn and GK (z) =
∑
n∈N

gK (n) zn ,

(iii) and whose equivalence is decidable
(Schützenberger 1961, Eilenberg 1974).



Two regular languages with equal growth functions

Generating functions
are realised

by weighted automata



Weighted automata, a first look
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Series play the role of languages

K〈〈A∗〉〉 plays the role of P(A∗)



Richness of the model of weighted automata

� B ‘classic’ automata

� N ‘usual’ counting

� Z , Q , R numerical multiplicity

� M = 〈N,min,+ 〉 Min-plus automata

� P(B∗) = B〈〈B∗〉〉 transducers

� N〈〈B∗〉〉 weighted transducers

� P(F (B)) pushdown automata
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Equivalence of weighted automata

The equivalence of weighted automata with weights in

the Boolean semiring B decidable
a subsemiring of a field decidable

(Z,min,+) undecidable
RatB∗ undecidable

NRatB∗ decidable

The equivalence of

transducers undecidable
transducers with multiplicity in N decidable

functional transducers decidable
(Z,min,+)-unambiguous automata is decidable



Part III

Proof of the Rational Bijection Theorem



The Rational Bijection Theorem

Proposition
If two regular languages have the same growth function,

then there exists a letter-to-letter rational bijection
that maps one language onto the other.
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they are conjugate to a same third N-automaton.

Definition
Let A = 〈 I ,E ,T 〉 and B = 〈 J,F ,U 〉 be two K-automata.

A is conjugate to B
if there exists a K-matrix X such that :

I X = J, E X = X F , and T = X U .

This is denoted as A X
=⇒ B .

A X
=⇒ B implies that A and B are equivalent.

I E E T= I E E X U= I E X F U= I X F F U= J F F U

and then I E ∗T = J F ∗U
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Two N-automata A and B are equivalent if, and only if, there
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A X⇐= C Y
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Moreover, C is effectively computable from A and B .
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Part IV

The foundations



The conjugacy theorems

Theorem
Let K be B , N , Z , or any (skew) fields.
Two K-automata A and B are equivalent if, and only if, there

exist a K-automaton C (and K-matrices X and Y ) such that

A X⇐= C Y
=⇒ B

Moreover, C is effectively computable from A and B .



The conjugacy theorems

Theorem
Let K be B , N , Z , or any (skew) fields.
Two K-automata A and B are equivalent if, and only if, there

exist a K-automaton C (and K-matrices X and Y ) such that

A X⇐= C Y
=⇒ B

Moreover, C is effectively computable from A and B .

Theorem
Two functional transducers A and B are equivalent

if, and only if, there exist a functional transducer C
(and word-matrices X and Y ) such that

A X⇐= C Y
=⇒ B

Moreover, C is effectively computable from A and B .



The conjugacy theorems

Theorem
Let K be B , N , Z , or any (skew) fields.
Two K-automata A and B are equivalent if, and only if, there

exist a K-automaton C (and K-matrices X and Y ) such that

A X⇐= C Y
=⇒ B

Moreover, C is effectively computable from A and B .

The path to the theorem:
� understanding reduction
� understanding reduction as a conjugacy
� performing joint reduction



Finite Equivalence Theorems for weighted automata

The Finite Equivalence Theorem

A standard result in symbolic dynamics

Theorem
Two irreducible sofic shifts are finitely equivalent

if, and only if, they have the same entropy.



Finite Equivalence Theorems for weighted automata

Theorem
Let K = B or N , A and B two trim K-automata.

Then A X
=⇒ B if, and only if, there exists a K-automaton C
which is a co-K-covering of A and a K-covering of B .



Finite Equivalence Theorems for weighted automata

Theorem
Let K = B or N , A and B two trim K-automata.

Then A X
=⇒ B if, and only if, there exists a K-automaton C
which is a co-K-covering of A and a K-covering of B .

Definition
C is a K-covering of B if C Hϕ

=⇒ B
where Hϕ is the matrix of a surjective map.

C is a co-K-covering of A if Ct is a K-covering of At

that is, if A
Ht
ψ

=⇒ C where Hψ is the matrix of a surjective map.



Finite Equivalence Theorems for weighted automata

Theorem
Let K = B or N , A and B two trim K-automata.

Then A X
=⇒ B if, and only if, there exists a K-automaton C
which is a co-K-covering of A and a K-covering of B .

Theorem
Let K = Z or a field F , A and B two K-automata.

Then A X
=⇒ B if, and only if,
∃ K-automata C and D and a circulation matrix D

C co-K-covering of A , D K-covering of B , and C D
=⇒ D .


