Specker's Proof of Infinity in \mathbf{NF}

Sergei Tupailo

Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa sergei@cs.ioc.ee

Tallinn, January 24, 2012

 $\mathcal{L}_{\in} := \{=, \in\}.$

The logic is *Classical with Equality*.

Extensionality is an axiom

Ext: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y).$

Definition 1 Stratification of a formula φ is an assignment of natural numbers (type indices) to variables (both free and bound) in φ s.t. for atomic subformulas of φ only the following variants are allowed:

(a) $x^{i} = y^{i};$ (b) $x^{i} \in y^{i+1}.$

A formula φ is stratified iff there exists a stratification of φ .

Equivalently, a formula is stratified iff it can be obtained from a formula of Simple Type Theory by erasing type indices (and renaming variables if necessary). *Examples.* The formula $x \in y \land y \in z$ is stratified, but the formula $x \in y \land y \in x$ is not.

Stratified Comprehension is an axiom scheme

 $\mathbf{SCA}: \qquad \exists y \forall x \left(x \in y \leftrightarrow \varphi[x] \right),$

for every stratified formula φ with y not free in φ .

$$\mathbf{NF} := \mathbf{SCA} + \mathbf{Ext}.$$

Known facts:

- $\operatorname{Consis}(\mathbf{NF} + \ldots) \rightarrow \operatorname{Consis}(\mathbf{ZF} + \ldots);$
- **NF** $\vdash \neg$ **AC**;
- **NF** \vdash **Inf**;
- $\mathbf{PA} \vdash \mathrm{Consis}(\mathbf{NF}_3);$
- $NF = NF_4;$
- Consis(NFU) \Leftrightarrow Consis(I Δ_0 + Exp);
- . . .

Main unknown question (since 1937):

• $\operatorname{Consis}(\mathbf{ZF} + \ldots) \rightarrow \operatorname{Consis}(\mathbf{NF})$?

Russell's Paradox is not derivable in **NF**, for $M := \{x \mid x \notin x\}$ cannot claimed to be a set. Nor any other known "paradox" goes through.

Axioms of ZF: 1908: Extensionality, Pair, Union, Infinity, Separation, Powerset,
1917: Foundation, 1922: Replacement

Which **ZFC** axioms are provable in **NF**?

- Extensionality: \vdash .
- Pair: \vdash , $\forall a^{(0)} \forall b^{(0)} \exists z^{(1)} \forall x^{(0)} (x \in z \leftrightarrow x = a \lor x = b).$
- Union: \vdash , $\forall a^{(2)} \exists z^{(1)} \forall x^{(0)} (x \in z \leftrightarrow \exists u^{(1)} \in a x \in u)$.
- Powerset: \vdash , $\forall a^{(1)} \exists z^{(2)} \forall x^{(1)} (x \in z \leftrightarrow \forall u^{(0)} \in x u \in a)$.
- Infinity: \vdash , very non-trivial proof, [Specker53].
- Separation: \vdash strat., $\forall a^{(1)} \exists z^{(1)} \forall x^{(0)} (x \in z \leftrightarrow x \in a \land \varphi[x])$ (small trick if $a \in FV(\varphi)$). Non-strat.: Let $V := \{x \mid x = x\}$. Then $\exists z \forall x (x \in z \leftrightarrow x \in V \land x \notin x)$ yields Russell's Paradox. Therefore $\vdash \neg non-strat.$.
- Replacement: \vdash strat., $\forall a (\forall x \in a \exists ! y \varphi[x, y] \rightarrow \exists z^{(1)} \forall y^{(0)} (y \in z \leftrightarrow \exists x^{(*)} \in a^{(*+1)} \varphi[x, y]))$ (the same small trick if $a \in FV(\varphi)$). $\vdash \neg non-strat.$, requires work.
- Foundation: $\vdash \neg$, since $V \in V$. Requires work.
- Choice: $\vdash \neg$, [Specker53]. All "reasonable" forms of **AC** are OK.

So, much mathematics can be developed. Much "elementary" set theory can be developed in **NF** in a reasonably standard way. "Later", however, there are substantial differences.

$$\Lambda^{(1)} := \{ x^{(0)} \mid x \neq x \}.$$

Thus, $\forall x \, x \notin \Lambda$.

$$\mathbf{V}^{(1)} := \{ x^{(0)} \mid x = x \}.$$

Thus, $\forall x \, x \in \mathbf{V}$.

Theorem 2 ([Specker 62])

- 1. NF is consistent iff there is a model of TNT [TST is fine] with a type-shifting automorphism [=: tsau] σ .
- 2. NF is equiconsistent with the Theory of Types, TNTA /TSTA is fine/ with the Ambiguity scheme, Amb,

$$\varphi \leftrightarrow \varphi^+,$$

for all sentences φ . $[\varphi^+$ is the result of raising all type indices in φ by 1.]

3. When ψ is a stratified sentence, then $\mathbf{NF} + \psi$ is equiconsistent with $\mathbf{TNTA} + \psi^{min}$. [ψ^{min} is the minimal stratification of ψ .]

Proof. See [6]. (1) If $\langle U_i, =_i, \in_i \rangle_{i \in \mathbb{Z}}$ is a model of **TNT** with a tsau σ , then $\langle U, =, \in \rangle$ with

$$U := U_0, \quad x = y : \Leftrightarrow x =_0 y, \quad x \in y : \Leftrightarrow x \in_0 \sigma(y)$$

is a model of **NF**. Conversely, if $\langle U, =, \in \rangle$ is a model of **NF**, then $\langle U, =, \in \rangle_{i \in \mathbb{Z}}$ is a model of **TNT** with a tsau $\sigma := \mathsf{id}$. \Box

Theorem 3 ([Grishin 69]) There is a model of NF_3 .

Theorem 4 ([Grishin 73]) $\mathbf{NF} = \mathbf{NF}_4$. Thus, $Consis(\mathbf{NF})$ is equivalent to $Consis(\mathbf{TSTA}_4)$, the Type Theory with Ambiguity using types 0, 1, 2 and 3 only.

Equivalently, one can try to build a model for \mathbf{TST}_4 , with $(=, \in)$ -isomorphisms between type domains... For \mathbf{TST}_3 it was done by [Grishin 73].

(Frege) natural numbers in NF

$$0^{(2)} := \{ x^{(1)} \mid \forall y^{(0)} \ y \notin x \}^{(2)} = \{ \Lambda \}.$$
$$S(n^{(2)}) := \{ x^{(1)} \cup \{ y^{(0)} \} \mid x \in n \land y \notin x \}^{(2)}.$$

Thus,

$$1 = \{x \cup \{y\} \mid x \in 0 \land y \notin x\} = \{\Lambda \cup \{y\} \mid y \notin \Lambda\} = \{\{y\}\}; (1)$$

$$2 = \{x \cup \{y\} \mid x \in 1 \land y \notin x\} \\
= \{x \cup \{y\} \mid \exists z \ (x = \{z\}) \land y \notin x\} \\
= \{x \cup \{y\} \mid \exists z \ (x = \{z\} \land y \neq z)\} \\
= \{\{z, y\} \mid z \neq y\};$$
(2)

$$3 = \{\{z, y, x\} \mid z \neq y \land y \neq x \land x \neq z\};$$

$$(3)$$

etc.

-n is "the set of all sets with exactly n elements".

We can also define

$$\mathbb{N}^{(3)} := \bigcap \{ X^{(3)} | 0^{(2)} \in X \land \forall n^{(2)} \, (n \in X \to S(n) \in X) \}^{(4)}.$$
(4)

From the Definition (4) we immediately have a

Theorem (Mathematical Induction) If $X \subseteq \mathbb{N}$, $0 \in X$ and $\forall n \ (n \in X \to S(n) \in X)$, then $X = \mathbb{N}$.

It looks like we've already implemented the whole of **PA** in **NF**, **N** being the "infinite" set. Is it true?? But how do we know that there are "infinitely many" distinct elements in V (to make all natural numbers not Λ)? Have we checked all Peano axioms?

Assume that V is "small", e.g. $V \in 2$. Then, by (2), $\exists z \exists y \ (z \neq y \land V = \{z, y\})$. But then, by (3), $3 = \{\{z, y, x\} \mid z \neq y \land y \neq x \land x \neq z\} = \Lambda!$

Also, we have

$$S(\Lambda) = \{ x \cup \{ y \} \mid x \in \Lambda \land y \notin x \} = \Lambda.$$

So, we have $\Lambda = 3 = 4 = 5 = \dots$, while $3 = \Lambda \neq 2$. This situation clearly breaks injectivity of S!

All of the following theorems either follow immediately from the Definitions, or are proved by Mathematical Induction. See Holmes [3, pp. 84–85].

Theorem	$0 \in \mathbb{N}$.
Theorem	If $n \in \mathbb{N}$, then $S(n) \in \mathbb{N}$.
Theorem	If $n \in \mathbb{N}$, then $S(n) \neq 0$.
Theorem $m \in \mathbb{N}$.	If $n \in \mathbb{N}$ and $n \neq 0$, then $n = S(m)$ for some
Theorem	If $\forall k \in \mathbb{N} \ k \neq \Lambda$, $n, m \in \mathbb{N}$ and $S(n) = S(m)$,
then $n = m$.	

Also, observe

Lemma A If $n = \Lambda$ for some $n \in \mathbb{N}$, then $V \in m$ for some $m \in \mathbb{N}$.

Proof. Assume that $n = \Lambda$. Since $0 = {\Lambda} \neq \Lambda$, by Mathematical Induction $\exists m \in \mathbb{N} \ (m \neq \Lambda \land S(m) = \Lambda)$. Fix such an m. Since $m \neq \Lambda$, $\exists x_0 x_0 \in m$. Fix such an x_0 . We also have

$$S(m) = \{x \cup \{y\} \mid x \in m \land y \notin x\} = \Lambda.$$

This only can be if $\forall y \ y \in x_0$. By Extensionality, then, $x_0 = V$, yielding $V \in m$.

Contrapositioning Lemma A, we obtain

Lemma B If $\forall m \in \mathbb{N} \ V \notin m$, then $\forall n \in \mathbb{N} \ n \neq \Lambda$.

Thus, in order to obtain a faithful representation of **PA** in **NF**, it remains to prove $\forall m \in \mathbb{N} \lor \notin m$ (" $\lor \notin \operatorname{Fin}$ " in **NF** terminology). In the remainder we will do it by showing that V cannot be well-ordered. Wiener-Kuratowski ordered pair is defined in the standard way:

$$\langle x, y \rangle^{(2)} := \{ \{ x^{(0)} \}, \{ x^{(0)}, y^{(0)} \} \},\$$

as well as *relations*, *functions*, etc.

Also, "X is a well-ordering" is defined as usual, by a stratified formula WO(X):

X is a set of ordered pairs $\wedge \operatorname{LO}(X) \wedge \forall Y \subset \operatorname{dom}(X)$ $(Y \neq \Lambda \rightarrow \exists y \in Y \forall x \in Y \langle y, x \rangle \in X).$

Ordinal is a set of well-orderings s.t. btw domains of any two of them there is an order-preserving bijection. *Ordinal arithmetic* is developed in the standard way.

There is a set Ω of all well-orderings, ordered by \leq , which is also a w.o. So, there is the greatest ordinal. (Burali-Forti paradox is avoided due to the stratification problems.)

Cardinal is an equivalence class under equinumerosity (expressed by bijections). Elementary cardinal arithmetic can be developed as usual (avoiding AC).

 $WO^*(X, Y) :\Leftrightarrow WO(Y) \land dom(Y) = X.$

Provable by Math. Induction:

Theorem $\forall n \in \mathbb{N} \forall x \in n \exists X \operatorname{WO}^*(x, X).$

BIG Theorem [Specker 53] $\neg \exists X WO^*(V, X).$

Corollary 1 $\forall n \in \mathbb{N} \ V \notin n; \forall n \in \mathbb{N} \ n \neq \Lambda.$

Corollary 2 PA can be faithfully embedded in **NF**.

Corollary 3 TST+Inf and Z^{Δ_0} can be faithfully embedded in NF.

Proof (Solovay). We have to derive a contradiction in " $\mathbf{NF} + \mathbf{V}$ can be well-ordered". By the Theorem 2.3, we will derive a contradiction in " $\mathbf{TNTA} + \mathbf{V}_1$ can be well-ordered".

Very briefly: in the context of **TNT**, with its facts

$$\mathcal{P}(\mathbf{V}_i) = \mathbf{V}_{i+1}$$

and

$$\|\mathbf{V}_{i+1}\| = 2^{\|\mathbf{V}_i\|},$$

the assumption " V_1 can be well-ordered" contradicts Amb.

Solovay exhibits the proof in the context of \mathbf{ZFC} , to better communicate the main construction. In the end, everything should be done inside Type Theory (which can be done, is a lot of technical details, and was done so by [Specker 53] (inside \mathbf{NF})).

As usual, *cardinal* means the least ordinal of that cardinality.

Define a function G (a proper class) which maps the class **OR** of ordinals into the class of cardinals:

1) G(0) = 0;

2) $G(\alpha + 1) = 2^{G(\alpha)}$ (cardinal exponentiation);

3) if λ is a limit ordinal, then $G(\lambda)$ is $\sup\{G(\alpha) \mid \alpha < \lambda\}$.

Thus G restricted to the finite ordinals is the usual "stack of twos" function. And $G(\omega + \alpha) = \beth_{\alpha}$.

To each cardinal κ (which could be finite or infinite), we are going to assign the Specker invariant $\text{Sp}(\kappa)$ which will be an integer in the set $\{0, 1, 2\}$.

Let then κ be a cardinal. Let λ be the least ordinal such that $G(\lambda) \geq \kappa$. Write $\lambda = \lambda_1 + n$ where λ_1 is a limit ordinal and $n \in \omega$. Then $\operatorname{Sp}(\kappa)$ is the residue of $n \mod 3$.

The key fact is the following:

Proposition Let κ be a cardinal. Let $\kappa_1 = 2^{\kappa}$ and let $\kappa_2 = 2^{\kappa_1}$. Then $\operatorname{Sp}(\kappa_2)$ is unequal to $\operatorname{Sp}(\kappa)$.

/- Let λ be least such that $G(\lambda) \geq \kappa$. So $G(\lambda + 1) \geq \kappa_1$ and $G(\lambda + 2) \geq \kappa_2$. We claim that $G(\lambda) < \kappa_2$. It follows that the least ordinal, λ_2 , such that $G(\lambda_2) \geq \kappa_2$ is either $\lambda + 1$ or $\lambda + 2$ from which the proposition follows.

In proving our claim there are three cases to consider:

Case 1: $\lambda = 0$. Then $G(\lambda) = 0 = \kappa < \kappa_2$.

Case 2: λ is limit. From the way G is defined at limits and $\forall \alpha < \lambda G(\alpha) < \kappa, G(\lambda) \leq \kappa$. So $G(\lambda) = \kappa < \kappa_2$.

Case 3: $\lambda = \beta + 1$ for some β . Then $G(\beta) < \kappa$. So $G(\lambda) \le \kappa_1 < \kappa_2$.

Compressing the definition into Type Theory:

It is easy to find a sentence of the language of Type Theory that expresses "Sp($||V_0||$) = j" (where $j \in \{0, 1, 2\}$). The amount of choice we need is at most "V₁ is well-orderable".

Specker's result that \mathbf{AC} contradicts "typical ambiguity" now follows immediately from the proposition. Namely, in $\mathbf{TNT} + V_1$ is well-orderable" we have derived the sentence

$$\neg \left(\operatorname{Sp}(\|V_0\|) = 0_0 \leftrightarrow \operatorname{Sp}(\|V_2\|) = 0_2 \right),$$

 $contradicting \ \mathbf{Amb}.$

... As a result of all this, \mathbf{PA} can be embedded in \mathbf{NF} ...

Question (asked by T. Forster, R. Holmes, M. Rathjen, ...) Specker's proof very essentially uses classical logic. Does
INF derive Infinity? Could Consis(INF) be easy to prove? – Unknown.

References

- T. Forster. Set Theory with a Universal Set, second edition. Clarendon Press, Oxford, 1995
- [2] R. Jensen. On the consistency of a slight(?) modification of Quine's NF. Synthese 19, pp. 250–263, 1969
- [3] R. Holmes. Elementary Set Theory with a Universal Set, vol. 10 of the Cahiers du Centre de logique, Academia, Louvain-la-Neuve (Belgium), 242 p., 1998
- [4] R. Solovay. Email message of 24.04.2008
- [5] E. Specker. The axiom of choice in Quine's new foundations for mathematical logic. Proceedings of the National Academy of Sciences of the USA 39, pp. 972–975, 1953
- [6] E. Specker. Typical ambiguity. In: E. Nagel (ed.), Logic, methodology and philosophy of science, Stanford University Press, pp. 116–123, 1962