Consistency of Strictly Impredicative NF

and a little more...

Sergei Tupailo
Centro de Matemática e Aplicações Fundamentais
Universidade de Lisboa
sergei@cs.ioc.ee

Tallinn, January 26, 2012

Exposition of the paper
S. Tupailo. Consistency of Strictly Impredicative NF and a little more... Journal of Symbolic Logic 75(4), 1326-1338, 2010
$\mathcal{L}_{\in}:=\{=, \in\}$.
Extensionality is an axiom

$$
\text { Ext : } \quad \forall x \forall y(\forall z(z \in x \leftrightarrow z \in y) \rightarrow x=y) .
$$

Definition 1 Stratification of a formula φ is an assignment of natural numbers (type indices) to variables (both free and bound) in φ s.t. for atomic subformulas of φ only the following variants are allowed:
(a) $x^{i}=y^{i}$;
(b) $x^{i} \in y^{i+1}$.

A formula φ is stratified iff there exists a stratification of φ.
Equivalently, a formula is stratified iff it can be obtained from a formula of Simple Type Theory by erasing type indices (and renaming variables if necessary).

Examples. The formula $x \in y \wedge y \in z$ is stratified, but the formula $x \in y \wedge y \in x$ is not.
Stratified Comprehension is an axiom scheme

$$
\text { SCA: } \quad \exists y \forall x(x \in y \leftrightarrow \varphi[x]),
$$

for every stratified formula φ with y not free in φ.

$$
\text { NF }:=\text { SCA }+ \text { Ext. }
$$

V does exist:

$$
\mathbf{V}:=\{x \mid x=x\} .
$$

So, $\mathbf{V} \in \mathbf{V}, \mathbf{V}=\mathcal{P}(\mathbf{V})$, etc. Foundation fails, Cantor's Theorem fails, as well as many other ZFC theorems, too.

Known facts:

- $\operatorname{Consis}(\mathbf{N F}+\ldots) \rightarrow \operatorname{Consis}(\mathbf{Z F}+\ldots) ;$
- NF $\vdash \neg \mathrm{AC}$;
- NF \vdash Inf;
- PA $\vdash \operatorname{Consis}\left(\mathrm{NF}_{3}\right)$;
- $\mathrm{NF}=\mathrm{NF}_{4}$;
- ...

Main unknown question (since 1937):

- $\operatorname{Consis}(\mathbf{Z F}+\ldots) \rightarrow \operatorname{Consis}(\mathbf{N F})$?
[2] M. Crabbé. On the consistency of an impredicative subsystem of Quine's NF. Journal of Symbolic Logic 47, pp. 131-136, 1982.

Definition 2 (Crabbé) An instance of Stratified Comprehension

$$
\begin{equation*}
\text { SCA : } \quad \exists y \forall x(x \in y \leftrightarrow \varphi[x]), \tag{1}
\end{equation*}
$$

is predicative iff there is a stratification of (1) s.t. the indices of bound variables in φ are $<\operatorname{type}(y)$, and the indices of free variables in φ are $\leq \operatorname{type}(y)$.

NFP is a subsystem of NF where SCA is restricted to predicative instances. NFI ("mildly impredicative") is an extension of NFP which allows bound variables in φ of types $\leq \operatorname{type}(y)$.

Theorem 3 ([Crabbé 82]) Both NFP and NFI are consistent, where in addition

$$
\begin{gathered}
|\mathbf{N F P}|<|\mathbf{E A}|, \\
\left|\mathbf{P A}_{\mathbf{2}}\right| \leq|\mathbf{N F I}|<\left|\mathbf{P A}_{\mathbf{3}}\right| .
\end{gathered}
$$

Two kinds of proofs: model-theoretic (countably saturated models) and proof-theoretic (cut-elimination).

Theorem 4 ([Holmes 99])

$$
|\mathbf{N F I}|=\left|\mathbf{P A}_{2}\right| .
$$

Consider the Union axiom:

$$
\begin{equation*}
\mathbf{U}: \quad \forall z \exists y \forall x(x \in y \leftrightarrow \exists v(v \in z \wedge x \in v)) . \tag{2}
\end{equation*}
$$

Note that \mathbf{U} is in NF, but not in NFI:

$$
\forall z^{2} \exists y^{1} \forall x^{0}\left(x \in y \leftrightarrow \exists v^{1}(v \in z \wedge x \in v)\right) .
$$

Theorem 5 ([Crabbé 82])
$\mathrm{NFP}+\mathrm{U}=\mathrm{NFI}+\mathbf{U}=\mathbf{N F}$.

Definition 6 (S.T.) An instance of Stratified Comprehension

$$
\text { SCA: } \quad \exists y \forall x(x \in y \leftrightarrow \varphi[x]),
$$

is strictly impredicative iff there is a stratification of it s.t. the indices of all variables in φ are $\geq \operatorname{type}(y)-1$.

Let NFSI denote a subsystem of NF where SCA is restricted to strictly impredicative instances. Then:

Theorem 7 (S.T., 08) NFSI (and a little more, e.g. existence of Frege natural numbers) is consistent, too.

The proof uses a bit of Model Theory, and a lot of Set Theory (forcing).

Theorem 8 ([Specker 62])

1. NF is consistent iff there is a model of TNT /TST is fine] with a type-shifting automorphism [=: tsau] σ.
2. NF is equiconsistent with the Theory of Types, TNTA [TSTA is fine] with the Ambiguity scheme, Amb,

$$
\varphi \leftrightarrow \varphi^{+},
$$

for all sentences φ. $\left[\varphi^{+}\right.$is the result of raising all type indices in φ by 1.]

Proof. See [6].

Specker's proof generalizes immediately to subsystems of NF where SCA is restricted. For NFSI, an equivalent Type Theory is Ext plus Amb plus all instances of

$$
\exists y^{i+1} \forall x^{i}(x \in y \leftrightarrow \varphi[x]),
$$

where all indices in φ are $\geq i$.

From the outset, we assume consistency of ZFC. Let $\langle M, \in\rangle$ be an Ehrenfeucht-Mostowski model of $\mathbf{Z F}+\mathbf{V}=\mathbf{L}$, i.e. a countable model with a non-trivial external \in-automorphism σ. W.l.o.g.w.m.a. that σ moves up at least one regular cardinal κ (in the sense of M):
In M, sets can be enumerated by ordinals, i.e. there is a formula $\varphi(x, \alpha)$ s.t. the sentence " φ gives a (class) bijection between \mathbf{V} and $\mathbf{O n}$ " is true in M. By Ehrenfeucht-Mostowski, $\sigma(x) \neq x$ for some $x \in M$. Since we have a definable bijection, $\sigma(\alpha) \neq \alpha$ for some ordinal $\alpha \in M$. If $\alpha<\sigma(\alpha)$, fine; if not, take σ^{-1}.
In order to move up a cardinal, use a definable bijection $\alpha \mapsto \aleph_{\alpha}$.
In order to move up a regular cardinal, use a definable injection $\alpha \mapsto \aleph_{\alpha+1}$.
By default, we will use forcing machinery (original results due to P. Cohen and R. Solovay) as laid out in
[5] K. Kunen. Set Theory. An Introduction to Independence Proofs. Elsevier, 1980.

Given a finite set S of TSTA-axioms, let $n \geq 2$ be such that all indices i in S fall under $0 \leq i \leq n$. For $0 \leq i<n$, let $\mathbb{P}_{i}:=\operatorname{Fn}\left(\sigma^{i+1}(\kappa), 2, \sigma^{i}(\kappa)\right)$ (Cohen's poset), where
$\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right):=\left\{p| | p \mid<\kappa_{0} \wedge p\right.$ is a function $\left.\wedge \operatorname{dom}(p) \subset \kappa_{1} \wedge \operatorname{ran}(p) \subset 2\right\}$
(see VII 6.1), and $\mathbb{P}:=\mathbb{P}^{n}:=\prod_{0 \leq i<n} \mathbb{P}_{i}$.
Note first that σ acts as a bijection between $\sigma^{i}(\kappa)$ and $\sigma^{i+1}(\kappa)$.
Let G_{0} be \mathbb{P}_{0}-generic over M. Then

$$
M\left[G_{0}\right] \models \exists h_{0} h_{0}: \sigma(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}(\kappa) .
$$

Definition 9

$$
\mathcal{P}_{<\omega}(b):=\{a \subset b| | a \mid<\omega\} .
$$

Let $g_{0} \in M$ be such that

$$
g_{0}: \kappa \stackrel{\text { bi }}{\mapsto} \mathcal{P}_{<\omega}(\kappa) .
$$

Defining $g_{i}:=\sigma^{i}\left(g_{0}\right)$, we get

$$
\begin{equation*}
g_{i}: \sigma^{i}(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}_{<\omega}\left(\sigma^{i}(\kappa)\right) . \tag{4}
\end{equation*}
$$

Lemma 10 Given $M\left[G_{0}\right] \ni h_{0}: \sigma(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}(\kappa)$ and $M \ni g_{0}$: $\kappa \stackrel{\text { bi }}{\mapsto} \mathcal{P}_{<\omega}(\kappa)$, there exists a bijection $M\left[G_{0}\right] \ni f_{0}: \sigma(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}(\kappa)$ satisfying $f_{0} \upharpoonright \kappa=g_{0}$.

Proof. Work in $M\left[G_{0}\right]$. Since $|\mathcal{P}(\kappa)|=\sigma(\kappa),\left|\mathcal{P}_{<\omega}(\kappa)\right|=\kappa$ and $\mathcal{P}(\kappa)=$ $\mathcal{P}_{<\omega}(\kappa) \cup \mathcal{P}_{\geq \omega}(\kappa)$, we must have $\left|\mathcal{P}_{\geq \omega}(\kappa)\right|=\sigma(\kappa)$, i.e. there is a bijection h_{1} between $\sigma(\kappa)$ and $\mathcal{P}_{\geq \omega}(\kappa)$. Now, for $a \in \mathcal{P}(\kappa)$, define $f_{0}^{\prime}(a)$ by

$$
f_{0}^{\prime}(a):= \begin{cases}g_{0}^{-1}(a) & \text { if } a \in \mathcal{P}_{\lll}(\kappa), \tag{5}\\ \kappa+h_{1}^{-1}(a) & \text { otherwise. } .\end{cases}
$$

We claim that f_{0}^{\prime} is a special bijection between $\mathcal{P}(\kappa)$ and $\sigma(\kappa)$:
(i) $f_{0}^{\prime}(a)<\sigma(\kappa)$ is seen from (5) and the fact that $\sigma(\kappa)$ is an additive principal number, i.e. an ordinal closed under ordinal sum;
(ii) f_{0}^{\prime} is onto: if $\alpha<\kappa$, then by the first line of (5) $f_{0}^{\prime}(a)=g_{0}^{-1}(a)=\alpha$ for some $a \in \mathcal{P}_{<\omega}(\kappa)$; otherwise, $\alpha=\kappa+\beta$ for some $\beta<\sigma(\kappa)$, and then $f_{0}^{\prime}(a)=\kappa+h_{1}^{-1}(a)$ for some $a \in \mathcal{P}_{\geq \omega}(\kappa)$;
(iii) f_{0}^{\prime} is $1-1$ follows from (5) and the fact that both g_{0}^{-1} and h_{1}^{-1} are 1-1;
(iv) further, from the first line of (5) we have $f_{0}^{\prime} \mathbb{P}_{<\omega}(\kappa)=g_{0}^{-1}$.

From (i-iv) above, f_{0} can be taken as the inverse of f_{0}^{\prime}.

Choose $f_{0}: \sigma(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}(\kappa)$ as guaranteed by Lemma 10.

Let $\tau \in M^{\mathbb{P}_{0}}$ be a name for f_{0}, so that

$$
\begin{equation*}
M\left[G_{0}\right] \models \tau_{G_{0}}: \sigma(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}(\kappa) . \tag{6}
\end{equation*}
$$

By the Forcing Theorem VII 3.6

$$
\begin{equation*}
\exists p \in G_{0}\left(p \Vdash_{\mathbb{P}_{0}}^{*} \tau:(\sigma(\kappa))_{\mathbb{P}_{0}} \stackrel{\text { bi }}{\mapsto} \mathcal{P}\left((\kappa)_{\mathbb{P}_{0}}^{\sim}\right)\right)^{M} . \tag{7}
\end{equation*}
$$

Taking $p \in G_{0}$ from (7) and applying σ^{i} to this formula, we obtain

$$
\begin{equation*}
\left(\sigma^{i}(p) \Vdash_{\mathbb{P}_{i}}^{*} \sigma^{i}(\tau):\left(\sigma^{i+1}(\kappa)\right)_{\mathbb{P}_{i}}^{\sim} \stackrel{\text { bi }}{\stackrel{ }{\mapsto}} \mathcal{P}\left(\left(\sigma^{i}(\kappa)\right)_{\mathbb{P}_{i}}^{-}\right)\right)^{M} \tag{8}
\end{equation*}
$$

Define $G_{i+1}:=\sigma^{\prime \prime} G_{i}, 0 \leq i<n-1$, and $G:=\prod_{0 \leq i<n} G_{i}$. Then each G_{i} contains $\sigma^{i}(p)$ and is \mathbb{P}_{i}-generic over M - see Lemma 11 . It's easily verified that G is a filter on $\mathbb{P}=\prod_{0 \leq i<n} \mathbb{P}_{i}$, but it was more of an issue whether G is generic. Also observe that $\sigma^{i}(\tau) \in M^{\mathbb{P}_{i}}$, for each i.

Lemma 11 (See pp. 219-220)
\mathbb{G} is \mathbb{P}-generic over $M \Longleftrightarrow \sigma^{\prime \prime} \mathbb{G}$ is $\sigma(\mathbb{P})$-generic over M.
Proof. $" \mathbb{G}$ is a filter in $\mathbb{P} "$ being equivalent to $" \sigma^{\prime \prime} \mathbb{G}$ is a filter in $\sigma(\mathbb{P})$ " follows from σ being an isomorphism between \mathbb{P} and $\sigma(\mathbb{P})$. For the "generic" part, it follows from " D is dense in \mathbb{P} " \Leftrightarrow $" \sigma^{\prime \prime} D$ is dense in $\sigma(\mathbb{P})$ " (σ isomorphism) and $\sigma^{\prime \prime} D=\sigma(D)(\sigma$ ϵ-automorphism of M).

Starting with the complete embeddings $\mathbb{P}_{i} \mapsto \prod_{0 \leq i<n} \mathbb{P}_{i}$, define natural embeddings $\imath_{i}: M^{\mathbb{P}_{i}} \mapsto M^{\mathbb{P}}$ as in VII 7.12.

Lemma 12 For each $i, 0 \leq i<n, M\left[G_{i}\right]$ is a transitive submodel of $M[G]$.

Proof. Let $x \in M\left[G_{i}\right]$. Then $x=\rho_{G_{i}}$ for $\rho \in M^{\mathbb{P}_{i}}$. Then $\imath_{i}(\rho) \in M^{\mathbb{P}}$ and $x=\rho_{G_{i}}=\left(\imath_{i}(\rho)\right)_{G}$ by VII 7.13(a), so that $x \in M[G]$.
Now, assume $x=\rho_{G_{i}}=\left(\imath_{i}(\rho)\right)_{G} \in M\left[G_{i}\right], y=\tau_{G} \in M[G]$, $y \in_{M[G]} x$. We need to show $y \in M\left[G_{i}\right]$ and $y \in_{M\left[G_{i}\right]} x$. We compute:

$$
\begin{aligned}
& y \in_{M[G]} x \Longleftrightarrow \tau_{G} \in_{M[G]}\left(v_{i}(\rho)\right)_{G} \\
& \Longleftrightarrow \exists p \in G\left(\langle\tau, p\rangle \in \imath_{i}(\rho)\right) \\
& \stackrel{\mathrm{VIIT.12}}{\Longrightarrow} \exists p \in G \exists p_{i} \in G_{i} \exists \delta \in M^{\mathbb{P}_{i}}\left(\left\langle\delta, p_{i}\right\rangle \in \rho \wedge \tau=\imath_{i}(\delta)\right. \\
& \left.\wedge p=\left\langle\emptyset, \ldots, p_{i}, \ldots, \emptyset\right\rangle\right) \\
& \Longrightarrow y=\delta_{G_{i}} \in M\left[G_{i}\right] \wedge \delta_{G_{i}} \in_{M\left[G_{i}\right]} \rho_{G_{i}} .
\end{aligned}
$$

See Picture 1.
Interpret variables x^{i} of $\mathcal{L}_{\mathbf{T S T}^{n}}$ as $x \in \sigma^{i}(\kappa)$, and interpret $x^{i} \in^{i}$ y^{i+1} as $x \in\left(\sigma^{i}(\tau)\right)_{G_{i}}(y)$. First note that from (8) we have

$$
\begin{equation*}
M\left[G_{i}\right] \models\left(\sigma^{i}(\tau)\right)_{G_{i}}: \sigma^{i+1}(\kappa) \stackrel{\text { bi }}{\mapsto} \mathcal{P}\left(\sigma^{i}(\kappa)\right), \tag{9}
\end{equation*}
$$

for each $0 \leq i<n$. For brevity, we denote

$$
f_{i}:=\left(\sigma^{i}(\tau)\right)_{G_{i}} \in M\left[G_{i}\right] \stackrel{\text { L. } 12}{\subset} M[G] .
$$

From Lemma 10, we have

$$
\begin{equation*}
f_{i} \mid \sigma^{i}(\kappa)=g_{i} . \tag{10}
\end{equation*}
$$

We want to show that, under this interpretation, each axiom of TSTA n is true in $M[G]$.

Let's check Extensionality. We don't claim (yet) that $M[G] \models$ ZFC, but at least we have

Lemma 13

$$
M[G] \models \text { Extensionality. }
$$

Proof. Follows from VII 2.14.
Remark. If G happened to be generic, then $M[G]$ would be a model of ZFC.
We have to model

$$
\forall x^{i+1} \forall y^{i+1}\left(\forall z^{i}\left(z \in^{i} x \leftrightarrow z \in^{i} y\right) \rightarrow x=y\right),
$$

i.e. to prove, in $M[G]$,
$\forall x \in \sigma^{i+1}(\kappa) \forall y \in \sigma^{i+1}(\kappa)\left(\forall z \in \sigma^{i}(\kappa)\left(z \in f_{i}(x) \leftrightarrow z \in f_{i}(y)\right) \rightarrow x=y\right)$.
Fix $x, y \in \sigma^{i+1}(\kappa)$, and assume

$$
\begin{equation*}
\forall z \in \sigma^{i}(\kappa)\left(z \in f_{i}(x) \leftrightarrow z \in f_{i}(y)\right) . \tag{12}
\end{equation*}
$$

Since $\left(f_{i}(x), f_{i}(y) \in \mathcal{P}\left(\sigma^{i}(\kappa)\right)\right)^{M\left[G_{i}\right]}$, we have $\left(f_{i}(x), f_{i}(y) \subset \sigma^{i}(\kappa)\right)^{M\left[G_{i}\right]}$, so by absoluteness $f_{i}(x), f_{i}(y) \subset \sigma^{i}(\kappa)$. Then, (12) can be reduced to

$$
\begin{equation*}
\forall z\left(z \in f_{i}(x) \leftrightarrow z \in f_{i}(y)\right), \tag{13}
\end{equation*}
$$

which implies

$$
f_{i}(x)=f_{i}(y)
$$

by Extensionality of $M[G]$. Now, since the functions f_{i} are 1-1 in $M\left[G_{i}\right]$ (see (9)), by absoluteness they are 1-1 in $M[G]$, so we can conclude $x=y$.

For Ambiguity, it's enough to model

$$
\forall x^{i} \forall y^{i+1}\left(x \in^{i} y \leftrightarrow \sigma(x) \in^{i+1} \sigma(y)\right)
$$

i.e. to have, in $M[G]$,

$$
\begin{equation*}
\forall x \in \sigma^{i}(\kappa) \forall y \in \sigma^{i+1}(\kappa)\left(x \in f_{i}(y) \leftrightarrow \sigma(x) \in f_{i+1}(\sigma(y))\right) \tag{14}
\end{equation*}
$$

$0 \leq i<n-1$.

Lemma 14 For each $i, 0 \leq i<n-1$, there is an \in-isomorphism σ_{i} of $M\left[G_{i}\right]$ onto $M\left[G_{i+1}\right]$ extending $\sigma \upharpoonright M$; additionally, $\sigma_{i}\left(f_{i}\right)=$ f_{i+1}.

Proof. See Lemma 15 - Corollary 19.
Coming back to (14), fix $x \in \sigma^{i}(\kappa), y \in \sigma^{i+1}(\kappa)$. Assume $M[G] \models x \in f_{i}(y)$ (the opposite direction being analogous). Since the formula " $x \in f_{i}(y) "$ is Δ_{0}, by absoluteness

$$
M\left[G_{i}\right] \models x \in f_{i}(y)
$$

By Lemma 14,

$$
M\left[G_{i+1}\right] \models \sigma(x) \in f_{i+1}(\sigma(y))
$$

By absoluteness again, $M[G] \models \sigma(x) \in f_{i+1}(\sigma(y))$.

Lemma 15 (See p. 222) $\sigma: M^{\mathbb{P}} \stackrel{\text { bi }}{\mapsto} M^{\sigma(\mathbb{P})}$ and σ is an $\in-$ isomorphism between $\left\langle M^{\mathbb{P}} \times \mathbb{P}, M^{\mathbb{P}}\right\rangle$ and $\left\langle M^{\sigma(\mathbb{P})} \times \sigma(\mathbb{P}), M^{\sigma(\mathbb{P})}\right\rangle$ in the sense that for every $\mu, \tau \in M^{\mathbb{P}}$ and $p \in \mathbb{P}$,

$$
\langle\mu, p\rangle \in \tau \leftrightarrow\langle\sigma(\mu), \sigma(p)\rangle \in \sigma(\tau) .
$$

Proof. $\sigma: M^{\mathbb{P}} \stackrel{\text { bi }}{\mapsto} M^{\sigma(\mathbb{P})}$ follows from the fact that $" \tau \in M^{\mathbb{P}}$ " is a formula of set theory with parameters τ, \mathbb{P}. \in is preserved since σ is an \in-automorphism.

Definition 16

$$
\Sigma=\left\{\left\langle\tau_{\mathbb{G}},(\sigma(\tau))_{\sigma^{\prime \prime} \mathbb{G}}\right\rangle \mid \tau \in M^{\mathbb{P}}\right\} .
$$

Lemma 17Σ is an \in-isomorphism between $M[\mathbb{G}]$ and $M\left[\sigma^{\prime \prime} \mathbb{G}\right]$.
Proof (sketch). We need to check four things: (a) Σ is a function; (b) Σ is onto; (c) Σ is $1-1$; (d) Σ commutes with ϵ. (b) follows from the fact that $\sigma: M^{\mathbb{P}} \mapsto M^{\sigma(\mathbb{P})}$ is onto, Lemma 15. (d): Let $\mu_{\mathbb{G}} \in \tau_{\mathbb{G}}$. Then $\exists p \in \mathbb{G}\langle\mu, p\rangle \in \tau$. Then $\sigma(p) \in \sigma^{\prime \prime} \mathbb{G}$ and $\langle\sigma(\mu), \sigma(p)\rangle \in \sigma(\tau)$ (Lemma 15). This means $(\sigma(\mu))_{\sigma^{\prime \prime} \mathbb{G}} \in(\sigma(\tau))_{\sigma^{\prime \prime} \mathbb{G}}$. (a) Let $\tau_{\mathbb{G}}=\tau_{\mathbb{G}}^{\prime}$. Then $\forall \mu \in$ $M^{\mathbb{P}}\left(\mu_{\mathbb{G}} \in \tau_{\mathbb{G}} \leftrightarrow \mu_{\mathbb{G}} \in \tau_{\mathbb{G}}^{\prime}\right)$. By (d) $\forall \mu \in M^{\mathbb{P}}\left((\sigma(\mu))_{\sigma^{\prime \prime}} \in\right.$ $\left.(\sigma(\tau))_{\sigma^{\prime \prime} \mathbb{G}} \leftrightarrow(\sigma(\mu))_{\sigma^{\prime \prime} \mathbb{G}} \in\left(\sigma\left(\tau^{\prime}\right)\right)_{\sigma^{\prime \prime} \mathbb{G}}\right)$. By Lemma 15 this implies $\forall \mu \in M^{\sigma(\mathbb{P})}\left(\mu_{\sigma^{\prime \prime}} \in(\sigma(\tau))_{\sigma^{\prime \prime} \mathbb{G}} \leftrightarrow \mu_{\sigma^{\prime \prime} \mathbb{G}} \in\left(\sigma\left(\tau^{\prime}\right)\right)_{\sigma^{\prime \prime} \mathbb{G}}\right)$, i.e. $(\sigma(\tau))_{\sigma^{\prime \prime} \mathbb{G}}=\left(\sigma\left(\tau^{\prime}\right)\right)_{\sigma^{\prime \prime} \mathbb{G}}$. (c) is analogous to (a): Σ^{-1} is a function.

Lemma 18 For every $x \in M,(x)_{\mathbb{P}}^{\sim}=(x)_{\sigma(\mathbb{P})}^{\check{(})}$ and $\Sigma(x)=$ $\sigma(x)$.

Proof. Since $1_{\mathbb{P}}=1_{\sigma(\mathbb{P})}=\emptyset,(x)_{\mathscr{P}}=(x)_{\sigma(\mathbb{P})}^{\check{(})}$ is proved by induction on x. By Definition 16,

$$
\Sigma(x)=\Sigma\left((\check{x})_{\mathbb{G}}\right) \stackrel{\text { Def. } 16}{=}(\sigma(\check{x}))_{\sigma^{\prime \prime}} \stackrel{\sigma \in \text {-auto }}{=}\left((\sigma(x))^{\check{\prime}}\right)_{i^{\prime \prime} \mathbb{G}}=\sigma(x) .
$$

Corollary 19

$$
\Sigma\lceil M=\sigma .
$$

For Comprehension, we want to model

$$
\forall x_{1}^{i_{1}} \ldots \forall x_{k}^{i_{k}} \exists y^{i+1} \forall x^{i}\left(x \in^{i} y \leftrightarrow \varphi\left(x, x_{1}, \ldots, x_{k}\right)\right) .
$$

This means to prove, in $M[G]$,

$$
\begin{align*}
& \forall x_{1} \in \sigma^{i_{1}}(\kappa) \ldots \forall x_{k} \in \sigma^{i_{k}}(\kappa) \exists y \in \sigma^{i+1}(\kappa) \forall x \in \sigma^{i}(\kappa) \\
& \quad\left(x \in f_{i}(y) \leftrightarrow \tilde{\varphi}\left(x, x_{1}, \ldots, x_{k}, \sigma^{\iota_{1}}(\kappa), \ldots, \sigma^{\iota \ell}(\kappa), f_{j_{1}}, \ldots, f_{j_{l}}\right)\right), \tag{15}
\end{align*}
$$

where $\tilde{\varphi}$ is a translation of φ by the rules above.
Here I have a problem. It's unlikely that $M[G]$ satisfies (15) for every φ. One trivial result is immediate however from what stands: Consis $\left(\mathbf{N F}_{2}\right)$. In that case in (15) $i=j_{1}=\ldots=j_{l}$, and the set

$$
\begin{equation*}
A:=\left\{x \in \sigma^{i}(\kappa) \mid \tilde{\varphi}\left(x, x_{1}, \ldots, x_{k}, \sigma^{\iota_{1}}(\kappa), \ldots, \sigma^{\iota_{\ell}}(\kappa), f_{j_{1}}, \ldots, f_{j_{l}}\right)\right\} \tag{16}
\end{equation*}
$$

is in $M\left[G_{i}\right]$ by Separation; thus, also having $A \subset \sigma^{i}(\kappa)$, y can be taken to be $f_{i}^{-1}(A)$.

In general, everything boils down to showing $A \in M\left[G_{i}\right]$, but if G is not generic, it's even not clear whether A exists as a set in $M[G]$.

Assume in addition that G is \mathbb{P}-generic over M. Let an instance

$$
\begin{equation*}
\forall x_{1} \ldots \forall x_{k} \exists y \forall x\left(x \in y \leftrightarrow \varphi\left(x, x_{1}, \ldots, x_{k}\right)\right) \tag{17}
\end{equation*}
$$

of Stratified Comprehension be strictly impredicative. In that case, under our interpretation, (17) is true in $M[G]$. Indeed, it's enough to check only the case $i=0$, for the general case follows then by Ambiguity. If $i=0$, then $A \in M[G]$ since $M[G] \models$ Separation, and actually $A \in M\left[G_{0}\right]$ by VII 6.14 (forcing above doesn't add subsets of smaller cardinals).

Can do more, even without assuming G being generic or an axiom strictly impredicative. For example, the axioms

$$
\begin{array}{ll}
\text { P7: } \forall u \exists v \forall x \forall y(\langle y, x\rangle \in u \longleftrightarrow\langle x, y\rangle \in v) & 4 \\
\text { P., } \sim \text { s.i. } \\
\text { P8: } \exists v \forall x(x \in v \longleftrightarrow \exists y(x=\{y\})) & 3
\end{array}
$$

can be pushed trough utilizing our careful choice of the initial bijection f_{0} :

(Frege natural numbers)

$\mathrm{P} 8 . k$ is an axiom
$\exists v \forall x\left(x \in v \longleftrightarrow \exists y_{1} \ldots \exists y_{k}\left(\bigwedge_{1 \leq \imath, j \leq k ; i \neq \jmath} y_{\imath} \neq y_{j} \wedge x=\left\{y_{1}, \ldots, y_{k}\right\}\right)\right)$.
((18) asserts existence of a Frege natural number $k \geq 1$. Note that (18) is predicative and not s.i. The reasoning below also works for $k=0$, when we understand Λ_{\emptyset} as T and \bigvee_{\emptyset} as \perp.)
That means that we must satisfy the following axiom of TSTA ${ }^{n}$:

$$
\begin{equation*}
\exists v^{i+2} \forall x^{i+1}\left(x \in v \longleftrightarrow \exists y_{1}^{i} \ldots \exists y_{k}^{i}\left(\bigwedge_{1 \leq \imath, j \leq k ; \imath \neq \jmath} y_{\imath} \neq y_{j} \wedge x=\left\{y_{1}, \ldots, y_{k}\right\}\right)\right) . \tag{19}
\end{equation*}
$$

(Our formula $\varphi\left[x^{i+1}\right]$ in this case is " $\exists y_{1}^{i} \ldots \exists y_{k}^{i}\left(\bigwedge_{1 \leq \imath, j \leq k ; \imath \neq \jmath} y_{\imath} \neq\right.$ $\left.y_{j} \wedge x^{i+1}=\left\{y_{1}, \ldots, y_{k}\right\}\right)^{\prime}$.)
Given that
$x^{i+1}=\left\{y_{1}^{i}, \ldots, y_{k}^{i}\right\} \Longleftrightarrow \bigwedge_{1 \leq \imath \leq k} y_{\imath}^{i} \in x^{i+1} \wedge \forall u^{i} \in x^{i+1} \bigvee_{1 \leq \imath \leq k} u=y_{\imath}^{i}$,
we see that the translation of (20), for $y_{1}, \ldots, y_{k} \in \sigma^{i}(\kappa), x \in$ $\sigma^{i+1}(\kappa)$, is

$$
\bigwedge_{1 \leq \imath \leq k} y_{\imath} \in f_{i}(x) \wedge \forall u \in \sigma^{i}(\kappa)\left(u \in f_{i}(x) \rightarrow \bigvee_{1 \leq \imath \leq k} u=y_{\imath}\right),
$$

i.e.

$$
\begin{equation*}
f_{i}(x)=\left\{y_{1}, \ldots, y_{k}\right\}, \tag{21}
\end{equation*}
$$

and in this case
$\tilde{\varphi}\left(x, f_{i}\right):=\exists y_{1} \in \sigma^{i}(\kappa) \ldots \exists y_{k} \in \sigma^{i}(\kappa)\left(\bigwedge_{1 \leq 1, j \leq k ; \imath \neq j} y_{\imath} \neq y_{\jmath} \wedge f_{i}(x)=\left\{y_{1}, \ldots, y_{k}\right\}\right)$.

According to p. 13, in order to verify P8.k under my interpretation, we must have

$$
A 8 . k:=\begin{gather*}
\left\{x \in \sigma^{i+1}(\kappa) \mid \exists y_{1} \in \sigma^{i}(\kappa) \ldots \exists y_{k} \in \sigma^{i}(\kappa)\right. \tag{22}\\
\left.\left(\bigwedge_{1 \leq \imath, j \leq k ; i \neq j} y_{\imath} \neq y_{j} \wedge f_{i}(x)=\left\{y_{1}, \ldots, y_{k}\right\}\right)\right\}
\end{gather*} \in M\left[G_{i+1}\right] .
$$

(Note that $A 8 . k \in M\left[G_{i}\right] \subset M[G]$ automatically, because $f_{i} \in$ $M\left[G_{i}\right]$ and $M\left[G_{i}\right]$ satisfies Separation, but what we actually need is $A 8 . k \in M\left[G_{i+1}\right]$.) Can we arrange for this?
What helps here is our special choice of f_{i} 's:
Claim 20 For $y_{1}, \ldots, y_{k} \in \sigma^{i}(\kappa), x \in \sigma^{i+1}(\kappa), f_{i}(x)=\left\{y_{1}, \ldots, y_{k}\right\}$ is equivalent to $x \in \sigma^{i}(\kappa) \wedge g_{i}(x)=\left\{y_{1}, \ldots, y_{k}\right\}$.

Proof. \Leftarrow : Immediate from (10).
$\Rightarrow:$ Let $a=\left\{y_{1}, \ldots, y_{k}\right\} \in \mathcal{P}_{<\omega}\left(\sigma^{i}(\kappa)\right)$. From (9), (4) and (10), $f_{i}^{-1}(b)=g_{i}^{-1}(b)$ for $b \in \mathcal{P}_{<\omega}\left(\sigma^{i}(\kappa)\right)\left(f_{i}^{-1}\right.$ enumerates $\mathcal{P}\left(\sigma^{i}(\kappa)\right)$ in a special regular way). From $f_{i}(x)=a$ we have $x=f_{i}^{-1}(a)=$ $g_{i}^{-1}(a) \in \sigma^{i}(\kappa)$ (see (4)), so we must have $x \in \sigma^{i}(\kappa) \wedge g_{i}(x)=a$.

Summarizing (see (20)-(21)), we have proved
Lemma 21 Under $y_{1}, \ldots, y_{k} \in \sigma^{i}(\kappa), x \in \sigma^{i+1}(\kappa),\left(x=\left\{y_{1}, \ldots, y_{k}\right\}\right)^{)}$ is equivalent to a Δ_{0} formula with parameters in M.

Coming back to P8.k, the formula $\varphi_{8 . k}\left[x^{i+1}\right]$ in this case is $" \exists y_{1}^{i} \ldots \exists y_{k}^{i}\left(\bigwedge_{1 \leq \imath,, \leq k ; \imath \neq \jmath} y_{\imath} \neq y_{\jmath} \wedge x^{i+1}=\left\{y_{1}, \ldots, y_{k}\right\}\right)$, and we must check

$$
\begin{aligned}
A 8 . k & :=\left\{x \in \sigma^{i+1}(\kappa) \mid \tilde{\varphi}_{8 . k}[x]\right\} \\
& =\left\{x \in \sigma^{i+1}(\kappa) \mid \exists y_{1} \in \sigma^{i}(\kappa) \ldots \exists y_{k} \in \sigma^{i}(\kappa)\right. \\
& \left.\left(\bigwedge y_{\imath} \neq y_{j} \wedge\left(x=\left\{y_{1}, \ldots, y_{k}\right\}\right)^{\sim}\right)\right\}
\end{aligned}
$$

being in $M\left[G_{i+1}\right]$. Lemma 21 actually gives us more: $A 8 . k \in$ $M \subset M\left[G_{i+1}\right]$.

$$
\left(G=\prod_{0 \leq i<n} G_{i} \text { is generic over } M\right)
$$

Lemma 22 (see VII Exercise B5) Assume $A \in M, f: A \mapsto$ M and $f \in M[\mathbb{G}]$. Then there is a $B \in M$ such that $f: A \mapsto B$.

Proof. Let $f=\tau_{\mathbb{G}}$. We have

$$
\forall x \in A \exists!b \in M\langle x, b\rangle \in f
$$

this yields

$$
\forall x \in A \exists!b \in M\left((\operatorname{op}(\check{x}, \check{b}))_{\mathbb{G}} \in \tau_{\mathbb{G}}\right)^{M[\mathbb{G}]} .
$$

By VII 3.6

$$
\forall x \in A \exists!b \in M \exists p \in \mathbb{G}\left(p \Vdash^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau\right)^{M},
$$

implying

$$
\forall x \in A \exists!b \in M \exists p \in \mathbb{P}\left(p \| \vdash^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau\right)^{M},
$$

i.e.

$$
M \models \forall x \in A \exists!b \exists p \in \mathbb{P} p \Vdash^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau .
$$

By Replacement (in M)

$$
M \models \exists B=\left\{b \mid \exists x \in A \exists p \in \mathbb{P} p \| \vdash^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau\right\}
$$

We need to show $f: A \mapsto B$. Let $x \in A$ and $b \in M$ be such that $(\langle x, b\rangle \in f)^{M[\mathbb{G}]}$. Then $\left((\operatorname{op}(\check{x}, \check{b}))_{\mathbb{G}} \in \tau_{\mathbb{G}}\right)^{M[\mathbb{G}]}$, and, by VII 3.6, $\exists p \in \mathbb{P}\left(p \| \vdash^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau\right)^{M}$, i.e. $b \in B$.

Corollary 23 (see VII Exercise B6) Assume $\mathbb{P} \in M$ and α is an ordinal of M. Then $(1) \Rightarrow(2)$, where
(1) whenever $B \in M,{ }^{\alpha} B \cap M={ }^{\alpha} B \cap M[\mathbb{G}]$;
(2) ${ }^{\alpha} M \cap M={ }^{\alpha} M \cap M[\mathbb{G}]$.

Proof. Assume (1). ${ }^{\alpha} M \cap M \subset{ }^{\alpha} M \cap M[\mathbb{G}]$ is obvious, so we need to show the converse. If $f \in{ }^{\alpha} M \cap M[\mathbb{G}]$, then by Lemma 22 there is a $B \in M$ s.t. $f \in{ }^{\alpha} B \cap M[\mathbb{G}]$. By (1) we have $f \in{ }^{\alpha} B \cap M$, and, by transitivity of $M, f \in{ }^{\alpha} M \cap M$.

VII 6.12. Definition. A poset \mathbb{P} is λ-closed iff whenever $\gamma<\lambda$ and $\left\{p_{\xi} \mid \xi<\gamma\right\}$ is a decreasing sequence of elements of \mathbb{P} (i.e., $\xi<\eta \rightarrow p_{\xi} \geq p_{\eta}$), then

$$
\exists q \in \mathbb{P} \forall \xi<\gamma q \leq p_{\xi} .
$$

Lemma 24 Assume \mathbb{P} is λ-closed and \mathbb{G} is \mathbb{P}-generic over M. Assume $y \in M[\mathbb{G}], y \subset M,(|y|<\lambda)^{M[\mathbb{G}]}$. Then $y \in M$.

Proof. We have an $\alpha<\lambda$ and an $f: \alpha \stackrel{\text { bi }}{\mapsto} y$ with $f \in M[\mathbb{G}]$. By VII 6.14, (1) of Corollary 23 is satisfied; consequently, so is (2). $f \in{ }^{\alpha} M$, so by (2) $f \in M$, and thus $y=\operatorname{ran}(f) \in M$.

Lemma 25 Assume \mathbb{P} is λ-closed and \mathbb{G} is \mathbb{P}-generic over M. Assume $\kappa_{0}<\kappa_{1}$ and $\kappa_{0} \leq \lambda$. Then $\left(\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M}=\left(\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M[\mathbb{G}]}$.

Proof. $\left(\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M} \subset\left(\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M[\mathbb{G}]}$ follows by absoluteness and $M \subset M[\mathbb{G}]$, so we need to show the converse. Let $p \in M[\mathbb{G}]$ and $\left(p \in \operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M[\mathbb{G}]} . \forall z \in p \exists x \in \kappa_{1} \exists i \in 2 z=$ $\langle x, i\rangle$, so $p \subset M$. We have $\left(|p|<\kappa_{0} \leq \lambda\right)^{M[\mathbb{G}]}$, so by Lemma 24 $p \in M$. A bijection $f \in M[\mathbb{G}]$ between some $\alpha<\kappa_{0}$ and p is actually in M by VII 6.14 , so that $\left(p \in \operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)\right)^{M}$.

Lemma 26 Assume \mathbb{P} is λ-closed and \mathbb{G} is \mathbb{P}-generic over M. Assume $\kappa_{0}<\kappa_{1}, \kappa_{0}<\lambda$, and \mathbb{G}_{0} is $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$-generic over M. Then \mathbb{G}_{0} is $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$-generic over $M[\mathbb{G}]$.

Proof. By VII 6.10, $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$ has the $\left(2^{<\kappa_{0}}\right)^{+}$-c.c. In $M[\mathbb{G}]$, $2^{<\kappa_{0}}=\kappa_{0}$, since $M \models \mathbf{G C H}$ and by VII $6.14 M[\mathbb{G}]$ doesn't change powersets of cardinals below λ. Therefore, in $M[\mathbb{G}]$, every $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$-antichain has cardinality $\leq \kappa_{0}$.
Now let D be a dense subset of $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$ lying in $M[\mathbb{G}]$. We must show that \mathbb{G}_{0} meets D. By Zorn (applied in $M[\mathbb{G}]$) let A be a maximal antichain consisting of elements of D (see Lemma 29). Then A has cardinality at most κ_{0}. By Lemma 24 A lies in $M . A$ is clearly a maximal $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right)$-antichain in the sense of M. But \mathbb{G}_{0} is M-generic. So \mathbb{G}_{0} meets A (see VII Exercise A12, Lemma 30). Hence \mathbb{G}_{0} meets D.

Corollary 27 Under the conditions of Lemma 26, $\mathbb{G}_{0} \times \mathbb{G}$ is $\operatorname{Fn}\left(\kappa_{1}, 2, \kappa_{0}\right) \times \mathbb{P}$-generic over M.

Proof. Use Product Lemma VIII 1.4.
Theorem $28 G=\prod_{0 \leq i<n} G_{i}$ is $\mathbb{P}=\prod_{0 \leq i<n} \mathbb{P}_{i}$-generic over M.

Proof. By backwards induction on j we prove that $\prod_{j \leq i<n} G_{i}$ is $\prod_{j \leq i<n} \mathbb{P}_{i}$-generic over M. The claim is obvious for $j=n-1$; so we assume it for $j, 0<j<n$, and try to prove it for $j-1$. (We remind $\mathbb{P}_{j-1}=\operatorname{Fn}\left(\sigma^{j}(\kappa), 2, \sigma^{j-1}(\kappa)\right)$.) By Corollary 27, it's enough to see that $\prod_{j \leq i<n} \mathbb{P}_{i}$ is $\sigma^{j}(\kappa)$-closed. Each \mathbb{P}_{i} is $\sigma^{i}(\kappa)$ closed, see VII 6.13. It follows that each \mathbb{P}_{i} is $\sigma^{k}(\kappa)$-closed if $i \geq k$, see VII 6.12. It follows that $\prod_{j \leq i<n} \mathbb{P}_{i}$ is $\sigma^{j}(\kappa)$-closed, see Jech [4, 15.12].
(Two genericity Lemmas)
Cf. VII Exercise A12.
Lemma 29 Assume $D \subset \mathbb{P}$ is dense. There is a maximal antichain $A \subset \mathbb{P}$ s.t. $A \subset D$.

Proof. Let

$$
\mathbb{A}:=\{B \subset D \mid B \text { is an antichain }\} .
$$

Order \mathbb{A} by inclusion. Every chain in \mathbb{A} has a supremum, namely its union, for if $p_{1}, p_{2} \in \bigcup \mathbb{C}$, then $\exists B_{1} \in \mathbb{C} p_{1} \in B_{1}$ and $\exists B_{2} \in$ $\mathbb{C} p_{2} \in B_{2} ; B_{1} \subset B_{2} \vee B_{2} \subset B_{1}$; w.l.o.g.w.m.a. $B_{1} \subset B_{2}$, then $p_{1}, p_{2} \in B_{2}$ and $p_{1} \perp p_{2}$ since B_{2} is an antichain; thus $\bigcup \mathbb{C}$ is an antichain $\subset D$, too. By Zorn's Lemma, \mathbb{A} has a maximal element A.

We need to prove A is a maximal antichain, not only maximal in \mathbb{A}. Let $A \cup\{a\}$ be an antichain. Since D is dense, $\exists q \in D q \leq a$. $A \cup\{q\}$ is also an antichain, and $A \cup\{q\} \subset D$, so $q \in A$. If $a \notin A$, we have a contradiction with $A \cup\{a\}$ being an antichain, since $a \not \perp q$. Consequently, $a \in A$, and A is a maximal antichain.

Lemma 30 Let $\mathbb{P} \in M$ and $\mathbb{G} \subset \mathbb{P}$ be a filter. The following two conditions are equivalent:
(1) \mathbb{G} meets every \mathbb{P}-dense set which is in M (i.e., \mathbb{G} is \mathbb{P}-generic over M);
(2) \mathbb{G} meets every \mathbb{P} maximal antichain which is in M.

Proof. $(2) \Rightarrow(1)$ follows from Lemma 29. For $(1) \Rightarrow(2)$, let $A \in$ M be a \mathbb{P} maximal antichain. Set

$$
\begin{equation*}
D:=\{p \in \mathbb{P} \mid \exists q \in A p \leq q\} . \tag{23}
\end{equation*}
$$

Obviously, $D \in M$.
Claim. D is dense in \mathbb{P}.
/- Assume not, i.e.

$$
\begin{equation*}
\exists p \in \mathbb{P} \forall q \in D q \not \leq p . \tag{24}
\end{equation*}
$$

Claim 1. $p \notin A$.
/- If $p \in A$, then by (23) $p \in D$, contradicting (24). So $p \notin A$. Claim 1-/
Claim 2. $A \cup\{p\}$ is a \mathbb{P} antichain in M.
/- We are to show $\forall q \in A p \perp q$. Assume not, i.e.

$$
\exists q \in A \exists r \in \mathbb{P}(r \leq p \wedge r \leq q)
$$

Since $r \leq q$, by (23) $r \in D$. But this contradicts (24). Claim 2-/
Now we have a contradiction with A being a maximal antichain. Claim-/
By (1), $\exists p \in \mathbb{G} \cap D$. By (23), $\exists q \in A p \leq q$. Since \mathbb{G} is a filter, $q \in \mathbb{G} \cap A$.

Theorem 31 Strictly impredicative NF (and a little more) is consistent.

Proof. Above.
So, this much effort it has taken to prove consistency of this fragment of NF. It remains to be seen how much effort it will take to prove consistency of the whole theory.

References

[1] M. Boffa. ZFJ and the consistency problem for NF. Jahrbuch der Kurt Gödel Gesellschaft (Wien), pp. 102106, 1988
[2] M. Crabbé. On the consistency of an impredicative subsystem of Quine's NF. Journal of Symbolic Logic 47, pp. 131-136, 1982
[3] T. E. Forster. Set Theory with a Universal Set, second edition. Clarendon Press, Oxford, 1995
[4] T. Jech. Set theory, The Third Millennium Edition. Springer-Verlag, 2002
[5] K. Kunen. Set Theory. An Introduction to Independence Proofs. Elsevier, 1980
[6] E. P. Specker. Typical ambiguity. In: E. Nagel (ed.), Logic, methodology and philosophy of science, Stanford University Press, pp. 116-123, 1962

