Consistency of Strictly Impredicative **NF** and a little more...

Sergei Tupailo

Centro de Matemática e Aplicações Fundamentais Universidade de Lisboa sergei@cs.ioc.ee

Tallinn, January 26, 2012

Exposition of the paper

S. Tupailo. Consistency of Strictly Impredicative NF and a little more... Journal of Symbolic Logic 75(4), 1326–1338, 2010

 $\mathcal{L}_{\in}:=\{=,\in\}.$

Extensionality is an axiom

Ext: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y).$

Definition 1 Stratification of a formula φ is an assignment of natural numbers (type indices) to variables (both free and bound) in φ s.t. for atomic subformulas of φ only the following variants are allowed:

(a) $x^{i} = y^{i};$ (b) $x^{i} \in y^{i+1}.$

A formula φ is stratified iff there exists a stratification of φ .

Equivalently, a formula is stratified iff it can be obtained from a formula of Simple Type Theory by erasing type indices (and renaming variables if necessary).

Examples. The formula $x \in y \land y \in z$ is stratified, but the formula $x \in y \land y \in x$ is not.

Stratified Comprehension is an axiom scheme

$$\mathbf{SCA}: \qquad \exists y \forall x \left(x \in y \leftrightarrow \varphi[x] \right),$$

for every stratified formula φ with y not free in φ .

$$NF := SCA + Ext.$$

 ${\bf V}$ does exist:

$$\mathbf{V} := \{ x \mid x = x \}.$$

So, $\mathbf{V} \in \mathbf{V}$, $\mathbf{V} = \mathcal{P}(\mathbf{V})$, etc. Foundation fails, Cantor's Theorem fails, as well as many other **ZFC** theorems, too.

Known facts:

- $\operatorname{Consis}(\mathbf{NF} + \ldots) \rightarrow \operatorname{Consis}(\mathbf{ZF} + \ldots);$
- NF $\vdash \neg AC;$
- $NF \vdash Inf;$
- $\mathbf{PA} \vdash \mathrm{Consis}(\mathbf{NF}_3);$
- $\mathbf{NF} = \mathbf{NF}_4;$
- . . .

Main unknown question (since 1937):

• $\operatorname{Consis}(\mathbf{ZF} + \ldots) \rightarrow \operatorname{Consis}(\mathbf{NF})$?

[2] M. Crabbé. On the consistency of an impredicative subsystem of Quine's NF. *Journal of Symbolic Logic* 47, pp. 131–136, 1982.

Definition 2 (Crabbé) An instance of Stratified Comprehension

 $\mathbf{SCA}: \qquad \exists y \forall x \left(x \in y \leftrightarrow \varphi[x] \right), \tag{1}$

is predicative iff there is a stratification of (1) s.t. the indices of bound variables in φ are $\langle \text{type}(y) \rangle$, and the indices of free variables in φ are $\leq \text{type}(y)$.

NFP is a subsystem of **NF** where **SCA** is restricted to predicative instances. **NFI** ("mildly impredicative") is an extension of **NFP** which allows bound variables in φ of types \leq type(y).

Theorem 3 ([Crabbé 82]) Both NFP and NFI are consistent, where in addition

$$|\mathbf{NFP}| < |\mathbf{EA}|,$$
$$|\mathbf{PA_2}| \le |\mathbf{NFI}| < |\mathbf{PA_3}|.$$

Two kinds of proofs: model-theoretic (countably saturated models) and proof-theoretic (cut-elimination).

Theorem 4 (*Holmes 99*)

$$|\mathbf{NFI}| = |\mathbf{PA_2}|.$$

Consider the Union axiom:

$$\mathbf{U}: \qquad \forall z \exists y \forall x \left(x \in y \leftrightarrow \exists v \left(v \in z \land x \in v \right) \right).$$
(2)

Note that **U** is in **NF**, but not in **NFI**:

$$\forall z^2 \exists y^1 \forall x^0 \left(x \in y \leftrightarrow \exists v^1 \left(v \in z \land x \in v \right) \right).$$

Theorem 5 ([Crabbé 82])

$$\mathbf{NFP} + \mathbf{U} = \mathbf{NFI} + \mathbf{U} = \mathbf{NF}.$$

Definition 6 (S.T.) An instance of Stratified Comprehension

SCA: $\exists y \forall x (x \in y \leftrightarrow \varphi[x]),$

is strictly impredicative iff there is a stratification of it s.t. the indices of all variables in φ are $\geq \text{type}(y) - 1$.

Let **NFSI** denote a subsystem of **NF** where **SCA** is restricted to strictly impredicative instances. Then:

Theorem 7 (S.T., 08) **NFSI** (and a little more, e.g. existence of Frege natural numbers) is consistent, too.

The proof uses a bit of Model Theory, and a lot of Set Theory (forcing).

Theorem 8 ([Specker 62])

- 1. **NF** is consistent iff there is a model of **TNT** [**TST** is fine] with a type-shifting automorphism $[=: tsau] \sigma$.
- 2. NF is equiconsistent with the Theory of Types, TNTA [TSTA is fine] with the Ambiguity scheme, Amb,

$$\varphi \leftrightarrow \varphi^+,$$

for all sentences φ . $[\varphi^+$ is the result of raising all type indices in φ by 1.]

Proof. See [6].

Specker's proof generalizes immediately to subsystems of NF where SCA is restricted. For NFSI, an equivalent Type Theory is Ext plus Amb plus all instances of

$$\exists y^{i+1} \forall x^i \left(x \in y \leftrightarrow \varphi[x] \right),$$

where all indices in φ are $\geq i$.

From the outset, we assume consistency of **ZFC**. Let $\langle M, \in \rangle$ be an Ehrenfeucht-Mostowski model of **ZF** + **V** = **L**, i.e. a countable model with a non-trivial external \in -automorphism σ . W.l.o.g.w.m.a. that σ moves up at least one regular cardinal κ (in the sense of M):

In M, sets can be enumerated by ordinals, i.e. there is a formula $\varphi(x, \alpha)$ s.t. the sentence " φ gives a (class) bijection between **V** and **On**" is true in M. By Ehrenfeucht-Mostowski, $\sigma(x) \neq x$ for some $x \in M$. Since we have a definable bijection, $\sigma(\alpha) \neq \alpha$ for some ordinal $\alpha \in M$. If $\alpha < \sigma(\alpha)$, fine; if not, take σ^{-1} .

In order to move up a cardinal, use a definable bijection $\alpha \mapsto \aleph_{\alpha}$.

In order to move up a regular cardinal, use a definable injection $\alpha \mapsto \aleph_{\alpha+1}$.

By default, we will use forcing machinery (original results due to P. Cohen and R. Solovay) as laid out in

[5] K. Kunen. Set Theory. An Introduction to Independence Proofs. Elsevier, 1980.

Given a finite set S of **TSTA**-axioms, let $n \ge 2$ be such that all indices i in S fall under $0 \le i \le n$. For $0 \le i < n$, let $\mathbb{P}_i := \operatorname{Fn}(\sigma^{i+1}(\kappa), 2, \sigma^i(\kappa))$ (Cohen's poset), where

$$\operatorname{Fn}(\kappa_1, 2, \kappa_0) := \{ p || p | < \kappa_0 \land p \text{ is a function} \land \operatorname{dom}(p) \subset \kappa_1 \land \operatorname{ran}(p) \subset 2 \}$$

$$(3)$$

(see VII 6.1), and $\mathbb{IP} := \mathbb{IP}^n := \prod_{0 \le i < n} \mathbb{IP}_i$.

Note first that σ acts as a bijection between $\sigma^{i}(\kappa)$ and $\sigma^{i+1}(\kappa)$.

Let G_0 be \mathbb{P}_0 -generic over M. Then

$$M[G_0] \models \exists h_0 h_0 : \sigma(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}(\kappa).$$

Definition 9

$$\mathcal{P}_{<\omega}(b) := \{ a \subset b \mid |a| < \omega \}.$$

Let $g_0 \in M$ be such that

$$g_0: \kappa \stackrel{\mathrm{bi}}{\mapsto} \mathcal{P}_{<\omega}(\kappa).$$

Defining $g_i := \sigma^i(g_0)$, we get

$$g_i : \sigma^i(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}_{<\omega}(\sigma^i(\kappa)).$$
(4)

Lemma 10 Given $M[G_0] \ni h_0 : \sigma(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}(\kappa)$ and $M \ni g_0 : \kappa \stackrel{\text{bi}}{\mapsto} \mathcal{P}_{<\omega}(\kappa)$, there exists a bijection $M[G_0] \ni f_0 : \sigma(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}(\kappa)$ satisfying $f_0 \upharpoonright \kappa = g_0$.

Proof. Work in $M[G_0]$. Since $|\mathcal{P}(\kappa)| = \sigma(\kappa)$, $|\mathcal{P}_{<\omega}(\kappa)| = \kappa$ and $\mathcal{P}(\kappa) = \mathcal{P}_{<\omega}(\kappa) \bigcup \mathcal{P}_{\geq \omega}(\kappa)$, we must have $|\mathcal{P}_{\geq \omega}(\kappa)| = \sigma(\kappa)$, i.e. there is a bijection h_1 between $\sigma(\kappa)$ and $\mathcal{P}_{\geq \omega}(\kappa)$. Now, for $a \in \mathcal{P}(\kappa)$, define $f'_0(a)$ by

$$f_0'(a) := \begin{cases} g_0^{-1}(a) & \text{if } a \in \mathcal{P}_{<\omega}(\kappa), \\ \kappa + h_1^{-1}(a) & \text{otherwise.} \end{cases}$$
(5)

We claim that f'_0 is a special bijection between $\mathcal{P}(\kappa)$ and $\sigma(\kappa)$:

(i) $f'_0(a) < \sigma(\kappa)$ is seen from (5) and the fact that $\sigma(\kappa)$ is an additive principal number, i.e. an ordinal closed under ordinal sum;

(ii) f'_0 is onto: if $\alpha < \kappa$, then by the first line of (5) $f'_0(a) = g_0^{-1}(a) = \alpha$ for some $a \in \mathcal{P}_{<\omega}(\kappa)$; otherwise, $\alpha = \kappa + \beta$ for some $\beta < \sigma(\kappa)$, and then $f'_0(a) = \kappa + h_1^{-1}(a)$ for some $a \in \mathcal{P}_{\geq \omega}(\kappa)$;

(iii) f'_0 is 1-1 follows from (5) and the fact that both g_0^{-1} and h_1^{-1} are 1-1;

(iv) further, from the first line of (5) we have $f'_0|\mathcal{P}_{<\omega}(\kappa) = g_0^{-1}$.

From (i-iv) above, f_0 can be taken as the inverse of f'_0 .

Choose $f_0: \sigma(\kappa) \xrightarrow{\text{bi}} \mathcal{P}(\kappa)$ as guaranteed by Lemma 10.

Let $\tau \in M^{\mathbb{P}_0}$ be a name for f_0 , so that

$$M[G_0] \models \tau_{G_0} : \sigma(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}(\kappa).$$
(6)

By the Forcing Theorem VII 3.6

$$\exists p \in G_0 \left(p \Vdash_{\mathbb{P}_0}^* \tau : (\sigma(\kappa))_{\mathbb{P}_0} \stackrel{\text{in}}{\mapsto} \mathcal{P}((\kappa)_{\mathbb{P}_0}) \right)^M.$$
(7)

Taking $p \in G_0$ from (7) and applying σ^i to this formula, we obtain

$$\left(\sigma^{i}(p) \Vdash_{\mathbb{P}_{i}}^{*} \sigma^{i}(\tau) : \left(\sigma^{i+1}(\kappa)\right)_{\mathbb{P}_{i}}^{*} \stackrel{\text{bi}}{\mapsto} \mathcal{P}\left(\left(\sigma^{i}(\kappa)\right)_{\mathbb{P}_{i}}^{*}\right)\right)^{M}.$$
(8)

Define $G_{i+1} := \sigma''G_i$, $0 \le i < n-1$, and $G := \prod_{0 \le i < n} G_i$. Then each G_i contains $\sigma^i(p)$ and is \mathbb{P}_i -generic over M – see Lemma 11. It's easily verified that G is a filter on $\mathbb{P} = \prod_{0 \le i < n} \mathbb{P}_i$, but it was more of an issue whether G is generic. Also observe that $\sigma^i(\tau) \in M^{\mathbb{P}_i}$, for each i.

Lemma 11 (See pp. 219–220)

$$\mathbb{G}$$
 is \mathbb{P} -generic over $M \iff \sigma'' \mathbb{G}$ is $\sigma(\mathbb{P})$ -generic over M .

Proof. "G is a filter in \mathbb{P} " being equivalent to " σ'' G is a filter in $\sigma(\mathbb{P})$ " follows from σ being an isomorphism between \mathbb{P} and $\sigma(\mathbb{P})$. For the "generic" part, it follows from "D is dense in \mathbb{P} " \Leftrightarrow " $\sigma''D$ is dense in $\sigma(\mathbb{P})$ " (σ isomorphism) and $\sigma''D = \sigma(D)$ ($\sigma \in$ -automorphism of M). Starting with the complete embeddings $\mathbb{P}_i \mapsto \prod_{0 \le i < n} \mathbb{P}_i$, define natural embeddings $\iota_i : M^{\mathbb{P}_i} \mapsto M^{\mathbb{P}}$ as in VII 7.12.

Lemma 12 For each $i, 0 \leq i < n, M[G_i]$ is a transitive submodel of M[G].

Proof. Let $x \in M[G_i]$. Then $x = \rho_{G_i}$ for $\rho \in M^{\mathbb{P}_i}$. Then $\iota_i(\rho) \in M^{\mathbb{P}}$ and $x = \rho_{G_i} = (\iota_i(\rho))_G$ by VII 7.13(a), so that $x \in M[G]$.

Now, assume $x = \rho_{G_i} = (\iota_i(\rho))_G \in M[G_i], y = \tau_G \in M[G], y \in_{M[G]} x$. We need to show $y \in M[G_i]$ and $y \in_{M[G_i]} x$. We compute:

$$y \in_{M[G]} x \iff \tau_{G} \in_{M[G]} (\iota_{i}(\rho))_{G}$$

$$\iff \exists p \in G (\langle \tau, p \rangle \in \iota_{i}(\rho))$$

$$\underset{V \cong}{\bigvee} \exists p \in G \exists p_{i} \in G_{i} \exists \delta \in M^{\mathbb{P}_{i}} (\langle \delta, p_{i} \rangle \in \rho \land \tau = \iota_{i}(\delta) \land p = \langle \emptyset, \dots, p_{i}, \dots, \emptyset \rangle)$$

$$\implies y = \delta_{G_{i}} \in M[G_{i}] \land \delta_{G_{i}} \in_{M[G_{i}]} \rho_{G_{i}}.$$

	1
	I

See Picture 1.

Interpret variables x^i of $\mathcal{L}_{\mathbf{TST}^n}$ as $x \in \sigma^i(\kappa)$, and interpret $x^i \in y^{i+1}$ as $x \in (\sigma^i(\tau))_{G_i}(y)$. First note that from (8) we have

$$M[G_i] \models (\sigma^i(\tau))_{G_i} : \sigma^{i+1}(\kappa) \stackrel{\text{bi}}{\mapsto} \mathcal{P}(\sigma^i(\kappa)), \tag{9}$$

for each $0 \leq i < n$. For brevity, we denote

$$f_i := (\sigma^i(\tau))_{G_i} \in M[G_i] \stackrel{\text{L. 12}}{\subset} M[G].$$

From Lemma 10, we have

$$f_i \restriction \sigma^i(\kappa) = g_i. \tag{10}$$

We want to show that, under this interpretation, each axiom of \mathbf{TSTA}^n is true in M[G].

Let's check *Extensionality*. We don't claim (yet) that $M[G] \models \mathbf{ZFC}$, but at least we have

Lemma 13

$$M[G] \models Extensionality.$$

Proof. Follows from VII 2.14.

<u>Remark</u>. If G happened to be generic, then M[G] would be a model of **ZFC**.

We have to model

$$\forall x^{i+1} \forall y^{i+1} \left(\forall z^i (z \in i x \leftrightarrow z \in i y) \to x = y \right),$$

i.e. to prove, in M[G],

$$\forall x \in \sigma^{i+1}(\kappa) \forall y \in \sigma^{i+1}(\kappa) \left(\forall z \in \sigma^i(\kappa) (z \in f_i(x) \leftrightarrow z \in f_i(y)) \to x = y \right).$$
(11)

Fix $x, y \in \sigma^{i+1}(\kappa)$, and assume

$$\forall z \in \sigma^i(\kappa) (z \in f_i(x) \leftrightarrow z \in f_i(y)).$$
(12)

Since $(f_i(x), f_i(y) \in \mathcal{P}(\sigma^i(\kappa)))^{M[G_i]}$, we have $(f_i(x), f_i(y) \subset \sigma^i(\kappa))^{M[G_i]}$, so by absoluteness $f_i(x), f_i(y) \subset \sigma^i(\kappa)$. Then, (12) can be reduced to

$$\forall z \, (z \in f_i(x) \leftrightarrow z \in f_i(y)), \tag{13}$$

which implies

$$f_i(x) = f_i(y)$$

by *Extensionality* of M[G]. Now, since the functions f_i are 1-1 in $M[G_i]$ (see (9)), by absoluteness they are 1-1 in M[G], so we can conclude x = y.

For Ambiguity, it's enough to model

$$\forall x^i \forall y^{i+1} \left(x \in^i y \leftrightarrow \sigma(x) \in^{i+1} \sigma(y) \right),$$

i.e. to have, in M[G],

$$\forall x \in \sigma^{i}(\kappa) \forall y \in \sigma^{i+1}(\kappa) \left(x \in f_{i}(y) \leftrightarrow \sigma(x) \in f_{i+1}(\sigma(y)) \right), \quad (14)$$

 $0 \le i < n - 1.$

Lemma 14 For each $i, 0 \leq i < n-1$, there is an \in -isomorphism σ_i of $M[G_i]$ onto $M[G_{i+1}]$ extending $\sigma \upharpoonright M$; additionally, $\sigma_i(f_i) = f_{i+1}$.

Proof. See Lemma 15 – Corollary 19. \Box

Coming back to (14), fix $x \in \sigma^i(\kappa), y \in \sigma^{i+1}(\kappa)$. Assume $M[G] \models x \in f_i(y)$ (the opposite direction being analogous). Since the formula " $x \in f_i(y)$ " is Δ_0 , by absoluteness

$$M[G_i] \models x \in f_i(y).$$

By Lemma 14,

$$M[G_{i+1}] \models \sigma(x) \in f_{i+1}(\sigma(y)).$$

By absoluteness again, $M[G] \models \sigma(x) \in f_{i+1}(\sigma(y))$.

Lemma 15 (See p. 222) $\sigma: M^{\mathbb{P}} \stackrel{\text{bi}}{\mapsto} M^{\sigma(\mathbb{P})}$ and σ is an \in -isomorphism between $\langle M^{\mathbb{P}} \times \mathbb{P}, M^{\mathbb{P}} \rangle$ and $\langle M^{\sigma(\mathbb{P})} \times \sigma(\mathbb{P}), M^{\sigma(\mathbb{P})} \rangle$ in the sense that for every $\mu, \tau \in M^{\mathbb{P}}$ and $p \in \mathbb{P}$,

$$\langle \mu, p \rangle \in \tau \leftrightarrow \langle \sigma(\mu), \sigma(p) \rangle \in \sigma(\tau).$$

Proof. $\sigma: M^{\mathbb{P}} \stackrel{\text{bi}}{\mapsto} M^{\sigma(\mathbb{P})}$ follows from the fact that " $\tau \in M^{\mathbb{P}}$ " is a formula of set theory with parameters τ, \mathbb{P} . \in is preserved since σ is an \in -automorphism. \Box

Definition 16

$$\Sigma = \{ \langle \tau_{\mathbb{G}}, (\sigma(\tau))_{\sigma''\mathbb{G}} \rangle \mid \tau \in M^{\mathbb{P}} \}.$$

Lemma 17 Σ is an \in -isomorphism between $M[\mathbb{G}]$ and $M[\sigma''\mathbb{G}]$.

Proof (sketch). We need to check four things: (a) Σ is a function; (b) Σ is onto; (c) Σ is 1-1; (d) Σ commutes with \in . (b) follows from the fact that $\sigma : M^{\mathbb{P}} \mapsto M^{\sigma(\mathbb{P})}$ is onto, Lemma 15. (d): Let $\mu_{\mathbb{G}} \in \tau_{\mathbb{G}}$. Then $\exists p \in \mathbb{G} \langle \mu, p \rangle \in \tau$. Then $\sigma(p) \in \sigma''\mathbb{G}$ and $\langle \sigma(\mu), \sigma(p) \rangle \in \sigma(\tau)$ (Lemma 15). This means $(\sigma(\mu))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}}$. (a) Let $\tau_{\mathbb{G}} = \tau'_{\mathbb{G}}$. Then $\forall \mu \in M^{\mathbb{P}} (\mu_{\mathbb{G}} \in \tau_{\mathbb{G}} \leftrightarrow \mu_{\mathbb{G}} \in \tau'_{\mathbb{G}})$. By (d) $\forall \mu \in M^{\mathbb{P}} ((\sigma(\mu))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}}$. By Lemma 15 this implies $\forall \mu \in M^{\sigma(\mathbb{P})} (\mu_{\sigma''\mathbb{G}} \in (\sigma(\tau))_{\sigma''\mathbb{G}} \leftrightarrow \mu_{\sigma''\mathbb{G}} \in (\sigma(\tau'))_{\sigma''\mathbb{G}})$, i.e. $(\sigma(\tau))_{\sigma''\mathbb{G}} = (\sigma(\tau'))_{\sigma''\mathbb{G}}$. (c) is analogous to (a): Σ^{-1} is a function.

Lemma 18 For every $x \in M$, $(x)_{\mathbb{P}} = (x)_{\sigma(\mathbb{P})}$ and $\Sigma(x) = \sigma(x)$.

Proof. Since $1_{\mathbb{P}} = 1_{\sigma(\mathbb{P})} = \emptyset$, $(x)_{\mathbb{P}} = (x)_{\sigma(\mathbb{P})}$ is proved by induction on x. By Definition 16,

$$\Sigma(x) = \Sigma((\check{x})_{\mathbb{G}}) \stackrel{\text{Def. 16}}{=} (\sigma(\check{x}))_{\sigma''\mathbb{G}} \stackrel{\sigma \in \text{-auto}}{=} ((\sigma(x))\check{})_{i''\mathbb{G}} = \sigma(x).$$

Corollary 19

$$\Sigma \restriction M = \sigma.$$

For *Comprehension*, we want to model

$$\forall x_1^{i_1} \dots \forall x_k^{i_k} \exists y^{i+1} \forall x^i \left(x \in i y \leftrightarrow \varphi(x, x_1, \dots, x_k) \right).$$

This means to prove, in M[G],

$$\forall x_1 \in \sigma^{i_1}(\kappa) \dots \forall x_k \in \sigma^{i_k}(\kappa) \exists y \in \sigma^{i+1}(\kappa) \forall x \in \sigma^i(\kappa) \\ \left(x \in f_i(y) \leftrightarrow \tilde{\varphi}(x, x_1, \dots, x_k, \sigma^{\iota_1}(\kappa), \dots, \sigma^{\iota_\ell}(\kappa), f_{j_1}, \dots, f_{j_l}) \right),$$
(15)

where $\tilde{\varphi}$ is a translation of φ by the rules above.

Here I have a problem. It's unlikely that M[G] satisfies (15) for every φ . One trivial result is immediate however from what stands: Consis(**NF**₂). In that case in (15) $i = j_1 = \ldots = j_l$, and the set

$$A := \{ x \in \sigma^{i}(\kappa) \mid \tilde{\varphi}(x, x_{1}, \dots, x_{k}, \sigma^{\iota_{1}}(\kappa), \dots, \sigma^{\iota_{\ell}}(\kappa), f_{j_{1}}, \dots, f_{j_{l}}) \}$$
(16)

is in $M[G_i]$ by Separation; thus, also having $A \subset \sigma^i(\kappa)$, y can be taken to be $f_i^{-1}(A)$.

In general, everything boils down to showing $A \in M[G_i]$, but if G is not generic, it's even not clear whether A exists as a set in M[G].

Assume in addition that G is \mathbb{P} -generic over M. Let an instance

$$\forall x_1 \dots \forall x_k \exists y \forall x \left(x \in y \leftrightarrow \varphi(x, x_1, \dots, x_k) \right)$$
(17)

of Stratified Comprehension be strictly impredicative. In that case, under our interpretation, (17) is true in M[G]. Indeed, it's enough to check only the case i = 0, for the general case follows then by Ambiguity. If i = 0, then $A \in M[G]$ since $M[G] \models$ Separation, and actually $A \in M[G_0]$ by VII 6.14 (forcing above doesn't add subsets of smaller cardinals).

Can do more, even without assuming G being generic or an axiom strictly impredicative. For example, the axioms

P7: $\forall u \exists v \forall x \forall y (\langle y, x \rangle \in u \longleftrightarrow \langle x, y \rangle \in v)$ 4p.,~s.i.P8: $\exists v \forall x (x \in v \longleftrightarrow \exists y (x = \{y\}))$ 3p.

can be pushed trough utilizing our careful choice of the initial bijection f_0 :

(Frege natural numbers)

P8.k is an axiom

$$\exists v \forall x \ (x \in v \longleftrightarrow \exists y_1 \dots \exists y_k \ (\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \land x = \{y_1, \dots, y_k\})).$$

$$(18)$$

((18) asserts existence of a Frege natural number $k \ge 1$. Note that (18) is predicative and not s.i. The reasoning below also works for k = 0, when we understand \bigwedge_{\emptyset} as \top and \bigvee_{\emptyset} as \bot .) That means that we must satisfy the following axiom of **TSTA**ⁿ:

$$\exists v^{i+2} \forall x^{i+1} \ (x \in v \longleftrightarrow \exists y_1^i \dots \exists y_k^i \ (\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \land x = \{y_1, \dots, y_k\})).$$

$$(19)$$

(Our formula $\varphi[x^{i+1}]$ in this case is " $\exists y_1^i \dots \exists y_k^i (\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \land x^{i+1} = \{y_1, \dots, y_k\})$ ".)

Given that

$$x^{i+1} = \{y_1^i, \dots, y_k^i\} \iff \bigwedge_{1 \le i \le k} y_i^i \in x^{i+1} \land \forall u^i \in x^{i+1} \bigvee_{1 \le i \le k} u = y_i^i,$$

$$(20)$$

we see that the translation of (20), for $y_1, \ldots, y_k \in \sigma^i(\kappa), x \in \sigma^{i+1}(\kappa)$, is

$$\bigwedge_{1 \le i \le k} y_i \in f_i(x) \land \forall u \in \sigma^i(\kappa) \ (u \in f_i(x) \to \bigvee_{1 \le i \le k} u = y_i),$$

i.e.

$$f_i(x) = \{y_1, \dots, y_k\},$$
 (21)

and in this case

$$\tilde{\varphi}(x,f_i) := \exists y_1 \in \sigma^i(\kappa) \dots \exists y_k \in \sigma^i(\kappa) (\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \land f_i(x) = \{y_1, \dots, y_k\}).$$

According to p. 13, in order to verify P8.k under my interpretation, we must have

$$A8.k := \begin{cases} x \in \sigma^{i+1}(\kappa) \mid \exists y_1 \in \sigma^i(\kappa) \dots \exists y_k \in \sigma^i(\kappa) \\ (\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \wedge f_i(x) = \{y_1, \dots, y_k\}) \end{cases} \in M[G_{i+1}].$$

$$(22)$$

(Note that $A8.k \in M[G_i] \subset M[G]$ automatically, because $f_i \in M[G_i]$ and $M[G_i]$ satisfies *Separation*, but what we actually need is $A8.k \in M[G_{i+1}]$.) Can we arrange for this?

What helps here is our special choice of f_i 's:

Claim 20 For $y_1, \ldots, y_k \in \sigma^i(\kappa), x \in \sigma^{i+1}(\kappa), f_i(x) = \{y_1, \ldots, y_k\}$ is equivalent to $x \in \sigma^i(\kappa) \land g_i(x) = \{y_1, \ldots, y_k\}.$

Proof. \Leftarrow : Immediate from (10).

 $\Rightarrow: \text{Let } a = \{y_1, \dots, y_k\} \in \mathcal{P}_{<\omega}(\sigma^i(\kappa)). \text{ From } (9), (4) \text{ and } (10), \\ f_i^{-1}(b) = g_i^{-1}(b) \text{ for } b \in \mathcal{P}_{<\omega}(\sigma^i(\kappa)) \ (f_i^{-1} \text{ enumerates } \mathcal{P}(\sigma^i(\kappa)) \text{ in } \\ a \text{ special regular way}). \text{ From } f_i(x) = a \text{ we have } x = f_i^{-1}(a) = \\ g_i^{-1}(a) \in \sigma^i(\kappa) \ (\text{see } (4)), \text{ so we must have } x \in \sigma^i(\kappa) \land g_i(x) = a. \\ \Box$

Summarizing (see (20)-(21)), we have proved

Lemma 21 Under $y_1, \ldots, y_k \in \sigma^i(\kappa), x \in \sigma^{i+1}(\kappa), (x = \{y_1, \ldots, y_k\})$ is equivalent to a Δ_0 formula with parameters in M.

Coming back to P8.k, the formula $\varphi_{8,k}[x^{i+1}]$ in this case is $\exists y_1^i \ldots \exists y_k^i (\bigwedge_{1 \leq i, j \leq k; i \neq j} y_i \neq y_j \land x^{i+1} = \{y_1, \ldots, y_k\})$, and we must check

$$A8.k := \{x \in \sigma^{i+1}(\kappa) \mid \tilde{\varphi}_{8,k}[x]\}$$

=
$$\{x \in \sigma^{i+1}(\kappa) \mid \exists y_1 \in \sigma^i(\kappa) \dots \exists y_k \in \sigma^i(\kappa)$$
$$(\bigwedge_{1 \le i, j \le k; i \ne j} y_i \ne y_j \land (x = \{y_1, \dots, y_k\})^{\sim})\}$$

being in $M[G_{i+1}]$. Lemma 21 actually gives us more: $A8.k \in M \subset M[G_{i+1}]$.

 $(G = \prod_{0 \le i < n} G_i \text{ is generic over } M)$

Lemma 22 (see VII Exercise B5) Assume $A \in M$, $f: A \mapsto M$ and $f \in M[\mathbb{G}]$. Then there is a $B \in M$ such that $f: A \mapsto B$.

Proof. Let $f = \tau_{\mathbb{G}}$. We have

$$\forall x \in A \exists ! b \in M \langle x, b \rangle \in f;$$

this yields

$$\forall x \in A \exists ! b \in M ((\operatorname{op}(\check{x}, \check{b}))_{\mathbb{G}} \in \tau_{\mathbb{G}})^{M[\mathbb{G}]}.$$

By VII 3.6

$$\forall x \in A \exists ! b \in M \exists p \in \mathbb{G} (p \parallel - {}^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau)^{M},$$

implying

$$\forall x \in A \exists ! b \in M \exists p \in \mathbb{P} (p \parallel f op(\check{x}, \check{b}) \in \tau)^M,$$

i.e.

$$M \models \forall x \in A \exists ! b \exists p \in \mathbb{P} p \parallel^{*} \operatorname{op}(\check{x}, \check{b}) \in \tau.$$

By Replacement (in M)

$$M \models \exists B = \{ b \mid \exists x \in A \, \exists p \in \mathbb{P} \, p \models^* \operatorname{op}(\check{x}, \check{b}) \in \tau \}.$$

We need to show $f: A \mapsto B$. Let $x \in A$ and $b \in M$ be such that $(\langle x, b \rangle \in f)^{M[\mathbb{G}]}$. Then $((\operatorname{op}(\check{x}, \check{b}))_{\mathbb{G}} \in \tau_{\mathbb{G}})^{M[\mathbb{G}]}$, and, by VII 3.6, $\exists p \in \mathbb{P} (p \parallel -^* \operatorname{op}(\check{x}, \check{b}) \in \tau)^M$, i.e. $b \in B$.

Corollary 23 (see VII Exercise B6) Assume $\mathbb{P} \in M$ and α is an ordinal of M. Then $(1) \Rightarrow (2)$, where (1) whenever $B \in M$, ${}^{\alpha}B \cap M = {}^{\alpha}B \cap M[\mathbb{G}];$ (2) ${}^{\alpha}M \cap M = {}^{\alpha}M \cap M[\mathbb{G}].$ **Proof.** Assume (1). ${}^{\alpha}M \cap M \subset {}^{\alpha}M \cap M[\mathbb{G}]$ is obvious, so we need to show the converse. If $f \in {}^{\alpha}M \cap M[\mathbb{G}]$, then by Lemma 22 there is a $B \in M$ s.t. $f \in {}^{\alpha}B \cap M[\mathbb{G}]$. By (1) we have $f \in {}^{\alpha}B \cap M$, and, by transitivity of $M, f \in {}^{\alpha}M \cap M$. \Box

VII 6.12. Definition. A poset \mathbb{P} is λ -closed iff whenever $\gamma < \lambda$ and $\{p_{\xi} | \xi < \gamma\}$ is a decreasing sequence of elements of \mathbb{P} (*i.e.*, $\xi < \eta \rightarrow p_{\xi} \ge p_{\eta}$), then

$$\exists q \in \mathbb{P} \,\forall \xi < \gamma \, q \le p_{\xi}.$$

Lemma 24 Assume \mathbb{P} is λ -closed and \mathbb{G} is \mathbb{P} -generic over M. Assume $y \in M[\mathbb{G}], y \subset M, (|y| < \lambda)^{M[\mathbb{G}]}$. Then $y \in M$.

Proof. We have an $\alpha < \lambda$ and an $f: \alpha \stackrel{\text{bi}}{\mapsto} y$ with $f \in M[\mathbb{G}]$. By VII 6.14, (1) of Corollary 23 is satisfied; consequently, so is (2). $f \in {}^{\alpha}M$, so by (2) $f \in M$, and thus $y = \operatorname{ran}(f) \in M$. \Box

Lemma 25 Assume \mathbb{P} is λ -closed and \mathbb{G} is \mathbb{P} -generic over M. Assume $\kappa_0 < \kappa_1$ and $\kappa_0 \leq \lambda$. Then $(\operatorname{Fn}(\kappa_1, 2, \kappa_0))^M = (\operatorname{Fn}(\kappa_1, 2, \kappa_0))^{M[\mathbb{G}]}$.

Proof. $(\operatorname{Fn}(\kappa_1, 2, \kappa_0))^M \subset (\operatorname{Fn}(\kappa_1, 2, \kappa_0))^{M[\mathbb{G}]}$ follows by absoluteness and $M \subset M[\mathbb{G}]$, so we need to show the converse. Let $p \in M[\mathbb{G}]$ and $(p \in \operatorname{Fn}(\kappa_1, 2, \kappa_0))^{M[\mathbb{G}]}$. $\forall z \in p \exists x \in \kappa_1 \exists i \in 2 z = \langle x, i \rangle$, so $p \subset M$. We have $(|p| < \kappa_0 \leq \lambda)^{M[\mathbb{G}]}$, so by Lemma 24 $p \in M$. A bijection $f \in M[\mathbb{G}]$ between some $\alpha < \kappa_0$ and p is actually in M by VII 6.14, so that $(p \in \operatorname{Fn}(\kappa_1, 2, \kappa_0))^M$. \Box

Lemma 26 Assume \mathbb{P} is λ -closed and \mathbb{G} is \mathbb{P} -generic over M. Assume $\kappa_0 < \kappa_1, \kappa_0 < \lambda$, and \mathbb{G}_0 is $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ -generic over M. Then \mathbb{G}_0 is $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ -generic over $M[\mathbb{G}]$. **Proof.** By VII 6.10, $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ has the $(2^{<\kappa_0})^+$ -c.c. In $M[\mathbb{G}]$, $2^{<\kappa_0} = \kappa_0$, since $M \models \operatorname{\mathbf{GCH}}$ and by VII 6.14 $M[\mathbb{G}]$ doesn't change powersets of cardinals below λ . Therefore, in $M[\mathbb{G}]$, every $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ -antichain has cardinality $\leq \kappa_0$.

Now let D be a dense subset of $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ lying in $M[\mathbb{G}]$. We must show that \mathbb{G}_0 meets D. By Zorn (applied in $M[\mathbb{G}]$) let A be a maximal antichain consisting of elements of D (see Lemma 29). Then A has cardinality at most κ_0 . By Lemma 24 A lies in M. A is clearly a maximal $\operatorname{Fn}(\kappa_1, 2, \kappa_0)$ -antichain in the sense of M. But \mathbb{G}_0 is M-generic. So \mathbb{G}_0 meets A (see VII Exercise A12, Lemma 30). Hence \mathbb{G}_0 meets D.

Corollary 27 Under the conditions of Lemma 26, $\mathbb{G}_0 \times \mathbb{G}$ is $\operatorname{Fn}(\kappa_1, 2, \kappa_0) \times \mathbb{P}$ -generic over M.

Proof. Use Product Lemma VIII 1.4.

Theorem 28 $G = \prod_{0 \le i < n} G_i$ is $\mathbb{P} = \prod_{0 \le i < n} \mathbb{P}_i$ -generic over M.

Proof. By backwards induction on j we prove that $\prod_{j \leq i < n} G_i$ is $\prod_{j \leq i < n} \mathbb{P}_i$ -generic over M. The claim is obvious for j = n - 1; so we assume it for j, 0 < j < n, and try to prove it for j - 1. (We remind $\mathbb{P}_{j-1} = \operatorname{Fn}(\sigma^j(\kappa), 2, \sigma^{j-1}(\kappa))$.) By Corollary 27, it's enough to see that $\prod_{j \leq i < n} \mathbb{P}_i$ is $\sigma^j(\kappa)$ -closed. Each \mathbb{P}_i is $\sigma^i(\kappa)$ -closed, see VII 6.13. It follows that each \mathbb{P}_i is $\sigma^k(\kappa)$ -closed if $i \geq k$, see VII 6.12. It follows that $\prod_{j \leq i < n} \mathbb{P}_i$ is $\sigma^j(\kappa)$ -closed, see Jech [4, 15.12].

(Two genericity Lemmas)

Cf. VII Exercise A12.

Lemma 29 Assume $D \subset \mathbb{P}$ is dense. There is a maximal antichain $A \subset \mathbb{P}$ s.t. $A \subset D$.

Proof. Let

 $\mathbb{A} := \{ B \subset D \mid B \text{ is an antichain} \}.$

Order A by inclusion. Every chain in A has a supremum, namely its union, for if $p_1, p_2 \in \bigcup \mathbb{C}$, then $\exists B_1 \in \mathbb{C} p_1 \in B_1$ and $\exists B_2 \in \mathbb{C} p_2 \in B_2$; $B_1 \subset B_2 \lor B_2 \subset B_1$; w.l.o.g.w.m.a. $B_1 \subset B_2$, then $p_1, p_2 \in B_2$ and $p_1 \perp p_2$ since B_2 is an antichain; thus $\bigcup \mathbb{C}$ is an antichain $\subset D$, too. By Zorn's Lemma, A has a maximal element A.

We need to prove A is a maximal antichain, not only maximal in A. Let $A \cup \{a\}$ be an antichain. Since D is dense, $\exists q \in D \ q \leq a$. $A \cup \{q\}$ is also an antichain, and $A \cup \{q\} \subset D$, so $q \in A$. If $a \notin A$, we have a contradiction with $A \cup \{a\}$ being an antichain, since $a \not\perp q$. Consequently, $a \in A$, and A is a maximal antichain.

Lemma 30 Let $\mathbb{P} \in M$ and $\mathbb{G} \subset \mathbb{P}$ be a filter. The following two conditions are equivalent:

(1) \mathbb{G} meets every \mathbb{P} -dense set which is in M (i.e., \mathbb{G} is \mathbb{P} -generic over M);

(2) \mathbb{G} meets every \mathbb{P} maximal antichain which is in M.

Proof. (2) \Rightarrow (1) follows from Lemma 29. For (1) \Rightarrow (2), let $A \in M$ be a \mathbb{P} maximal antichain. Set

$$D := \{ p \in \mathbb{P} \mid \exists q \in A \, p \le q \}.$$
(23)

Obviously, $D \in M$. <u>Claim</u>. D is dense in \mathbb{P} . /- Assume not, i.e.

$$\exists p \in \mathbb{P} \,\forall q \in D \, q \not\leq p. \tag{24}$$

<u>Claim 1</u>. $p \notin A$.

/- If $p \in A$, then by (23) $p \in D$, contradicting (24). So $p \notin A$. Claim 1-/

<u>Claim 2</u>. $A \cup \{p\}$ is a \mathbb{P} antichain in M.

/- We are to show $\forall q \in A \ p \perp q$. Assume not, i.e.

$$\exists q \in A \, \exists r \in \mathbb{P} \, (r \le p \land r \le q).$$

Since $r \leq q$, by (23) $r \in D$. But this contradicts (24). Claim 2-/

Now we have a contradiction with A being a maximal antichain. Claim-/

By (1), $\exists p \in \mathbb{G} \cap D$. By (23), $\exists q \in A \ p \leq q$. Since \mathbb{G} is a filter, $q \in \mathbb{G} \cap A$.

Theorem 31 Strictly impredicative **NF** (and a little more) is consistent.

Proof. Above.

So, this much effort it has taken to prove consistency of this fragment of **NF**. It remains to be seen how much effort it will take to prove consistency of the whole theory.

References

- M. Boffa. ZFJ and the consistency problem for NF. Jahrbuch der Kurt Gödel Gesellschaft (Wien), pp. 102– 106, 1988
- M. Crabbé. On the consistency of an impredicative subsystem of Quine's NF. Journal of Symbolic Logic 47, pp. 131–136, 1982
- [3] T. E. Forster. Set Theory with a Universal Set, second edition. Clarendon Press, Oxford, 1995
- [4] T. Jech. *Set theory*, The Third Millennium Edition. Springer-Verlag, 2002
- [5] K. Kunen. Set Theory. An Introduction to Independence Proofs. Elsevier, 1980
- [6] E. P. Specker. Typical ambiguity. In: E. Nagel (ed.), Logic, methodology and philosophy of science, Stanford University Press, pp. 116–123, 1962