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Introduction

Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching

Andreas Abel () Copatterns IOC 2013 2 / 33



Introduction

Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching

Andreas Abel () Copatterns IOC 2013 2 / 33



Introduction

Approaches to Infinite Structures

1 Just functions. (Scheme, ML)

Delay implemented as dummy abstraction, force as dummy application.
Memoization needs imperative references.

2 Terminal coalgebras.

SymML [Hagino, 1987].
Charity [Cockett, 1990s]: Programming with morphism (pointfree).
Object-oriented programming: Objects react to messages.

3 Lists/trees of infinite depth.

Convenient: program just with pattern matching.
Haskell: everything lazy. Finite = infinite.
Coq: inductive/coinductive types both via constructors.

Which is best for dependent types?
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Introduction Coinduction and Subject Reduction

What’s wrong with Coq’s CoInductive?

Coq’s coinductive types are non-wellfounded data types.

CoInductive Stream : Type :=

| cons (head : nat) (tail : Stream).

CoFixpoint zeros : Stream := cons 0 zeros.

Reduction of cofixpoints only under match.
Necessary for strong normalization.

case cons a s of cons x y ⇒ t = t[a/x ][s/y ]
case cofix f of branches = case f (cofix f ) of branches

Leads to loss of subject reduction. [Gimenez, 1996; Oury, 2008]
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Introduction Coinduction and Subject Reduction

Issue 1: Loss of Subject Reduction

Stream : Type a codata type
cons : N→ Stream→ Stream its (co)constructor

zeros : Stream inhabitant of Stream
zeros = cofix (cons 0) zeros = cons 0 (cons 0 (. . .

force : Stream→ Stream an identity
force s = case s of cons x y ⇒ cons x y

eq : (s : Stream)→ s ≡ force s equality type
eq s = case s of cons x y ⇒ refl dep. elimination

eqzeros : zeros ≡ cons 0 zeros offending term
eqzeros = eq zeros −→ refl 6 ` refl : zeros ≡ cons 0 zeros
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Introduction Coinduction and Subject Reduction

Analysis

Problematic: dependent matching on coinductive data.

Γ ` s : Stream Γ, x : N, y : Stream ` t : C (cons x y)

Γ ` case s of cons x y ⇒ t : C (s)

[McBride, 2009]: Let’s see how things unfold.
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Introduction Coinduction and Subject Reduction

Issue 2: Deep Guardedness Not Supported

Fibonacci sequence obeys recurrence:

zipWith ( + )

0 1 1 2 3 5 8 . . .
0 1 1 2 3 5 8 13 . . .

0 1 1 2 3 5 8 13 21 . . .

Direct recursive definition:

fib = cons 0 (cons 1 (zipWith + fib︸ ︷︷ ︸ (tail fib)))
fib = cons 0 ( F (tail fib))

Diverges under Coq’s reduction strategy:

tail fib

= F (tail fib)

= F (F (tail fib))

= ...
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Introduction Coinduction and Subject Reduction

Solution: Paradigm shift

Understand coinduction not through construction,

but through observations.

Our contribution:

New definition scheme “by observation” with copatterns.

Defining equations hold unconditionally.

Subject reduction.

Coverage.

Strong normalization.
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Definition by Observation

Function Definition by Observation

A function is a black box. We can apply it to an argument
(experiment), and observe its result (behavior).

Application is the defining principle of functions [Granström’s
dissertation 2009].

f : A→ B a : A

f a : B

λ-abstraction is derived, secondary to application.

Typical semantic view of functions.
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Definition by Observation

Infinite Objects Defined by Observation

A coinductive object is a black box.

There is a finite set of experiments (projections) we can perform.

The object is determined by the observations we make.

Generalize (Agda) records to coinductive types.

record Stream : Set where

coinductive

field

head : N
tail : Stream

head and tail are the experiments we can make on Stream.

Objects of type Stream are defined by the results of these
experiments.
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Definition by Observation Copatterns

Infinite Objects Defined by Observation

New syntax for defining a cofixpoint.

zeros : Stream

head zeros = 0

tail zeros = zeros

Defining the “constructor”.

cons : N → Stream → Stream

head ((cons x) y) = x

tail ((cons x) y) = y

We call (head _) and (tail _) projection copatterns.

And (_ x) and (_ y) application copatterns.

A left-hand side (head ((_ x) y)) is a composite copattern.
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Definition by Observation Copatterns

Patterns and Copatterns

Patterns

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

Copatterns

q ::= · Hole
| q p Application copattern
| d q Projection/destructor copattern

Definitions

q1[f /·] = t1
...

qn[f /·] = tn
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Definition by Observation Coalgebras

Category-theoretic Perspective

Functor F , coalgebra s : A→ F (A).

Terminal coalgebra force : νF → F (νF ) (elimination).

Coiteration coit(s) : A→ νF constructs infinite objects.

A
s //

coit(s)

��

F (A)

F (coit(s))

��
νF

force // F (νF )

Computation rule: Only unfold infinite object in elimination context.

force(coit(s)(a)) = F (coit(s))(s(a))
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Definition by Observation Coalgebras

Instance: Stream

With F (X ) = N× X we get the streams Stream = νF .

With s() = (0, ()) we get zeros = coit(s)().

1
s //

coit(s)

��

N× 1

F (coit(s))

��
Stream

head,tail // N× Stream

Computation: (head, tail)(coit(s)()) = (0, coit(s)()).
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Definition by Observation Deep Copatterns

Deep Copatterns: Fibonacci-Stream

Fibonacci sequence obeys this recurrence:

zipWith ( + )

0 1 1 2 3 5 8 . . . (fib)
1 1 2 3 5 8 13 . . . (tail fib)

1 2 3 5 8 13 21 . . . tail (tail fib)

This directly leads to a definition by copatterns:

fib : Stream N
(tail (tail fib)) = zipWith + fib (tail fib)

(head (tail fib)) = 1

( (head fib)) = 0

Strongly normalizing definition of fib!
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Normalization

Type-Based Termination

Termination by recursion on smaller size (wellfounded induction).

i : Size, f : ∀j < i . Natj → C ` t : Nati → C

` fix f .t : ∀i . Nati → C

Shift of perspective: from size of argument to depth of observation on
function.

i : Size, f : ∀j < i . A j ` t : A i

` fix f .t : ∀i . A i

Extend to observation on streams:

i : Size, f : ∀j < i . StreamjA ` t : StreamiA

` fix f .t : ∀i . StreamiA
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Normalization

Sized Streams

Semantic idea: Inflationary greatest fixed-point.

ν iF =
⋂
j<i

F (ν jF )

Constructors/destructors:

ν iF
out // ∀j<i .F (ν jF )
inn

oo

Typing of projections:

s : StreamiA

s .head : ∀j<i .A
s : StreamiA

s .tail : ∀j<i .StreamjA
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Normalization

Type-Based Productivity of Fibonacci Stream

Sized version of zipWith.

zipWith : ∀i≤∞. |i | ⇒ ∀A:∗.∀B:∗. ∀C :∗.
(A→ B → C )→
StreamiA→ StreamiB → StreamiC

zipWith i A B C f s t .head j = f (s .head j) (t .head j)
zipWith i A B C f s t .tail j = zipWith j A B C f

(s .tail j) (t .tail j)

Productivity of fib.

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fib k) (fib j .tail k)
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Coverage

Interactive Program Development

Goal: cyclic stream of numbers.

cycleNats : N→ Stream N
cycleNats n = n, n − 1, . . . , 1, 0,N,N − 1, . . . , 1, 0, . . .

Fictuous interactive Agda session.

cycleNats : Nat→ Stream Nat
cycleNats = ?

Split result (function).

cycleNats x = ?

Split result again (stream).

head (cycleNats x) = ?
tail (cycleNats x) = ?
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Coverage

Interactive Program Development

Finish first clause:

head (cycleNats x) = x
tail (cycleNats x) = ?

Split x in second clause.

head (cycleNats x) = x
tail (cycleNats 0) = ?
tail (cycleNats (1 + x ′)) = ?

Fill remaining right hand sides.

head (cycleNats x) = x
tail (cycleNats 0) = cycleNats N
tail (cycleNats (1 + x ′)) = cycleNats x ′
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Coverage

Copattern

Coverage

Coverage algorithm:

Start with the trivial covering.

(Copattern · “hole”)

Repeat

split result or

split a pattern variable

until computed covering matches user-given patterns.
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Coverage

Deriving Covering Set of Clauses

start ( ` · : N→ Stream)

split function (x :N ` · x : Stream)

split stream (x :N ` head (· x) : N) (x :N ` tail (· x) : Stream)

split var. (x :N ` head (· x) : N) ( ` tail (· 0) : Stream)

(x ′:N ` tail (· (1 + x ′)) : Stream)
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Coverage Language and Metatheory

Syntax

finite / positive / type checking

type introduction t pattern p

tuple A1 × A2 (t1, t2) (p1, p2)

data µ,+ c t c p

infinite / negative / type inference

type copattern q elimination e

function A1 → A2 q p e t

record ν,& d q d e
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Coverage Language and Metatheory

Results

Subject reduction.

Non-deterministic coverage algorithm.

Progress: Any well-typed term that is not a value can be reduced.

Thus, well-typed programs do not go wrong.

Prototypic implementations: MiniAgda, Agda.
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Coverage Language and Metatheory

Suggestion to Haskellers

Use copattern syntax for newtypes!

newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where

runState (return a) s = (a,s)

runState (m >>= k) s =

let (a,s’) = runState m

in runState (k a) s’
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Conclusions

Conclusions

Future work:

MiniAgda: A productivity checker with sized types.
Prove strong normalization.
TODO: Integrate copatterns into Agda’s kernel.

Related Work:

Hagino (1987): Categorical data types.
Cockett et al. (1990s): Charity.
Zeilberger, Licata, Harper (2008): Focusing sequent calculus.
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Conclusions

Crash course “Programming in the Infinite”
Model Solution

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching copattern matching
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Additional Slides

Instance: Colists of Natural Numbers

With F (X ) = 1 + N× X we get νF = Colist(N).

With s(n : N) = inr(n, n + 1) we get
coit(s)(n) = (n, n + 1, n + 2, . . . ..).

N s //

coit(s)

��

1 + N× N

F (coit(s))

��
Colist(N)

force // 1 + N× Colist(N)
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Additional Slides

Colists in Agda

Colists as record.

data Maybe A : Set where

nothing : Maybe A

just : A → Maybe A

record Colist A : Set where

coinductive

field

force : Maybe (A × Colist A)

Sequence of natural numbers.

nats : N → N
force (nats n) = just (n , nats (n + 1))
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Additional Slides

Coverage Rules

A /| ~Q Typed copatterns ~Q cover elimination of type A.

Result splitting:

A /| ( ` · : A)

. . . (∆ ` q : B → C ) . . .

. . . (∆, x : B ` q x : C ) . . .

. . . (∆ ` q : R) . . .

. . . (∆ ` d q : Rd)d∈R . . .

Variable splitting:

. . . (∆, x : A1 × A2 ` q[x ] : C ) . . .

. . . (∆, x1:A1, x2:A2 ` q[(x1, x2)] : C ) . . .

. . . (∆, x :D ` q[x ] : C ) . . .

. . . (∆, x ′:Dc ` q[c x ′] : C )c∈D . . .
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Additional Slides Polarization and Focusing

Type-theoretic background

Foundation: coalgebras (category theory) and focusing (polarized logic)

polarity positive negative

linear types 1, ⊕, ⊗, µ (, &, ν
Agda types data →, record
extension finite infinite
introduction constructors definition by copatterns
elimination pattern matching message passing
categorical algebra coalgebra
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