
Copatterns
Programming Infinite Objects by Observations

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich, Germany

Institute of Cybernetics
Tallinn, Estonia

4 July 2013

Andreas Abel () Copatterns IOC 2013 1 / 33

Introduction

Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching

Andreas Abel () Copatterns IOC 2013 2 / 33

Introduction

Crash course “Programming in the Infinite”
Final Exam

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching

Andreas Abel () Copatterns IOC 2013 2 / 33

Introduction

Approaches to Infinite Structures

1 Just functions. (Scheme, ML)

Delay implemented as dummy abstraction, force as dummy application.
Memoization needs imperative references.

2 Terminal coalgebras.

SymML [Hagino, 1987].
Charity [Cockett, 1990s]: Programming with morphism (pointfree).
Object-oriented programming: Objects react to messages.

3 Lists/trees of infinite depth.

Convenient: program just with pattern matching.
Haskell: everything lazy. Finite = infinite.
Coq: inductive/coinductive types both via constructors.

Which is best for dependent types?

Andreas Abel () Copatterns IOC 2013 3 / 33

Introduction Coinduction and Subject Reduction

What’s wrong with Coq’s CoInductive?

Coq’s coinductive types are non-wellfounded data types.

CoInductive Stream : Type :=

| cons (head : nat) (tail : Stream).

CoFixpoint zeros : Stream := cons 0 zeros.

Reduction of cofixpoints only under match.
Necessary for strong normalization.

case cons a s of cons x y ⇒ t = t[a/x][s/y]
case cofix f of branches = case f (cofix f) of branches

Leads to loss of subject reduction. [Gimenez, 1996; Oury, 2008]

Andreas Abel () Copatterns IOC 2013 4 / 33

Introduction Coinduction and Subject Reduction

Issue 1: Loss of Subject Reduction

Stream : Type a codata type
cons : N→ Stream→ Stream its (co)constructor

zeros : Stream inhabitant of Stream
zeros = cofix (cons 0) zeros = cons 0 (cons 0 (. . .

force : Stream→ Stream an identity
force s = case s of cons x y ⇒ cons x y

eq : (s : Stream)→ s ≡ force s equality type
eq s = case s of cons x y ⇒ refl dep. elimination

eqzeros : zeros ≡ cons 0 zeros offending term
eqzeros = eq zeros −→ refl 6 ` refl : zeros ≡ cons 0 zeros

Andreas Abel () Copatterns IOC 2013 5 / 33

Introduction Coinduction and Subject Reduction

Analysis

Problematic: dependent matching on coinductive data.

Γ ` s : Stream Γ, x : N, y : Stream ` t : C (cons x y)

Γ ` case s of cons x y ⇒ t : C (s)

[McBride, 2009]: Let’s see how things unfold.

Andreas Abel () Copatterns IOC 2013 6 / 33

Introduction Coinduction and Subject Reduction

Issue 2: Deep Guardedness Not Supported

Fibonacci sequence obeys recurrence:

zipWith (+)

0 1 1 2 3 5 8 . . .
0 1 1 2 3 5 8 13 . . .

0 1 1 2 3 5 8 13 21 . . .

Direct recursive definition:

fib = cons 0 (cons 1 (zipWith + fib︸ ︷︷ ︸ (tail fib)))
fib = cons 0 (F (tail fib))

Diverges under Coq’s reduction strategy:

tail fib

= F (tail fib)

= F (F (tail fib))

= ...

Andreas Abel () Copatterns IOC 2013 7 / 33

Introduction Coinduction and Subject Reduction

Solution: Paradigm shift

Understand coinduction not through construction,

but through observations.

Our contribution:

New definition scheme “by observation” with copatterns.

Defining equations hold unconditionally.

Subject reduction.

Coverage.

Strong normalization.

Andreas Abel () Copatterns IOC 2013 8 / 33

Definition by Observation

Function Definition by Observation

A function is a black box. We can apply it to an argument
(experiment), and observe its result (behavior).

Application is the defining principle of functions [Granström’s
dissertation 2009].

f : A→ B a : A

f a : B

λ-abstraction is derived, secondary to application.

Typical semantic view of functions.

Andreas Abel () Copatterns IOC 2013 9 / 33

Definition by Observation

Infinite Objects Defined by Observation

A coinductive object is a black box.

There is a finite set of experiments (projections) we can perform.

The object is determined by the observations we make.

Generalize (Agda) records to coinductive types.

record Stream : Set where

coinductive

field

head : N
tail : Stream

head and tail are the experiments we can make on Stream.

Objects of type Stream are defined by the results of these
experiments.

Andreas Abel () Copatterns IOC 2013 10 / 33

Definition by Observation Copatterns

Infinite Objects Defined by Observation

New syntax for defining a cofixpoint.

zeros : Stream

head zeros = 0

tail zeros = zeros

Defining the “constructor”.

cons : N → Stream → Stream

head ((cons x) y) = x

tail ((cons x) y) = y

We call (head _) and (tail _) projection copatterns.

And (_ x) and (_ y) application copatterns.

A left-hand side (head ((_ x) y)) is a composite copattern.

Andreas Abel () Copatterns IOC 2013 11 / 33

Definition by Observation Copatterns

Patterns and Copatterns

Patterns

p ::= x Variable pattern
| () Unit pattern
| (p1, p2) Pair pattern
| c p Constructor pattern

Copatterns

q ::= · Hole
| q p Application copattern
| d q Projection/destructor copattern

Definitions

q1[f /·] = t1
...

qn[f /·] = tn

Andreas Abel () Copatterns IOC 2013 12 / 33

Definition by Observation Coalgebras

Category-theoretic Perspective

Functor F , coalgebra s : A→ F (A).

Terminal coalgebra force : νF → F (νF) (elimination).

Coiteration coit(s) : A→ νF constructs infinite objects.

A
s //

coit(s)

��

F (A)

F (coit(s))

��
νF

force // F (νF)

Computation rule: Only unfold infinite object in elimination context.

force(coit(s)(a)) = F (coit(s))(s(a))

Andreas Abel () Copatterns IOC 2013 13 / 33

Definition by Observation Coalgebras

Instance: Stream

With F (X) = N× X we get the streams Stream = νF .

With s() = (0, ()) we get zeros = coit(s)().

1
s //

coit(s)

��

N× 1

F (coit(s))

��
Stream

head,tail // N× Stream

Computation: (head, tail)(coit(s)()) = (0, coit(s)()).

Andreas Abel () Copatterns IOC 2013 14 / 33

Definition by Observation Deep Copatterns

Deep Copatterns: Fibonacci-Stream

Fibonacci sequence obeys this recurrence:

zipWith (+)

0 1 1 2 3 5 8 . . . (fib)
1 1 2 3 5 8 13 . . . (tail fib)

1 2 3 5 8 13 21 . . . tail (tail fib)

This directly leads to a definition by copatterns:

fib : Stream N
(tail (tail fib)) = zipWith + fib (tail fib)

(head (tail fib)) = 1

((head fib)) = 0

Strongly normalizing definition of fib!

Andreas Abel () Copatterns IOC 2013 15 / 33

Normalization

Type-Based Termination

Termination by recursion on smaller size (wellfounded induction).

i : Size, f : ∀j < i . Natj → C ` t : Nati → C

` fix f .t : ∀i . Nati → C

Shift of perspective: from size of argument to depth of observation on
function.

i : Size, f : ∀j < i . A j ` t : A i

` fix f .t : ∀i . A i

Extend to observation on streams:

i : Size, f : ∀j < i . StreamjA ` t : StreamiA

` fix f .t : ∀i . StreamiA

Andreas Abel () Copatterns IOC 2013 16 / 33

Normalization

Sized Streams

Semantic idea: Inflationary greatest fixed-point.

ν iF =
⋂
j<i

F (ν jF)

Constructors/destructors:

ν iF
out // ∀j<i .F (ν jF)
inn

oo

Typing of projections:

s : StreamiA

s .head : ∀j<i .A
s : StreamiA

s .tail : ∀j<i .StreamjA

Andreas Abel () Copatterns IOC 2013 17 / 33

Normalization

Type-Based Productivity of Fibonacci Stream

Sized version of zipWith.

zipWith : ∀i≤∞. |i | ⇒ ∀A:∗.∀B:∗. ∀C :∗.
(A→ B → C)→
StreamiA→ StreamiB → StreamiC

zipWith i A B C f s t .head j = f (s .head j) (t .head j)
zipWith i A B C f s t .tail j = zipWith j A B C f

(s .tail j) (t .tail j)

Productivity of fib.

fib : ∀i . |i | ⇒ StreamiN
fib i .head j = 0
fib i .tail j .head k = 1
fib i .tail j .tail k = zipWith k N N N (+) (fib k) (fib j .tail k)

Andreas Abel () Copatterns IOC 2013 18 / 33

Coverage

Interactive Program Development

Goal: cyclic stream of numbers.

cycleNats : N→ Stream N
cycleNats n = n, n − 1, . . . , 1, 0,N,N − 1, . . . , 1, 0, . . .

Fictuous interactive Agda session.

cycleNats : Nat→ Stream Nat
cycleNats = ?

Split result (function).

cycleNats x = ?

Split result again (stream).

head (cycleNats x) = ?
tail (cycleNats x) = ?

Andreas Abel () Copatterns IOC 2013 19 / 33

Coverage

Interactive Program Development

Finish first clause:

head (cycleNats x) = x
tail (cycleNats x) = ?

Split x in second clause.

head (cycleNats x) = x
tail (cycleNats 0) = ?
tail (cycleNats (1 + x ′)) = ?

Fill remaining right hand sides.

head (cycleNats x) = x
tail (cycleNats 0) = cycleNats N
tail (cycleNats (1 + x ′)) = cycleNats x ′

Andreas Abel () Copatterns IOC 2013 20 / 33

Coverage

Copattern

Coverage

Coverage algorithm:

Start with the trivial covering.

(Copattern · “hole”)

Repeat

split result or

split a pattern variable

until computed covering matches user-given patterns.

Andreas Abel () Copatterns IOC 2013 21 / 33

Coverage

Copattern Coverage

Coverage algorithm:

Start with the trivial covering. (Copattern · “hole”)

Repeat

split result or
split a pattern variable

until computed covering matches user-given patterns.

Andreas Abel () Copatterns IOC 2013 21 / 33

Coverage

Deriving Covering Set of Clauses

start (` · : N→ Stream)

split function (x :N ` · x : Stream)

split stream (x :N ` head (· x) : N) (x :N ` tail (· x) : Stream)

split var. (x :N ` head (· x) : N) (` tail (· 0) : Stream)

(x ′:N ` tail (· (1 + x ′)) : Stream)

Andreas Abel () Copatterns IOC 2013 22 / 33

Coverage Language and Metatheory

Syntax

finite / positive / type checking

type introduction t pattern p

tuple A1 × A2 (t1, t2) (p1, p2)

data µ,+ c t c p

infinite / negative / type inference

type copattern q elimination e

function A1 → A2 q p e t

record ν,& d q d e

Andreas Abel () Copatterns IOC 2013 23 / 33

Coverage Language and Metatheory

Results

Subject reduction.

Non-deterministic coverage algorithm.

Progress: Any well-typed term that is not a value can be reduced.

Thus, well-typed programs do not go wrong.

Prototypic implementations: MiniAgda, Agda.

Andreas Abel () Copatterns IOC 2013 24 / 33

Coverage Language and Metatheory

Suggestion to Haskellers

Use copattern syntax for newtypes!

newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where

runState (return a) s = (a,s)

runState (m >>= k) s =

let (a,s’) = runState m

in runState (k a) s’

Andreas Abel () Copatterns IOC 2013 25 / 33

Conclusions

Conclusions

Future work:

MiniAgda: A productivity checker with sized types.
Prove strong normalization.
TODO: Integrate copatterns into Agda’s kernel.

Related Work:

Hagino (1987): Categorical data types.
Cockett et al. (1990s): Charity.
Zeilberger, Licata, Harper (2008): Focusing sequent calculus.

Andreas Abel () Copatterns IOC 2013 26 / 33

Conclusions

Crash course “Programming in the Infinite”
Model Solution

Problem 1 (Duality): Complete this table!

finite infinite

algebra coalgebra

inductive coinductive

constructors destructors

pattern matching copattern matching

Andreas Abel () Copatterns IOC 2013 27 / 33

Additional Slides

Instance: Colists of Natural Numbers

With F (X) = 1 + N× X we get νF = Colist(N).

With s(n : N) = inr(n, n + 1) we get
coit(s)(n) = (n, n + 1, n + 2,).

N s //

coit(s)

��

1 + N× N

F (coit(s))

��
Colist(N)

force // 1 + N× Colist(N)

Andreas Abel () Copatterns IOC 2013 28 / 33

Additional Slides

Colists in Agda

Colists as record.

data Maybe A : Set where

nothing : Maybe A

just : A → Maybe A

record Colist A : Set where

coinductive

field

force : Maybe (A × Colist A)

Sequence of natural numbers.

nats : N → N
force (nats n) = just (n , nats (n + 1))

Andreas Abel () Copatterns IOC 2013 29 / 33

Additional Slides

Coverage Rules

A /| ~Q Typed copatterns ~Q cover elimination of type A.

Result splitting:

A /| (` · : A)

. . . (∆ ` q : B → C) . . .

. . . (∆, x : B ` q x : C) . . .

. . . (∆ ` q : R) . . .

. . . (∆ ` d q : Rd)d∈R . . .

Variable splitting:

. . . (∆, x : A1 × A2 ` q[x] : C) . . .

. . . (∆, x1:A1, x2:A2 ` q[(x1, x2)] : C) . . .

. . . (∆, x :D ` q[x] : C) . . .

. . . (∆, x ′:Dc ` q[c x ′] : C)c∈D . . .

Andreas Abel () Copatterns IOC 2013 30 / 33

Additional Slides Polarization and Focusing

Type-theoretic background

Foundation: coalgebras (category theory) and focusing (polarized logic)

polarity positive negative

linear types 1, ⊕, ⊗, µ (, &, ν
Agda types data →, record
extension finite infinite
introduction constructors definition by copatterns
elimination pattern matching message passing
categorical algebra coalgebra

Andreas Abel () Copatterns IOC 2013 31 / 33

	Introduction
	Coinduction and Subject Reduction

	Definition by Observation
	Copatterns
	Coalgebras
	Deep Copatterns

	Normalization
	Coverage
	Language and Metatheory

	Conclusions
	Additional Slides
	Polarization and Focusing

