Towards refined notions of computation: the global state example

Danel Ahman
LFCS, University of Edinburgh

20 December 2012
joint work with Gordon Plotkin and Alex Simpson

Overview

- Moggi's monadic approach to computational effects
- Lawvere theories and the computational effects they identify
- Refinement types and adding more detailed specifications
- Refinement types + Lawvere theories $=$? on an example of refined global state

Moggi's monadic approach

Moggi's monadic approach

- Semantics of pure simply-typed lambda calculus:
- take a cartesian-closed category \mathcal{C}
- interpret base types α, β, \ldots as objects $\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \ldots$
- interpret product type as finite product structure on \mathcal{C}
- interpret (pure) function type $\sigma \rightarrow \tau$ as the exponential $\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket$
- interpret value terms $\Gamma \vdash t: \sigma$ as morphisms $\llbracket\ulcorner\rrbracket \longrightarrow \llbracket \sigma \rrbracket$

Moggi's monadic approach

- Semantics of pure simply-typed lambda calculus:
- take a cartesian-closed category \mathcal{C}
- interpret base types α, β, \ldots as objects $\llbracket \alpha \rrbracket, \llbracket \beta \rrbracket, \ldots$
- interpret product type as finite product structure on \mathcal{C}
- interpret (pure) function type $\sigma \rightarrow \tau$ as the exponential $\llbracket \sigma \rrbracket \Rightarrow \llbracket \tau \rrbracket$
- interpret value terms $\Gamma \vdash t: \sigma$ as morphisms $\llbracket\ulcorner\rrbracket \longrightarrow \llbracket \sigma \rrbracket$
- Moggi's insight for impure languages:
- use a strong monad $T: \mathcal{C} \longrightarrow \mathcal{C}$
to model computational effects
- $T \llbracket \sigma \rrbracket$ stands for computations returning values from $\llbracket \sigma \rrbracket$
- interpret impure function type $\sigma \rightharpoonup \tau$ as the Kleisli exponential $\llbracket \sigma \rrbracket \Rightarrow T \llbracket \tau \rrbracket$
- interpret computations as Kleisli maps $\llbracket \Gamma \rrbracket \longrightarrow T \llbracket \sigma \rrbracket$

Moggi's monadic approach

- Example monads proposed by Moggi
- exceptions - $T X=X+E$
- global state - $T X=(S \times X)^{S}$
- (stateful computations $S \times X \longrightarrow S \times Y$)
- local state $-(T X)_{n}=\left(\int^{m \in(n / I)}\left(S_{m} \times X_{m}\right)\right)^{S_{n}}$
- finite nondeterminism - TX $=\mathcal{F}^{+} X$
- continuations - $T X=R^{R^{X}}$
- Also possible to combine different monads, e.g.,
- state plus exceptions - $T X=(S \times(X+E))^{S}$

Moggi's monadic approach

- Moggi's work gives us an elegant denotational semantics of computational effects
- However, this denotation does not tell us much about how to construct such effects
- We have to note their operational meaning and how such effects (e.g., state) are implemented in programming languages

Lawvere theories

Lawvere theories

- A countable Lawvere theory consists of:
- a small category \mathcal{L} with countable products
- an id. on objects countable-product preserving functor

$$
J: \aleph_{1}^{o p} \longrightarrow \mathcal{L}
$$

- (where \aleph_{1} is the skeleton of the category of countable sets)
- Think of the hom $\mathcal{L}(n, 1)$ (abbrv. $\mathcal{L}(J(n), J(1)))$ as a set of n-ary operations in the theory
- Then it suffices to give an algebraic theory as:
- operations of are given by morphisms op: $O \longrightarrow I$
- (equivalently a family of operations $o p_{i \in I}: O \longrightarrow 1$)
- equations are given by commuting diagrams

Models of Lawvere theories

- A model of a Lawvere theory (\mathcal{L}, J) in a category \mathcal{C} with countable products
- is a countable product preserving functor $M: \mathcal{L} \longrightarrow \mathcal{C}$
- The models of \mathcal{L} together with nat. transfs. :
- form a category $\operatorname{Mod}(\mathcal{L}, \mathcal{C})$ with $U: \operatorname{Mod}(\mathcal{L}, \mathcal{C}) \longrightarrow \mathcal{C}$
- having a left adjoint $F: \mathcal{C} \longrightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{C})$
- the adjoint functors induce a monad $T=U F$
- For the purposes of this talk, we let $\mathcal{C}=$ Set

Models of Lawvere theories

- A model of a Lawvere theory (\mathcal{L}, J) in a category \mathcal{C} with countable products
- is a countable product preserving functor $M: \mathcal{L} \longrightarrow \mathcal{C}$
- The models of \mathcal{L} together with nat. transfs. :
- form a category $\operatorname{Mod}(\mathcal{L}, \mathcal{C})$ with $U: \operatorname{Mod}(\mathcal{L}, \mathcal{C}) \longrightarrow \mathcal{C}$
- having a left adjoint $F: \mathcal{C} \longrightarrow \operatorname{Mod}(\mathcal{L}, \mathcal{C})$
- the adjoint functors induce a monad $T=U F$
- For the purposes of this talk, we let $\mathcal{C}=$ Set
- To give a model M of \mathcal{L} is equivalent to
- giving a set $X=M 1$
- for every operation op: $O \longrightarrow I$ a morphism $X^{O} \longrightarrow X^{\prime}$
- Because
- M1 determines $M O$ up to coherent isomorphism
- $M O \cong M\left(\prod_{o \in O} 1\right) \cong \prod_{o \in O}(M 1) \cong(M 1)^{O}$

Global state example

- Plotkin and Power noticed that the global state monad is determined by the following countable Lawvere theory
- Countable set of values V and a finite set of locations Loc
- Take the set of states to be $S=V^{\text {Loc }}$
- The theory is freely generated by operations - lookup : V \longrightarrow Loc subject to commuting diagrams expressed set-theoretically

Global state example

- Plotkin and Power noticed that the global state monad is determined by the following countable Lawvere theory
- Countable set of values V and a finite set of locations Loc
- Take the set of states to be $S=V^{\text {Loc }}$
- The theory is freely generated by operations
- lookup : V Loc
- update : $1 \longrightarrow$ Loc $\times V$

Global state example

- Plotkin and Power noticed that the global state monad is determined by the following countable Lawvere theory
- Countable set of values V and a finite set of locations Loc
- Take the set of states to be $S=V^{\text {Loc }}$
- The theory is freely generated by operations
- lookup : V Loc
- update : $1 \longrightarrow$ Loc $\times V$
subject to commuting diagrams expressed set-theoretically
(1) lookup $_{\text {loc }}\left(\text { update }_{l o c, v}(x)\right)_{v}=x$

Global state example

- Plotkin and Power noticed that the global state monad is determined by the following countable Lawvere theory
- Countable set of values V and a finite set of locations Loc
- Take the set of states to be $S=V^{\text {Loc }}$
- The theory is freely generated by operations
- lookup : V Loc
- update : $1 \longrightarrow$ Loc $\times V$
subject to commuting diagrams expressed set-theoretically
(1) lookup ${ }_{\text {loc }}\left(\text { update }_{\text {loc }, v}(x)\right)_{v}=x$
(2) lookuploc $\left(\text { lookup loc }\left(x_{v v^{\prime}}\right)_{v}\right)_{v^{\prime}}=$ lookup $_{\text {loc }}\left(x_{v v}\right)_{v}$

Global state example

- Plotkin and Power noticed that the global state monad is determined by the following countable Lawvere theory
- Countable set of values V and a finite set of locations Loc
- Take the set of states to be $S=V^{\text {Loc }}$
- The theory is freely generated by operations
- lookup : V Loc
- update : $1 \longrightarrow$ Loc $\times V$
subject to commuting diagrams expressed set-theoretically
(1) lookup ${ }_{\text {loc }}\left(\text { update }_{\text {loc }, v}(x)\right)_{v}=x$
(2) lookuploc $\left(\text { lookup loc }\left(x_{v v^{\prime}}\right)_{v}\right)_{v^{\prime}}=$ lookup $_{\text {loc }}\left(x_{v v}\right)_{v}$
(3) update ${ }_{\text {loc }, v}\left(\right.$ update $\left._{\text {loc }, v^{\prime}}(x)\right)=$ update $_{\text {loc }, v^{\prime}}(x)$
(4) update ${ }_{\text {loc }, v}\left(\operatorname{read}_{\text {loc }}\left(x_{v}^{\prime}\right)_{v}^{\prime}\right)=$ update $_{l o c, v}\left(x_{v}\right)$
(5) update ${ }_{l o c, v}\left(\right.$ update $\left._{l o c^{\prime}, v^{\prime}}(x)\right)=$
update $_{\text {loc }{ }^{\prime}, \mathbf{v}^{\prime}}\left(\right.$ update $\left._{\text {loc }, v}(x)\right) \quad\left(\right.$ loc \neq loc' $\left.^{\prime}\right)$
(6) \ldots

Small detour into local state

- $(T X)_{n}=\left(\int^{m \in(n / n j)}\left(S_{m} \times X_{m}\right)\right)^{S_{n}}$
- Monad and algebra are given in category Set ${ }^{\operatorname{lnj}}$
- (Inj is the category of finite sets and injections)

Small detour into local state

- $(T X)_{n}=\left(\int^{m \in(n / n j)}\left(S_{m} \times X_{m}\right)\right)^{S_{n}}$
- Monad and algebra are given in category Set ${ }^{\text {Inj }}$
- (Inj is the category of finite sets and injections)
- $L_{n}=\operatorname{lnj}(1, n), \quad V_{n}=V, \quad S_{n}=V^{n}$

Small detour into local state

- $(T X)_{n}=\left(\int^{m \in(n / l n j)}\left(S_{m} \times X_{m}\right)\right)^{S_{n}}$
- Monad and algebra are given in category Set ${ }^{\operatorname{Inj}}$
- (Inj is the category of finite sets and injections)
- $L_{n}=\operatorname{Inj}(1, n)$,
$V_{n}=V, \quad S_{n}=V^{n}$
- The algebra is given by
- lookup : $X^{V} \longrightarrow X^{\text {Loc }}$
- update : $X \longrightarrow X^{\text {Loc } \times V}$
- block : $[L, X] \longrightarrow X^{V}$
- subject to appropriate diagrams commuting
\square

Small detour into local state

- $(T X)_{n}=\left(\int^{m \in(n / I n j)}\left(S_{m} \times X_{m}\right)\right)^{S_{n}}$
- Monad and algebra are given in category Set ${ }^{I n j}$
- (Inj is the category of finite sets and injections)
- $L_{n}=\operatorname{Inj}(1, n)$,
$V_{n}=V, \quad S_{n}=V^{n}$
- The algebra is given by
- lookup : $X^{V} \longrightarrow X^{\text {Loc }}$
- update : $X \longrightarrow X^{\text {Loc } \times V}$
- block : $[L, X] \longrightarrow X^{V}$
- subject to appropriate diagrams commuting
- $\left(Y^{X}\right)_{n}=[\operatorname{Inj}, \operatorname{Set}](X-\times \operatorname{Inj}(n,-), Y-)$
- $[X, Y]_{n}=[\operatorname{Inj}, \operatorname{Set}](X-, Y(n+-))$
- See also work by Power (cotensoring models with comodels) and Staton (completeness via nominal sets)

Refinement types

Refinement types

- Also known as predicate subtyping
- Assume we are given some simple types
- Nat, Loc, ...
- But often we want to talk about refined versions of them
- even natural numbers
- odd natural numbers
- open locations
- closed locations
- Refinement types provide us with such a framework
- "equipping your existing type system with suitable logic"

Refinement types

- Well-formedness of refinement types

$$
\begin{array}{cc}
\frac{\Gamma \vdash \sigma: \operatorname{Ref}(\sigma)}{\Gamma \vdash \phi: \operatorname{Ref}(\sigma) \Gamma, x: \phi \vdash P: w f} \\
\Gamma \vdash(x: \phi) P: \operatorname{Ref}(\sigma) & \frac{\Gamma \vdash \phi: \operatorname{Ref}\left(\sigma_{1}\right) \Gamma, x: \phi \vdash \psi: \operatorname{Ref}\left(\sigma_{2}\right)}{\Gamma \vdash \Sigma_{x: \phi} \psi: \operatorname{Ref}\left(\sigma_{1} \times \sigma_{2}\right)}
\end{array} \frac{\Gamma \vdash \phi: \operatorname{Ref}(\sigma) \Gamma, x: \phi \vdash \psi: \operatorname{Ref}(\tau)}{\Gamma \vdash \Pi_{x: \phi} \psi: \operatorname{Ref}(\sigma \rightarrow \tau)}
$$

Refinement types

- Well-formedness of refinement types

$$
\begin{array}{cc}
\frac{\Gamma \vdash \sigma: \operatorname{Ref}(\sigma)}{} & \frac{\Gamma \vdash \phi: \operatorname{Ref}(\sigma) \Gamma, x: \phi \vdash P: w f}{\Gamma \vdash(x: \phi) P: \operatorname{Ref}(\sigma)} \\
\frac{\Gamma \vdash \phi: \operatorname{Ref}\left(\sigma_{1}\right)}{\Gamma, x: \phi \vdash \psi: \operatorname{Ref}\left(\sigma_{2}\right)} & \frac{\Gamma \vdash \phi: \operatorname{Ref}(\sigma) \quad \Gamma, x: \phi \vdash \psi: \operatorname{Ref}(\tau)}{\Gamma \vdash \Sigma_{x: \phi} \psi: \operatorname{Ref}\left(\sigma_{1} \times \sigma_{2}\right)}
\end{array}
$$

- Examples of typing rules

$$
\begin{gathered}
\frac{\Gamma \vdash t: \phi \quad \Gamma \vdash P[t / x]}{\Gamma \vdash t:(x: \phi) P} \\
\frac{\Gamma, x: \phi \vdash t: \psi}{\Gamma \vdash \lambda x: \phi \cdot t: \Pi_{x: \phi} \psi} \frac{\Gamma \vdash t_{1}: \Pi_{x: \phi} \psi \quad \Gamma \vdash t_{2}: \phi}{\Gamma \vdash t_{1} t_{2}: \psi\left[t_{2} / x\right]}
\end{gathered}
$$

Refinement types

- Set-theoretic semantics (ala. Denney)
- Interpret refinement type $\Gamma \vdash \phi: \operatorname{Ref}(\sigma)$

$$
\text { as a family of PERs } \llbracket\ulcorner\rrbracket \longrightarrow P E R(\llbracket \sigma \rrbracket)
$$

- other type constructors (sums, products) are interpreted straightforwardly
- terms $\Gamma \vdash t: \phi$ are interpreted as $\llbracket\ulcorner\rrbracket \longrightarrow \mathcal{P}(\llbracket \sigma \rrbracket)$
(subsets denoting the 'total realizers')
- Categorical semantics (ala. Jacobs)
- based on fibrations and comprehension categories

Refinement types

- Set-theoretic semantics (ala. Denney)
- Interpret refinement type $\Gamma \vdash \phi: \operatorname{Ref}(\sigma)$ as a family of PERs $\llbracket \Gamma \rrbracket \longrightarrow P E R(\llbracket \sigma \rrbracket)$
- other type constructors (sums, products) are interpreted straightforwardly
- terms $\Gamma \vdash t: \phi$ are interpreted as $\llbracket\ulcorner\rrbracket \longrightarrow \mathcal{P}(\llbracket \sigma \rrbracket)$
(subsets denoting the 'total realizers')
- Categorical semantics (ala. Jacobs)
- based on fibrations and comprehension categories

Refining global state

Refining global state

- We had the finite set of locations Loc
- Assume that we now have predicates Open(Loc) and Closed $($ Loc $)=\neg$ Open(loc) on the locations Loc
- Conceptually they denote subsets of Loc

Refining global state

- We had the finite set of locations Loc
- Assume that we now have predicates $\operatorname{Open}(\operatorname{Loc})$ and Closed $($ Loc $)=\neg$ Open(loc) on the locations Loc
- Conceptually they denote subsets of Loc
- We should only be able to read from and write to locations that are open
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$

Refining global state

- We had the finite set of locations Loc
- Assume that we now have predicates $\operatorname{Open}(\operatorname{Loc})$ and Closed $($ Loc $)=\neg$ Open(loc) on the locations Loc
- Conceptually they denote subsets of Loc
- We should only be able to read from and write to locations that are open
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$
- However, notice that this requires an a priori given collection of open locations

Refining global state

- So we should also add operations for opening and closing locations
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$
- open : $X \longrightarrow X^{\text {Closed(Loc) }}$
- close $: X \longrightarrow X^{\text {Open(Loc) }}$

Refining global state

- So we should also add operations for opening and closing locations
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$
- open : $X \longrightarrow X^{\text {Closed(Loc) }}$
- close : $X \longrightarrow X^{\text {Open(Loc) }}$
- But we should be able to distinguish between computations able to use different locations
- We could take inspiration from the algebra for local state
- work in the category Set ${ }^{W}$

Refining global state

- So we should also add operations for opening and closing locations
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$
- open : $X \longrightarrow X^{\text {Closed(Loc) }}$
- close : $X \longrightarrow X^{\text {Open(Loc) }}$
- But we should be able to distinguish between computations able to use different locations
- We could take inspiration from the algebra for local state
- work in the category Set ${ }^{W}$

Refining global state

- So we should also add operations for opening and closing locations
- lookup : $X^{V} \longrightarrow X^{\text {Open(Loc) }}$
- update $: X \longrightarrow X^{\text {Open }(L o c) \times V}$
- open : $X \longrightarrow X^{\text {Closed(Loc) }}$
- close $: X \longrightarrow X^{\text {Open(Loc) }}$
- But we should be able to distinguish between computations able to use different locations
- We could take inspiration from the algebra for local state
- work in the category Set ${ }^{W}$
- However, we don't yet know what the appropriate non-discrete world category and the corresponding (monoidal) closed structure should be

Refining global state (W-sorted theories)

- We don't know the definition in a single sorted theory
- So let's try to work in W-sorted algebraic theories
- A W-sorted algebraic theory consists of:
\qquad

Refining global state (W-sorted theories)

- We don't know the definition in a single sorted theory
- So let's try to work in W-sorted algebraic theories
- A W-sorted algebraic theory consists of:
- a set of sorts W (we think of them as worlds)
- a small category \mathcal{L} with countable products
- an id. on objects countable-product preserving functor

$$
J: W^{*} \longrightarrow \mathcal{L}
$$

- (where W^{*} has as objects words w_{0}, \ldots, w_{n} over W)

Refining global state (W-sorted theories)

- We don't know the definition in a single sorted theory
- So let's try to work in W-sorted algebraic theories
- A W -sorted algebraic theory consists of:
- a set of sorts W (we think of them as worlds)
- a small category \mathcal{L} with countable products
- an id. on objects countable-product preserving functor

$$
J: W^{*} \longrightarrow \mathcal{L}
$$

- (where W^{*} has as objects words w_{0}, \ldots, w_{n} over W)
- A model of a W-sorted theory is given by
- a countable product preserving functor $M: \mathcal{L} \longrightarrow$ Set

Refining global state (W-sorted theories)

- We don't know the definition in a single sorted theory
- So let's try to work in W-sorted algebraic theories
- A W -sorted algebraic theory consists of:
- a set of sorts W (we think of them as worlds)
- a small category \mathcal{L} with countable products
- an id. on objects countable-product preserving functor

$$
J: W^{*} \longrightarrow \mathcal{L}
$$

- (where W^{*} has as objects words w_{0}, \ldots, w_{n} over W)
- A model of a W-sorted theory is given by
- a countable product preserving functor $M: \mathcal{L} \longrightarrow$ Set
- The forgetful functor $U: \operatorname{Mod}(\mathcal{L}$, Set $) \longrightarrow$ Set W again has a left adjoint F inducing a monad $T=U F$

Refining global state (W-sorted theories)

- Let the worlds be $W=B o o{ }^{W}$
- We have families of operations in the theory
- lookup $w \in W, l o c \in \operatorname{Open}_{w}(\operatorname{Loc}): w, \ldots, w \longrightarrow w$
- update $_{w \in W, \text { loc } \in \operatorname{Open}_{w}(L o c), v \in V: w \longrightarrow w}$
- open $w \in W,{\text { loc } \in O \operatorname{Oen}_{w}(L o c)}: w \longrightarrow w[$ loc $\mapsto \perp]$
- close $_{w \in W, \text { loc } \in \text { Closed }_{w}(\text { Loc }):} w \longrightarrow w[$ loc $\mapsto \top]$
- satisfying appropriate commuting diagrams

Refining global state (W-sorted theories)

- Let the worlds be $W=B o o{ }^{W}$
- We have families of operations in the theory
- lookup $w \in W, l o c \in \operatorname{Open}_{w}(\operatorname{Loc}): w, \ldots, w \longrightarrow w$
- update $w \in W$, loc $\in \operatorname{Open}_{w}(\operatorname{Loc}), v \in V: w \longrightarrow w$
- open $w \in W$, loc $\in \operatorname{Open}_{w}(L o c): w \longrightarrow w[l o c \mapsto \perp]$
- close $_{w \in W, \text { loc } \in \text { Closed }_{w}(\text { Loc }): w \longrightarrow w[l o c \mapsto T]}$
- satisfying appropriate commuting diagrams
- Giving us the algebra
- lookup $w \in W$, loc Open $_{w}($ Loc $):\left(X^{V}\right)_{w} \longrightarrow X_{w}$
- update $_{w \in W, \text { loc } \operatorname{Open}_{w}(\operatorname{Loc}), v \in V: X_{w} \longrightarrow X_{w}}$
- open $_{w \in W, \text { loc } \in \text { Open }_{w}(L o c):} X_{w} \longrightarrow X_{w[l o c \mapsto \perp]}$
- close $_{w \in W, \text { loc } \in \text { Closed }_{w}(L o c):} X_{w} \longrightarrow X_{w[l o c \mapsto T]}$

Refining global state (W-sorted theories)

- So we have the algebra
- lookup ${ }_{w \in W, \text { loc } \in \text { Open }_{w}(\text { Loc })}:\left(X^{V}\right)_{w} \longrightarrow X_{w}$
- update ${ }_{w \in W, \text { loc } \in \operatorname{Open}_{w}(\text { Loc }), v \in V: X_{w} \longrightarrow X_{w}}$
- open $_{\left.w \in W, l o c \in O \text { Oen }_{w}(L o c): X_{w} \longrightarrow X_{w[l o c \mapsto \perp]}\right]}$
- close $_{w \in W, \text { loc } \in \text { Closed }_{w}(L o c)}: X_{w} \longrightarrow X_{w[l o c \mapsto T]}$

Refining global state (W-sorted theories)

- So we have the algebra
- lookup ${ }_{w \in W, \text { loc } \in \text { Open }_{w}(\text { Loc })}:\left(X^{V}\right)_{w} \longrightarrow X_{w}$
- update ${ }_{w \in W, \text { loc } \in \operatorname{Open}_{w}(\text { Loc }), v \in V: X_{w} \longrightarrow X_{w}}$
- open $_{w \in W, l o c \in O \text { Opn }_{w}(L o c):} X_{w} \longrightarrow X_{w[l o c \mapsto \perp]}$
- close $_{w \in W, \text { loc } \in \operatorname{Closed}_{w}(L o c)}: X_{w} \longrightarrow X_{w[l o c \mapsto T]}$
- Inducing monad $T X_{w}=U F X_{w}=\left(\sum_{w^{\prime} \in W}\left(S_{w^{\prime}} \times X_{w^{\prime}}\right)\right)^{S_{w}}$

Refining global state (W-sorted theories)

- So we have the algebra
- lookup ${ }_{w \in W, \text { loc } \in \text { Open }_{w}(\text { Loc })}:\left(X^{V}\right)_{w} \longrightarrow X_{w}$
- update ${ }_{w \in W, \text { loc } \in \operatorname{Open}_{w}(\text { Loc }), v \in V: X_{w} \longrightarrow X_{w}}$
- open $_{w \in W, l o c \in O \text { Oen }_{w}(L o c): ~} X_{w} \longrightarrow X_{w[l o c \mapsto \perp]}$
- close $_{w \in W, \text { loc } \in \text { Closed }_{w}(L o c):} X_{w} \longrightarrow X_{w[l o c \mapsto T]}$
- Inducing monad $T X_{w}=U F X_{w}=\left(\sum_{w^{\prime} \in W}\left(S_{w^{\prime}} \times X_{w^{\prime}}\right)\right)^{S_{w}}$
- With the unit $\eta_{X}: X \longrightarrow U F X$ of the adjunction given by:

$$
\eta_{x, w} \gamma=\lambda s . \operatorname{inj}_{w}(s, \gamma)
$$

- And the counit $\varepsilon_{A}: F U A \longrightarrow A$ of the adjunction:

$$
\begin{aligned}
& \varepsilon_{A, w}=\left(\amalg\left(S \times A_{w^{\prime}}\right)\right)^{S}\left(\amalg(S \times \overrightarrow{\text { colose }})^{S}\right. \\
& \left(S \times A_{w^{\top}}\right)^{S} \xrightarrow{(\underline{\text { writite }})^{S}}\left(A_{w^{\top}}\right)^{S} \xrightarrow{\overrightarrow{\text { read }}} A_{w^{\top}} \xrightarrow{\overrightarrow{\text { opeh }}} A_{w}
\end{aligned}
$$

- And the Kleisli extension is given by $(-)^{*}=U \varepsilon F$

Another example of a straightforward theory

- Inspiration from McBride's work on file operations
- Take the simple set of worlds $W=$ Bool
- We are interested in axiomatizing logging in to and logging off from some system
- Then we have the theory
- Log $I_{p \in \text { Password }}$: true, false \longrightarrow false
- DoSomething : true \longrightarrow true
- LogOut : false \longrightarrow true
- And the algebra
- Log $\ln _{p \in \text { Password }}: X_{\text {true }} \times X_{\text {false }} \longrightarrow X_{\text {false }}$
- DoSomething : $X_{\text {true }} \longrightarrow X_{\text {true }}$
- LogOut : $X_{\text {false }} \longrightarrow X_{\text {true }}$

What next?

- The W-sorted approach gave us the monad we were after
- Can we make it work naturally in the singlesorted case?

What next?

- The W-sorted approach gave us the monad we were after
- Can we make it work naturally in the singlesorted case?
- Idea, try to give more general form to the operations in the algebra
- $o p_{w}: \prod_{o \in O_{w}} X_{\delta_{o}(w, o)} \longrightarrow \prod_{i \in I_{w}} X_{\delta_{i}(w, i)}$
and in the theory
- $o p_{w}: \coprod_{o \in O_{w}}\left\{\delta_{o}(w, o)\right\} \longrightarrow \coprod_{i \in /_{w}}\left\{\delta_{i}(w, i)\right\}$

What next?

- The W-sorted approach gave us the monad we were after
- Can we make it work naturally in the singlesorted case?
- Idea, try to give more general form to the operations in the algebra
- $o p_{w}: \prod_{o \in O_{w}} X_{\delta_{o}(w, o)} \longrightarrow \prod_{i \in I_{w}} X_{\delta_{i}(w, i)}$
and in the theory
- $o p_{w}: \coprod_{o \in O_{w}}\left\{\delta_{o}(w, o)\right\} \longrightarrow \coprod_{i \in I_{w}}\left\{\delta_{i}(w, i)\right\}$
- But can't always define them uniformly in w, e.g.:

$$
\text { lookup }[i \mapsto \perp]: \coprod_{V \in V}\left\{\left[l_{i} \mapsto \perp\right]\right\} \longrightarrow 0
$$

- Seems to be kind of inherent to the idea that not all operations should be definable in all worlds

Questions?

