Towards refined notions of computation:
the global state example

Danel Ahman
LFCS, University of Edinburgh

20 December 2012

joint work with Gordon Plotkin and Alex Simpson

wive,

2 . THE UNIVERSITY of EDINBURGH

N “ e .

OV Informqtlcs Ifcs Labf)ratory for Eoundatlons
et of Computer Science

Overview

e Moggi's monadic approach to computational effects

Lawvere theories
and the computational effects they identify

Refinement types
and adding more detailed specifications

Refinement types + Lawvere theories = 7
on an example of refined global state

Moggi's monadic approach

Moggi's monadic approach

e Semantics of pure simply-typed lambda calculus:
e take a cartesian-closed category C

e interpret base types a, 3, ... as objects [a], [5], ...
e interpret product type as finite product structure on C

interpret (pure) function type o — 7
as the exponential [o] = [7]

e interpret value terms I' F t : o as morphisms [[] — [o]

Moggi's monadic approach

e Semantics of pure simply-typed lambda calculus:
e take a cartesian-closed category C

e interpret base types a, 3, ... as objects [a], [5], ...
e interpret product type as finite product structure on C

e interpret (pure) function type o — T
as the exponential [o] = [7]

e interpret value terms I' F t : o as morphisms [[] — [o]

e Moggi's insight for impure languages:
e use astrongmonad 7T :C —C
to model computational effects

e T[o] stands for computations returning values from [o]

e interpret impure function type 0 — 7
as the Kleisli exponential [o] = T[]

e interpret computations as Kleisli maps [[] — T[o]

Moggi's monadic approach

e Example monads proposed by Moggi

e exceptions- TX =X+ E
global state - TX = (S x X)*®

o (stateful computations S x X — Sx Y)

me(n/l)
local state - (TX), = (/ (Sm % Xm))>n

finite nondeterminism - TX = FtX
continuations - TX = RR"

e Also possible to combine different monads, e.g.,

e state plus exceptions - TX = (S x (X + E))°

Moggi's monadic approach

e Moggi's work gives us an elegant denotational semantics
of computational effects

e However, this denotation does not tell us much about
how to construct such effects

e We have to note their operational meaning and how such
effects (e.g., state) are implemented in programming
languages

| awvere theories

Lawvere theories

e A countable Lawvere theory consists of:
e a small category £ with countable products
e an id. on objects countable-product preserving functor
JiRP — L
o (where X1 is the skeleton of the category of countable
sets)

e Think of the hom L(n,1) (abbrv. £(J(n),J(1)))
as a set of n-ary operations in the theory

e Then it suffices to give an algebraic theory as:
e operations of are given by morphisms op: O — /
o (equivalently a family of operations opjc;: O — 1)

e equations are given by commuting diagrams

Models of Lawvere theories

e A model of a Lawvere theory (£, J) in a category C with
countable products
e is a countable product preserving functor M : L — C

e The models of L together with nat. transfs. :
e form a category Mod(L,C) with U : Mod(L,C) — C
e having a left adjoint F : C — Mod(L,C)
e the adjoint functors induce a monad T = UF

e For the purposes of this talk, we let C = Set

Models of Lawvere theories

e A model of a Lawvere theory (£, J) in a category C with

countable products
e is a countable product preserving functor M : L — C

The models of L together with nat. transfs. :
e form a category Mod(L,C) with U : Mod(L,C) — C
e having a left adjoint F : C — Mod(L,C)
e the adjoint functors induce a monad T = UF

For the purposes of this talk, we let C = Set

To give a model M of L is equivalent to
e giving a set X = M1
e for every operation op : O —» I a morphism X°© — X/

Because
o M1 determines MO up to coherent isomorphism

o MO M(JJ1) = J](M1) = (M1)°

oe0 oe0

Global state example

e Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

e Countable set of values V and a finite set of locations Loc

e Take the set of states to be § = V/Loc

Global state example

e Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

e Countable set of values V and a finite set of locations Loc
e Take the set of states to be § = V/Loc

e The theory is freely generated by operations

e Jookup : V — Loc
e uypdate:1 — Loc x V

Global state example

e Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

e Countable set of values V and a finite set of locations Loc
e Take the set of states to be § = V/Loc

e The theory is freely generated by operations

e Jookup : V — Loc
e uypdate:1 — Loc x V

subject to commuting diagrams expressed set-theoretically

@ lookupioc(updatejoc,(x))y = x

Global state example

e Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

e Countable set of values V and a finite set of locations Loc
e Take the set of states to be § = V/Loc

e The theory is freely generated by operations

e Jookup : V — Loc
e uypdate:1 — Loc x V

subject to commuting diagrams expressed set-theoretically

@ lookupioc(updatejoc,(x))y = x
(2] IOOkUploc(IOOkuploc(va’)v)v’ = IOOkuploc(va)v

Global state example

e Plotkin and Power noticed that the global state monad is
determined by the following countable Lawvere theory

e Countable set of values V and a finite set of locations Loc
e Take the set of states to be § = V/Loc

e The theory is freely generated by operations

e Jookup : V — Loc
e uypdate:1 — Loc x V

subject to commuting diagrams expressed set-theoretically

(1] IOOkUPIoc(Updateloc V(X)) = x
(2] IOOkUploc(IOOkuploc(va)) = IOOkuploc(va)v
© updatej,c, (updatejoc /(X)) = updatejoc ,/(x)
O updatejoc,(readioc(x,),) = updatejoc,v(xv)
@ updatejoc,, (updatejocr /(X)) =
updatejocr s (updatejoc,y (x)) (loc # loc")

Small detour into local state

mée(n/Inj)
c (0= ([(Snx X))

e Monad and algebra are given in category Set'”

e (Inj is the category of finite sets and injections)

Small detour into local state

mée(n/Inj)
c (0= ([(Snx X))

e Monad and algebra are given in category Set'”

e (Inj is the category of finite sets and injections)

e L,=1Inj(1,n), V,=V, S,=Vr

Small detour into local state

mée(n/Inj)
c (0= ([(Snx X))

e Monad and algebra are given in category Set'”

e (Inj is the category of finite sets and injections)
e L,=1Inj(1,n), V,=V, S,=Vr

e The algebra is given by
e lookup : XV — Xloc
e update : X —» XLoexV
e block : [L,X] — XV
e subject to appropriate diagrams commuting

Small detour into local state

mée(n/Inj)
c (0= ([(Snx X))

Monad and algebra are given in category Set"”

e (Inj is the category of finite sets and injections)
L, = Inj(1, n), V,=V, S,=Vr

The algebra is given by
e lookup : XV — Xloc
e update : X —» XLoexV
e block : [L,X] — XV
e subject to appropriate diagrams commuting

(YX), = [Inj, Set](X — xInj(n,—), Y -)
[X, Y], = [Inj,Set](X—, Y(n+ —))

See also work by Power (cotensoring models with
comodels) and Staton (completeness via nominal sets)

Refinement types

Refinement types

e Also known as predicate subtyping

e Assume we are given some simple types
e Nat, Loc, ...

e But often we want to talk about refined versions of them
e even natural numbers
e odd natural numbers
e open locations
e closed locations

e Refinement types provide us with such a framework

e "equipping your existing type system with suitable logic”

Refinement types

o Well-formedness of refinement types

F-¢:Ref(c) T,x:¢pFP:wf
Ik o : Ref(o) M= (x:¢)P: Ref(o)

M-¢:Ref(o1) T,x:¢pb:Ref(o2) ThH¢:Ref(o) Tyx:¢pb: Ref(r)

I %,.4% : Ref(o1 X 02) M- Ny.4: Ref(o — 7)

Refinement types

o Well-formedness of refinement types

F-¢:Ref(c) T,x:¢pFP:wf
Ik o : Ref(o) M= (x:¢)P: Ref(o)

M-¢:Ref(o1) T,x:¢pb:Ref(o2) ThH¢:Ref(o) Tyx:¢pb: Ref(r)

I %,.4% : Ref(o1 X 02) M- Ny.4: Ref(o — 7)

e Examples of typing rules

rEt:¢ TEP[t/X]
Fet:(x:o)P

Mx:opbt: MMy ThE:o
M- Ax ot Mgy IME tity s Y[t /x]

Refinement types

e Set-theoretic semantics (ala. Denney)
o Interpret refinement type ' F ¢ : Ref (o)
as a family of PERs [I'] — PER([c])
e other type constructors (sums,products) are interpreted

straightforwardly
o terms [-t : ¢ are interpreted as [[] — P([o])
(subsets denoting the 'total realizers’)

Refinement types

e Set-theoretic semantics (ala. Denney)

o Interpret refinement type ' F ¢ : Ref (o)
as a family of PERs [I'] — PER([c])

e other type constructors (sums,products) are interpreted

straightforwardly
o terms [-t : ¢ are interpreted as [[] — P([o])
(subsets denoting the 'total realizers’)

o Categorical semantics (ala. Jacobs)
e based on fibrations and comprehension categories

P T—C™

N

Refining global state

Refining global state
e We had the finite set of locations Loc

e Assume that we now have predicates Open(Loc) and
Closed(Loc) = —Open(loc) on the locations Loc

e Conceptually they denote subsets of Loc

Refining global state
e We had the finite set of locations Loc

e Assume that we now have predicates Open(Loc) and
Closed(Loc) = —Open(loc) on the locations Loc

e Conceptually they denote subsets of Loc

e We should only be able to read from and write to
locations that are open

e Jookup : XV — X Open(Loc)
o update : X —» XOpen(Loc)xV

Refining global state
e We had the finite set of locations Loc

e Assume that we now have predicates Open(Loc) and
Closed(Loc) = —Open(loc) on the locations Loc

e Conceptually they denote subsets of Loc

e We should only be able to read from and write to
locations that are open

e Jookup : XV — X Open(Loc)
o update : X —» XOpen(Loc)xV

e However, notice that this requires an a priori given
collection of open locations

Refining global state

e So we should also add operations for opening and closing
locations

e lookup : XV — X©Open(Loc)
e update : X — XOpen(Loc)xV
e open: X — X Closed(Loc)

e close : X — XOpen(Loc)

Refining global state

e So we should also add operations for opening and closing
locations

e lookup : XV — X©Open(Loc)
e update : X — XOpen(Loc)xV
e open: X — X Closed(Loc)

e close : X — XOpen(Loc)

e But we should be able to distinguish between
computations able to use different locations

Refining global state

e So we should also add operations for opening and closing
locations

lookup : X V. __, xOpen(Loc)
update : X — XOpen(Loc)xV
e open: X — X Closed(Loc)

o close : X — XOpen(Loc)

e But we should be able to distinguish between
computations able to use different locations

e We could take inspiration from the algebra for local state
e work in the category Set"

Refining global state

e So we should also add operations for opening and closing
locations

lookup : X V. __, xOpen(Loc)
update : X — XOpen(Loc)xV
e open: X — X Closed(Loc)

o close : X — XOpen(Loc)

e But we should be able to distinguish between
computations able to use different locations

e We could take inspiration from the algebra for local state
e work in the category Set"

e However, we don't yet know what the appropriate
non-discrete world category and the corresponding
(monoidal) closed structure should be

Refining global state (W-sorted theories)

e We don’t know the definition in a single sorted theory

e So let's try to work in W-sorted algebraic theories

Refining global state (W-sorted theories)

e We don’t know the definition in a single sorted theory

e So let's try to work in W-sorted algebraic theories

e A W-sorted algebraic theory consists of:
e a set of sorts W (we think of them as worlds)
e a small category £ with countable products
e an id. on objects countable-product preserving functor
J: W — L
e (where W* has as objects words wy, ..., w, over W)

Refining global state (W-sorted theories)

e We don’t know the definition in a single sorted theory

e So let's try to work in W-sorted algebraic theories

e A W-sorted algebraic theory consists of:
e a set of sorts W (we think of them as worlds)
e a small category £ with countable products
e an id. on objects countable-product preserving functor
J: W — L
e (where W* has as objects words wy, ..., w, over W)

e A model of a W-sorted theory is given by
e a countable product preserving functor M : £L — Set

Refining global state (W-sorted theories)

e We don’t know the definition in a single sorted theory

e So let's try to work in W-sorted algebraic theories

e A W-sorted algebraic theory consists of:
e a set of sorts W (we think of them as worlds)
e a small category £ with countable products
e an id. on objects countable-product preserving functor
J: W — L

e (where W* has as objects words wy, ..., w, over W)

e A model of a W-sorted theory is given by
e a countable product preserving functor M : £L — Set

e The forgetful functor U : Mod(L, Set) — Set" again
has a left adjoint F inducing a monad T = UF

Refining global state (W-sorted theories)

e Let the worlds be W = Bool"

e We have families of operations in the theory
* lookupy,cw loce Openy (Loc) * Wy -wees W — W
® UpdateweW,IocEOpenW(Loc),VEV W —w
® Openyecw loceOpeny(Loc) - W — W[IOC = J-]
° CloseweW,locEC/osedw(Loc) W W[IOC = T]

e satisfying appropriate commuting diagrams

Refining global state (W-sorted theories)

e Let the worlds be W = Bool"

e We have families of operations in the theory
® /OOkUpWeW,IOCGOpenW(Loc) W W — W

® UpdateweW,IocEOpenW(Loc),VEV - w » W
® OPeNnycW joccOpeny(Loc) * W ? W[IOC = J-]

CloseweW,locEC/osedw(Loc) - w ’ W[IOC = T]

e satisfying appropriate commuting diagrams

¢ Giving us the algebra
® /OOkUPWEW,IoceOpenW(Loc) : (XV)W — Xw
¢ updateweW,IoceOpenW(Loc),veV c Xw — X
® openycw loceOpeny(Loc) Xw — Xw[/oa—)J_]
* closeyew,loceClosedy(Loc) * Xw — Xu[locrsT]

Refining global state (W-sorted theories)

e So we have the algebra

/OOkUPWe W, loc€ Openy, (Loc) - (XV)W — Xw
updateweW,IocEOpenW(Loc),VEV c Xw — X
OPeny c W locc Openy (Loc) Xw — Xw[loa—)L]
CloseweW,locEC/osedW(Loc) P Xw — Xw[/oo—)T]

Refining global state (W-sorted theories)

e So we have the algebra
® /OOkUPWe W, loc€ Openy, (Loc) - (XV)W — Xw
hd updateweW,IocEOpenW(Loc),VEV c Xw — X
® Openycw loccOpeny(Loc) Xw — Xw[loa—)L]
°® CloseweW,locEC/osedW(Loc) P Xw — Xw[/oo—)'l']

e Inducing monad TX,, = UFX,, = (3 cw (Sw % Xur))*>*

Refining global state (W-sorted theories)

e So we have the algebra
o [00KUP e W loceOpeny(Loc) - (XY)w — Xu
* update,cw joceOpen,(Loc)veV - Xw — Xw
® 0penycw,loccOpeny(Loc) - Xw — Xu[locrs1]

o CloseweW,IocEC/osedW(Loc) Xw ? Xw[/oo—fl']

Inducing monad TX,, = UFX,, = (3_ . cw (Sw X Xur))>*

With the unit 1, : X — UFX of the adjunction given by:
Nxw Y = As.inj, (s, 7)

And the counit €4 : FUA — A of the adjunction:

2o i
e = (LI(S x Aw))S HEXE (115 x A,))5 =

(write)® opeh
—

N
(S x A,7)S (A,7)S =4 A 20 A,

And the Kleisli extension is given by (—)* = UeF

Another example of a straightforward theory

e Inspiration from McBride's work on file operations

Take the simple set of worlds W = Bool

We are interested in axiomatizing logging in to and
logging off from some system

Then we have the theory
o Loglnpecpassword : true, false —; false

e DoSomething : true — true
o LogQOut : false — true

And the algebra
® LOglanPassword : Xtrue X Xfa/se — Xfa/se

e DoSomething : Xtrye — Xtrue
e LogOut : Xpse — Xtrue

What next?

e The W-sorted approach gave us the monad we were after
e Can we make it work naturally in the singlesorted case?

What next?

e The W-sorted approach gave us the monad we were after
e Can we make it work naturally in the singlesorted case?

e Idea, try to give more general form to the operations
in the algebra

e opy : H X(So(w,o) — HX&(WJ)
0€0y i€ly

and in the theory

° opy : H {0o(w,0)} — H{d,-(W, i)}

OGOW iGIW

What next?

e The W-sorted approach gave us the monad we were after
e Can we make it work naturally in the singlesorted case?

e Idea, try to give more general form to the operations
in the algebra

e opy : H X(So(w,o) — HX&-(WJ)
0€0y i€ly

and in the theory

° opy : H {0o(w,0)} — H{é,-(W, i)}

OGOW iGIW

e But can't always define them uniformly in w, e.g.:

lookupyy,, 1y« [T {li = L]} — 0
vev

e Seems to be kind of inherent to the idea that not all
operations should be definable in all worlds

Questions?

