A short walk into randomness

Silvio Capobianco ${ }^{1}$
${ }^{1}$ Institute of Cybernetics at TUT
Institute of Cybernetics at TUT
October 18, 2012

Introduction

- Classical probability theory is concerned with randomness of selections of specific items from given sets.
- But it cannot express the notion of randomness of single objects.
- In the case of strings, this is done by algorithmic information theory, originated independently by Andrei Kolmogorov, Gregory Chaitin, and Ray Solomonoff.
- A very nice contribution comes from Per Martin-Löf.
- An approach by Peter Hertling and Klaus Weihrauch allows extension to more general cases.

What is randomness?

00000000000000000000000000000000 ...
01010101010101010101010101010101...
01000110110000010100111001011101...
00110110101101011000010110101111...

Disclaimer

Any one who considers arithmetic methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number-there are only methods to produce random numbers, and a strict arithmetical procedure is of course not such a method.

John von Neumann

von Mises' definition

Given an infinite binary sequence $a=a_{0} a_{1} a_{2} \ldots$, we will say that a is random if the following two conditions are satisfied:
(1) The following limit exists:

$$
\lim _{n \rightarrow \infty} \frac{\left\{i<n \mid a_{i}=1\right\}}{n}=p
$$

(2) For every admissible place selection rule $\phi:\{0,1\}^{*} \rightarrow\{0,1\}$, chosen to select those indices for which $\phi\left(a_{0} \ldots a_{n-1}\right)=1$, we also have

$$
\lim _{n \rightarrow \infty} \frac{\left\{i<n \mid a_{n_{i}}=1\right\}}{n}=p
$$

But what is "admissible" supposed to mean?

Notation

Let A be a Q-ary alphabet.

- A^{n} is the set of strings or words of length n over $A . A^{*}=\bigcup_{n \geq 0} A^{n}$.

For $n=0$ we set $A^{0}=\{\lambda\}$ where λ is the empty string.
For $i \geq 1$ and $j \leq|x|$ we set $x_{[i . . j]}=x_{i} x_{i+1} \ldots x_{j-1} x_{j}$.

- A^{ω} is the set of sequences or infinite words.

We have indices start from 1 , so $x=x_{1} x_{2} \ldots x_{n} \ldots$

- The product topology on A^{ω} has a subbase formed by the cylinders $w A^{\omega}=\left\{x \in A^{\omega} \mid x_{[1 . .|w|]}=w\right\}$
- The product measure μ_{Π} is defined on the Borel σ-algebra generated by the cylinders as the unique extension of $\mu_{\Pi}\left(w A^{\omega}\right)=Q^{-|w|}$
- The prefix encoding of $x=x_{1} x_{2} \ldots x_{n}$ is $\bar{x}=0 x_{1} 0 x_{2} \ldots 0 x_{n} 1$
- str : $\mathbb{N} \rightarrow A^{*}$ is the Smullyan encoding of n as a Q-ary string, e.g., $0 \rightarrow \lambda, 1 \rightarrow 0,2 \rightarrow 1,3 \rightarrow 00,4 \rightarrow 01$, etc.
- $\langle\cdot, \cdot\rangle: A^{*} \times A^{*} \rightarrow A^{*}$ is a pairing function for strings.

Computers

A computer is a partial function

$$
\phi: A^{*} \times A^{*} \rightarrow A^{*}
$$

$\phi(u, y)$ is the output of the computer ϕ with program u and input y.

A computer is prefix-free, or a Chaitin computer if, for every $w \in A^{*}$, the function

$$
C_{w}(x)=\phi(x, w)
$$

has a prefix-free domain.
This reflects the idea of self-delimiting computations: the length of a program is embedded in the program itself.

The Invariance Theorem

There exists a (prefix-free) computer Φ with the following property:
for every (prefix-free) computer ϕ there exists a constant c such that, if $\phi(x, w)$ is defined, then there exists $x^{\prime} \in A^{*}$ such that $\Phi\left(x^{\prime}, w\right)=\phi(x, w)$ and $\left|x^{\prime}\right| \leq|x|+c$.

Such computers are called universal.

For the rest of this talk we fix a universal computer ψ and a universal Chaitin computer U.

Kolmogorov complexity

The Kolmogorov complexity of $x \in A^{*}$ conditional to $y \in A^{*}$ associated with the computer ϕ on the alphabet Q is the partial function $K_{\phi}: A^{*} \times A^{*} \rightarrow \mathbb{N}$ defined by

$$
K_{\phi}(x \mid y)=\min \left\{n \in \mathbb{N}\left|\exists u \in A^{n}\right| \phi(u, y)=x\right\}
$$

If ϕ is a Chaitin computer we speak of prefix(-free) Kolmogorov complexity and write H_{ϕ} instead of K_{ϕ}.

- If $y=\lambda$ is the empty string we write $K_{\phi}(x)$ and $H_{\phi}(x)$.
- We omit ϕ if $\phi=\psi$ (complexity) or $\phi=U$ (prefix complexity).
- The canonical program of a string x is the smallest string (in lexicographic order) x^{*} such that $U\left(x^{*}\right)=x$.
- The invariance theorem ensures that $\left|x^{*}\right|$ is defined up to $O(1)$.

Basic estimates

$K(x) \leq|x|+O(1)$

- Consider the computer $\phi(u, y)=u$.
$H(x) \leq|x|+2 \log |x|+O(1)$.
- Consider the Chaitin computer $C(\bar{u}, y)=u$.

If $f: A^{*} \rightarrow A^{*}$ is a computable bijection then $H(f(x))=H(x)+O(1)$.

- Consider the Chaitin computer $C(x)=f(U(x))$.
- In particular, $H(\langle x, y\rangle)=H(\langle y, x\rangle)+O(1)$.

For fixed $y, K(x \mid y) \leq K(x)+O(1)$ and $H(x \mid y) \leq H(x)+O(1)$.

- Consider the Chaitin computer $C(u, y)=U(u, \lambda)$.

There are less than $Q^{n-t} /(Q-1)$ strings of length n with $K(x)<n-t$.

- There are $\left(Q^{n-t}-1\right) /(Q-1) Q$-ary strings of length $<n-t$.

Kolmogorov complexity is not computable!

The set $C P=\left\{x^{*} \mid x \in A^{*}\right\}$ of canonical programs is immune, i.e., it is infinite and has no infinite recursively enumerable subset.

- For every infinite r.e. S there exists a total computable g s.t. $S^{\prime}=g\left(\mathbb{N}_{+}\right) \subseteq S$, and if $g(i) \in C P$ then $i-c \leq 3 \log i+k$ for suitable constants c, k.
The function $f: A^{*} \rightarrow A^{*}, f(x)=x^{*}$ is not computable.
- The range of f is precisely $C P$.

The prefix Kolmogorov complexity H is not computable.

- If $\left.H\right|_{\text {dom } \phi}=\phi$ for some partial recursive $\phi: A^{*} \rightarrow \mathbb{N}$ with infinite domain, then we might construct recursive $B \subseteq \operatorname{dom} \phi$ s.t. $f\left(0^{i} 1\right)=\min \left\{x \in B \mid H(x) \geq Q^{i}\right\}$ satisfies $Q^{i} \leq H\left(f\left(0^{i} 1\right)\right)$ i.o.
However, H is semicomputable from above.
- $H(x)<n$ if and only if, for suitable y and $t,|y|<n$ and $U(y, \lambda)=x$ in at most t steps.

Randomness according to Chaitin

For $n \geq 0$ let

$$
\Sigma(n)=\max _{x \in A^{n}} H(x)=n+H(\operatorname{str}(n))+O(1)
$$

We say that x is Chaitin m-random if $H(x) \geq \Sigma(|x|)-m$.
For $m=0$ we say that x is Chaitin random.
Chaitin random strings are those with maximal prefix Kolmogorov complexity for their own length.

Call RAND $_{m}^{C}$ the set of Chaitin m-random strings. Omit m if $m=0$.
Theorem. For a suitable constant $c>0$,

$$
\gamma(n)=\left|\left\{x \in A^{n} \mid H(x)=\Sigma(n)\right\}\right| \geq Q^{n-c} \quad \forall n \in \mathbb{N}
$$

Relating H with K

For all $x \in A^{*}$ and $t \geq 0$, if $K(x)<|x|-t$ then

$$
H(x)<|x|+H(\operatorname{str}(|x|))-t+O\left(\log _{Q} t\right)
$$

- As K is upper semicomputable, given n and t, we only need $n-t$ Q-ary digits to extract $x \in A^{n}$ with $K(x)<n-t$.
- But there are at most $Q^{n-t} /(Q-1)$ such strings, and those also satisfy

$$
H(x \mid\langle\operatorname{str}(n), \operatorname{str}(t)\rangle)<n-t+O(1)
$$

- Then

$$
\begin{aligned}
H(x) & <n-t+H(\langle\operatorname{str}(n), \operatorname{str}(t)\rangle)+O(1) \\
& <n-t+H(\operatorname{str}(n))+O\left(\log _{Q} t\right)
\end{aligned}
$$

As a consequence,

$$
\begin{aligned}
& \text { for every } x \in \mathrm{RAND}_{t}^{C} \text { and every } T \text { s.t. } T-O\left(\log _{Q} T\right) \geq t \\
& \text { one has } K(x)<|x|-T
\end{aligned}
$$

Martin-Löf tests

A Martin-Löf test is a recursively enumerable set $V \subseteq A^{*} \times \mathbb{N}_{+}$such that:
(1) The level sets $V_{m}=\left\{x \in A^{*} \mid(x, m) \in V\right\}$ form a nonincreasing sequence, i.e., $V_{m+1} \subseteq V_{m}$ for every $m \geq 1$.
(2) For every $n \geq m \geq 1,\left|A^{n} \cap V_{m}\right| \leq Q^{n-m} /(Q-1)$.

We say that $x \in A^{n}$ passes V at level $m<n$ if $x \notin V_{m}$.

If ϕ is a (not necessarily prefix-free!) computer, then

$$
V=V(\phi)=\left\{(x, m)\left|K_{\phi}(x)<|x|-m\right\}\right.
$$

is a Martin-Löf test. Such tests are called representable.

A non-representable test

Let $x_{0}, x_{1}, x_{2} \in\{0,1\}^{3}$ and $V=\left\{\left(x_{0}, 1\right),\left(x_{1}, 1\right),\left(x_{2}, 1\right)\right\}$.

- By contradiction, assume $V=V(\phi)$.
- Then there exist $y_{0}, y_{1}, y_{2} \in\{0,1\}^{*}$ s.t. $\left|y_{i}\right| \leq 1$ and $\phi\left(y_{i}\right)=x_{i}$.
- Then necessarily $\left\{y_{0}, y_{1}, y_{2}\right\}=\{\lambda, 0,1\}$.
- But then, $K_{\phi}(\phi(\lambda))=0<1=|\phi(\lambda)|-2$.
- Then $(\phi(\lambda), 2) \in V(\phi)$-contradiction.

Critical levels

The critical level function of a $M-L$ test V is

$$
m_{V}(x)= \begin{cases}\max \left\{m \mid x \in V_{m}\right\}, & \text { if } x \in V_{1} \\ 0, & \text { otherwise }\end{cases}
$$

If $x \neq V_{q}$ for some $q<|x|$ we say that x is q-random.
If, in addition, $V=V(\phi)$ is representable, then:

- If $m_{V}(x)>0$ then $m_{V}(x)=|x|-K_{\phi}(x)-1$.
- $m_{V}(x)=0$ if and only if $K_{\phi}(x) \geq|x|-1$.

On the other hand, if

- $\left|A^{n} \cap V_{m}\right| \leq Q^{n-m-1}$ for every $n \geq m \geq 1$, and
- there is at most one $(x, m) \in V$ with $|x|=m+1$, then V is representable.

Universal Martin-Löf tests

A M-L test \mathcal{U} is universal if for every M-L test V there exists a constant c such that

$$
V_{m+c} \subseteq \mathcal{U}_{m} \quad \forall m \geq 1
$$

that is, if \mathcal{U} refines all $M-L$ tests at once.
For a computer ψ the following are equivalent:
(1) ψ is a universal computer.
(2) For every M-L test V there exists a constant c s.t.

$$
m_{V}(x) \leq|x|-K_{\psi}(x)+c \quad \forall x \in A^{*}
$$

(3) $V(\psi)$ is a universal $M-L$ test and in addition there exists c s.t.

$$
K_{\psi}(x) \leq|x|+c \quad \forall x \in A^{*}
$$

Martin-Löf asymptotic formula

Let ψ be a universal computer and let \mathcal{U} be a universal $\mathrm{M}-\mathrm{L}$ test. Then there exists a constant $c=c(\psi, \mathcal{U})$ such that

$$
\left||x|-K_{\psi}(x)-m_{\mathcal{U}}(x)\right| \leq c \quad \forall x \in A^{*}
$$

As a consequence,

$$
\begin{gathered}
\text { for fixed } t \geq 0, \\
\text { almost all } x \in \mathrm{RAND}_{t}^{C} \text { are declared eventually random } \\
\text { by every Martin-Löf test } V
\end{gathered}
$$

Randomness for sequences

An intuitive definition might be:
a sequence is random if and only if all its finite prefixes are
However:

- Given $x \in\{0,1\}^{\omega}$ and $n \in \mathbb{N}$, let $N_{0}(x ; n)$ be the numbers of consecutive 0 s from position n.
- It is well known that $\lim \sup _{n \rightarrow \infty} N_{0}(x ; n) / \log _{2} n=1$ for almost all x.
- Thus, for almost all x there are infinitely many n s.t. $x_{[1 . . n]}=x_{\left[1 . . n-\log _{2} n\right]} 0^{\log _{2} n}$.
- For those n we have $K\left(x_{[1 . . n]}\right) \approx n-\log _{2} n$.

As a side effect,
there is no such thing as a random string in the sense stated above

Testing sequentially

A Martin-Löf test V is sequential if it satisfies the following property:

$$
\forall m \geq 1 \forall x, y \in A^{*}: x \in V_{m}, y \in x A^{*} \Rightarrow y \in V_{m}
$$

- The family of sequential M-L tests is r.e.
- There exists a universal sequential M-L test U such that, for every sequential M-L test V, there exists a constant $c=c(V)$ such that $V_{m+c} \subseteq U_{m}$ for every $m \geq 1$.
- A sequential M-L test U is universal if and only if, for every sequential M-L test V, there exists a constant $c=c(V)$ such that $m_{V}(x) \leq m_{U}(x)+c$ for every $x \in A^{*}$.
- If U and W are universal sequential M-L tests, then for every $x \in A^{*}$

$$
\lim _{n \rightarrow \infty} m_{U}\left(x_{[1 . . n]}\right)<\infty \Leftrightarrow \lim _{n \rightarrow \infty} m_{W}\left(x_{[1 . . n]}\right)<\infty
$$

Randomness for sequences

We say that $x \in A^{\omega}$ fails a sequential $M-L$ test V if

$$
x \in \bigcap_{m \geq 1} V_{m} A^{\omega}
$$

This is actually equivalent to saying that

$$
\lim _{n \rightarrow \infty} m_{U}\left(x_{[1 . . n]}\right)=\infty
$$

We call $\operatorname{rand}(V)$ the set of sequences that do not fail V. Then

$$
\operatorname{rand}=\bigcap_{V \text { sequential }} \operatorname{rand}(V)=\operatorname{rand}(U)
$$

Characterizations of rand

- $A^{\omega} \backslash$ rand is the union of all the constructible μ_{Π}-null subsets of A^{ω}. (Observe that non-random sequences are those that fail the universal test.)
- $x \in$ rand if and only if, for every r.e. $C \subseteq A^{*} \times \mathbb{N}_{+}$such that $\mu_{\Pi}\left(C_{j} A^{\omega}\right)<Q^{-j} /(Q-1)$ for all $j \geq 1$, there exists $i \geq 1$ s.t. $x \notin C_{i} A^{\omega}$.
(This is because such C's can easily be turned into M-L tests.)
- Chaitin: $x \in$ rand if and only if there exists $c>0$ s.t. $H\left(x_{[1 . . n]}\right) \geq n-c$ for every $n \geq 1$.
- Solovay: $x \in$ rand if and only if, for every r.e. $X \subseteq A^{*} \times \mathbb{N}_{+}$such that $\sum_{i \geq 1} \mu_{\Pi}\left(X_{i} A^{\omega}\right)<\infty$, there exists $N \in \mathbb{N}$ s.t $x \notin X_{i} A^{\omega}$ for every $i>N$.
- Chaitin: $x \in$ rand iff $\lim _{n \rightarrow \infty}\left(H\left(x_{[1 . . n]}\right)-n\right)=\infty$.
- If $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is a computable bijection, then $x \in \operatorname{rand}$ if and only if $x \circ \phi \in$ rand.

Is there a simpler characterization?

Martin-Löf theory formalizes the intuitive concept:
a random sequence passes all computable statistical tests
We ask if we can say something as such:
a random sequence satisfies every property which is true for $\mu_{\Pi \text {-almost }}$ every string

However:

- Given $x \in A^{\omega}$, say that $y \in A^{\omega}$ satisfies $P(x)$ if for every $n \geq 1$ there exists $m \geq n$ such that $y_{i} \neq x_{i}$.

Once again: there ain't no such thing as a free lunch.

Normal sequences

Given $x \in A^{\omega}$ and $w \in A^{*} \cup A^{n}$, set

$$
\operatorname{occ}(w, x)=\left\{i \geq 1 \mid x_{[i . . i+n-1]}=w\right\}
$$

We say that x is n-normal if

$$
\lim _{i \rightarrow \infty} \frac{|\operatorname{occ}(w, x) \cap[1, i]|}{i}=\frac{1}{Q^{n}} \quad \forall w \in A^{n}
$$

A string which is n-normal for every $n \geq 1$ is said to be normal.

Observe that n-normality is the same as

$$
\liminf _{i \rightarrow \infty} \frac{|\operatorname{occ}(w, x) \cap[1, i]|}{i} \geq \frac{1}{Q^{n}} \quad \forall w \in A^{n}
$$

Random sequences are 1-normal

By contradiction, suppose $\liminf _{i} \operatorname{locc}(a, x) \cap[1, i] \mid / i<Q^{-1}-k^{-1}$.

- Then, for infinitely many values of $j, x \in S_{i} A^{\omega}$ where

$$
S=\left\{(y, i) \mid y \in A^{i}, \frac{|\operatorname{occ}(a, y) \cap[1, i]|}{i}<\frac{1}{Q}-\frac{1}{k}\right\}
$$

- The random variables $Y_{j}=\left[y_{j}=a\right]$ are independent, and

$$
S_{i} A^{\omega}=\left\{\sum_{j=1}^{i} Y_{j}<\frac{i}{Q}\left(1-\frac{Q}{k}\right)\right\}
$$

- By the Chernoff bound, $\mu_{\Pi}\left(S_{i} A^{\omega}\right)<e^{-\frac{Q}{k^{2}} i}$.
- By Solovay's criterion, $x \notin$ rand.
... in fact, random sequences are normal tout court

Given $n \geq 1$ and $x \in A^{\omega}$, define $x^{(n)} \in\left(A^{n}\right)^{\omega}$ by

$$
x_{i}^{(n)}=x_{(i-1) n+1} x_{(i-1) n+2} \ldots x_{i n}
$$

Then $x \in$ rand if and only if $x^{(n)} \in$ rand.
The thesis then follows from the following theorem by Niven and Zuckerman:

$$
x \text { is } n \text {-normal if and only if } x^{(n)} \text { is 1-normal }
$$

General randomness spaces

A randomness space is a triple (X, B, μ) where:

- X is a topological space (e.g., $\left.A^{\omega}\right)$.
- B is a total numbering of a subbase for X (e.g., $B_{i}=w_{i} A^{\omega}$).
- μ is a probability measure on the Borel σ-algebra of X (e.g., $\left.\mu_{\Pi}\right)$.

Given two sequences $V=\left\{V_{n}\right\}_{n \geq 0}, W=\left\{W_{m}\right\}_{m \geq 0}$ of open subsets of X, we say that V is W-computable if there exists a r.e. $A \subseteq \mathbb{N}$ such that

$$
V_{n}=\bigcup_{\pi(n, m) \in A} W_{m} \forall n \geq 0
$$

where $\pi(x, y)=(x+y)(x+y+1) / 2+x$ is the standard pairing function for natural numbers.
We define $D: \mathbb{N} \rightarrow \mathcal{P F}(\mathbb{N})$ as the inverse of $E: \mathcal{P F}(\mathbb{N}) \rightarrow \mathbb{N}$ defined by

$$
E(S)=\sum_{i \in S} 2^{i}
$$

Given $V=\left\{V_{n}\right\}$ we define $V^{\prime}=\left\{V_{n}^{\prime}\right\}$ as $V_{n}^{\prime}=\bigcap_{m \in D(n+1)} V_{n \underline{\underline{n}}}$.

A general framework for randomness

Let (X, B, μ) be a randomness space.

- A randomness test on X is a B^{\prime}-computable family $V=\left\{V_{n}\right\}$ of open subsets of X such that $\mu\left(V_{n}\right)<2^{-n}$ for every $n \geq 0$.
- An object $x \in X$ fails a randomness test V if $x \in \bigcap_{n \geq 0} V_{n}$.
- $x \in X$ is random if it does not fail any randomness test on X.

Theorem. (Hertling and Weihrauch)

Let $x \in A^{\omega}$ and let $B_{i}=\operatorname{str}(i) A^{\omega}$. The following are equivalent.
(1) $x \in$ rand.
(2) x is random as an element of the randomness space $\left(A^{\omega}, B, \mu_{\Pi}\right)$.

An application to cellular automata theory

Let G be a discrete group and let $\phi: \mathbb{N} \rightarrow G$ be a computable bijection such that $m: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ satisfying $\phi(m(i, j))=\phi(i) \cdot \phi(j)$ for every i and j is a computable function. Let A be a Q-ary alphabet.

- Set the product topology on A^{G}.
- Define $B: \mathbb{N} \rightarrow A^{G}$ as $B_{Q i+j}=\left\{c: G \rightarrow A \mid c(\phi(i))=a_{j}\right\}$.
- Define the product measure on A^{G} as the only probability measure μ_{π} that extends $\mu_{\Pi}(\{c(g)=a\})=Q^{-1}$ to the Borel σ-algebra. Then (A^{G}, B, μ_{Π}) is a randomness space.
- In addition, $c \in A^{G}$ is random if and only if $c \circ \phi \in$ rand.
- Thus, the notion of randomness does not depend on the choice of ϕ. Theorem (Calude, Hertling, Jürgensen and Weihrauch, 2001) Let F be the global law of a d-dimensional CA. The following are equivalent.
(1) F is surjective.
(2) $F(c)$ is random for every c which is itself random.

Conclusions

- Chaitin's approach to randomness: program-size complexity.
- Martin-Löf's approach: computable statistical tests.
- In some, very precise sense, there is such thing as a random number.

Thank you for attention!

Any questions?

