
System L syntax for sequent calculi

Pierre-Louis Curien

(based on works of or with Guillaume Munch-Maccagnoni, and nourished
by an on-going collaboration with Marcelo Fiore)

December 4 and 6, 2012, Tallinn, Institute of Cybernetics

1

I) A syntactic tool-box

for sequent calculus proofs

2

The basic kit

Consider the cut rule, classically presented as :

Γ1 ` A,∆′1 Γ′2, A `∆2

Γ1,Γ
′
2 `∆′1,∆2

But ∆1 = A,∆′1 and Γ2 = Γ′2, A might have several copies of A. One
needs to specify which A is active in both assumptions.

For term assignments to natural deduction proofs, one associates variables
to the formulas in a sequent ` Γ. Here too, contexts are lists of typed
variable declarations. In system L notation, we set :

c : (Γ1 ` α : A,∆′1)

Γ1 ` µα.c : A |∆′1

c′ : (Γ′2, x : A `∆2)

Γ′2 | µ̃x.c
′ : A `∆2

〈µα.c | µ̃x.c′〉 : (Γ1,Γ
′
2 `∆′1,∆2)

(note that µ, µ̃ are binding operators)
3

Different judgements

Therefore, we distinguish different kinds of judgements :

- commands c : (Γ `∆) with no active formula which under Curry-Howard
(and head reduction) will read as machine states

- terms Γ ` v : A |∆ which under Curry-Howard will read as programs of
type A

- contexts Γ | e : A ` ∆ which under Curry-Howard read as contexts
expecting to interact with a program of type A

In focused systems, we shall also have value and covalue judgements in
which the active formula is moreover under focus.

In monolateral systems, considered first in this talk, the context (and co-
value) judgements disappear (replaced with terms or values of the dual
type).

4

Pattern-matching

Formulas are polarised according to the rules used to introduce their top
connective : these rules are irreversible=positive or reversible=negative.

We shall use constructors for denoting the irreversible rules, and structu-
red binding operations µ (and µ̃ on the left of sequents in bilateral systems)
for the reversible rules. The dual of an irreversible connective being rever-
sible, this will lead to “cut-elimination through pattern-matching” :

Irreversible Reversible
` t1 : A1 |∆1 ` t2 : A2 |∆2

` (t1, t2) : A1 ⊗A2 |∆1,∆2

c : (` x1 : A1, x2 : A2,∆)

` µ(x1, x2).c : A1OA2 |∆

〈(t1, t2) | µ(x1, x2).c〉 → c[t1/x1, t2/x2]

5

What is “system L” ?

Summarising, we use “system L” (“L” for Gentzen’s terminology of sequent
calculus systems) for term assignment systems for sequent calculus pre-
sentations of various logical systems that share the following features :

- different kinds of judgements, that make explicit the notion of active for-
mula (possibly under focus) and coercions between them. We have seen
activation via µ and µ̃. Deactivation is achieved via “cut with axiom” :

Γ ` v : A |∆ |α : A ` α : A

〈v | α〉 : (Γ,` α : A,∆)

This is the only form of cut that will not be evaluated in our formalism.

- structured pattern-matching for reversible rules

The first feature was put forward in Curien-Herbelin’s duality of computation
paper (ICFP 2000).

6

II) Polarised Classical logic

7

Two-sided polarised classical sequent calculus

A ` A
Γ1, A `∆1 Γ2 ` A,∆2

Γ1,Γ2 `∆1,∆2

Γ1 ` A1,∆1 Γ2 ` A2,∆2

Γ1,Γ2 ` A1 ⊗A2,∆1,∆2

Γ ` A1,∆

Γ ` A1 ⊕A2,∆

Γ ` A2,∆

Γ ` A1 ⊕A2,∆

Γ1, A1 `∆1 Γ2, A2 `∆2

Γ1,Γ2, A1OA2 `∆1,∆2

Γ, A1 `∆

Γ, A1NA2 `∆

Γ, A2 `∆

Γ, A1NA2 `∆

Γ ` A1, A2,∆

Γ ` A1OA2,∆

Γ ` A1,∆ Γ ` A2,∆

Γ ` A1NA2,∆

Γ, A `∆

Γ ` ¬A,∆

Γ, A1, A2 `∆

Γ, A1 ⊗A2 `∆

Γ, A1 `∆ Γ, A2 `∆

Γ `∆

Γ ` A,∆
Γ,¬A `∆

Γ `∆

Γ ` A,∆
Γ ` A,A,∆

Γ ` A,∆
Γ `∆

Γ, A `∆

Γ, A,A `∆

Γ, A `∆

8

Gentzen’s classical sequent calculus

Classical non-polarised logic has only one conjunction and one disjunc-
tion :

A ::= Z || A ∧A || A ∨A || ¬A

Gentzen’s system picks the irreversible rules for ∧ and ∨ on the left and on
the right (i.e. ∧ right intro is ⊗ right intro, ∧ left intro is N left intro,...).

But other choices could be posssible, for example the "all reversible" pre-
sentation (which leads to a cristal clear of completeness wrt to truth table
semantics : exercise !).

Exercise : If Γ ` ∆ is provable in your favourite presentation of classical
sequent calculus, show that for any decoration of all formulas, replacing
each ∧ by either ⊗ or & (and similarly for ∨), the resulting sequent is
provable in polarised classical logic.

9

From two-sided to one-sided

One transforms the explicit (involutive) negation into an implicit one (pu-
shed to the atoms) = De Morgan duality (denoted here by overlining). Thus
one moves from

A ::= P || N
P ::= X+ || A⊗A || A⊕A || ¬N
N ::= X− || AOA || ANA || ¬P

to

A ::= P || N P ::= X || A⊗A || A⊕A N ::= X || AOA || ANA

by setting X ::= X+ || ¬X− and by translating formulas as follows :

(X+)† = X+ (X−)† = ¬X− (¬A)† = A† (A⊗B)† = A†⊗B† . . .

(note in particular that (¬X−)† = ¬X−).

Then, sequents Γ `∆ can be folded into ` Γ,∆.
10

One-sided polarised classical sequent calculus

` A,A
` P,∆1 ` P ,∆2

`∆1,∆2

` A1,∆1 ` A2,∆2

` A1 ⊗A2,∆1,∆2

` A1,∆

` A1 ⊕A2,∆

` A2,∆

` A1 ⊕A2,∆

` A1, A2,∆

` A1OA2,∆

` A1,∆ ` A2,∆

` A1NA2,∆

`∆
` A,∆

` A,A,∆
` A,∆

11

Syntax for one-sided polarised classical logic

There are three kinds of judgements :

Commands Positive terms Negative terms
c : (` Γ) ` t+ : P |Γ ` t− : N |Γ

Terms :

c ::= 〈t+ | t−〉 which one may also write if needed as 〈t− | t+〉
t ::= t+ || t−
x ::= x+ || x−
t+ ::= x+ || µx−.c || (t1, t2) || inl(t) || inr(t)
t− ::= x− ||µx+.c ||µ(x1, x2).c ||µ[inl(x1).c1, inr(x2).c2]

12

Typing rules for one-sided polarised classical logic

Contexts Γ consist of declarations x+ : N and x− : P :

` x : A |x : A

c : (` x : A,Γ)

` µx.c : A |Γ

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` t1 : A1 |Γ ` t2 : A2 |∆
` (t1, t2) : A1 ⊗A2 |Γ,∆

` t1 : A1 |Γ
` inl(t1) : A1 ⊕A2 |Γ

c : (` x1 : A1, x2 : A2,Γ)

` µ(x1, x2).c : A1OA2 |Γ
c1 : (` x1 : A1,Γ) c2 : (` x2 : A2,Γ)

` µ[inl(x1).c1, inr(x2).c2] : A1NA2 |Γ

c : (` Γ)

c : (` x : A,Γ)

c : (` x1 : A, x2 : A,Γ)

c[x/x1, x/x2] : (` x : A,Γ)

13

Illustrating activation and deactivation
The term decoration for

` N ⊕ P,A,B,Γ1

` N ⊕ P,AOB,Γ1 `M,Γ2

` (N ⊕ P)⊗M,AOB,Γ1,Γ2

is as follows

c : (` x : N ⊕ P, y1 : A, y2 : B,Γ1)

` µ(y1, y2).c : AOB |x : N ⊕ P,Γ1

〈y | µ(y1, y2).c〉 : (` y : AOB, x : N ⊕ P,Γ1)

` µx.〈y | µ(y1, y2).c〉 : N ⊕ P | y : AOB,Γ1 ` t : M |Γ2

` (µx.〈y | µ(y1, y2).c〉, t) : (N ⊕ P)⊗M | y : AOB,Γ1,Γ2

14

Reduction rules for one-sided polarised classical logic

〈t+ | µx+.c〉 → c[t+/x+] (t+ 6= µx−.c1)
〈µx−.c | t−〉 → c[t−/x−]
〈(t1, t2) | µ(x1, x2).c〉 → c[t1/x1, t2/x2]
〈inl(t1) | µ[inl(x1).c1, inr(x2).c2]〉 → c1[t1/x1]

15

Substitution accounts for commutative cuts

Lemma : If c :` x : A,Γ, then the occurrences of x in c occur as deactiva-
tions : c = C[〈x | t〉].

The left hand side of the first and second computation rules codify a situa-
tion where one of the cut formulas has not been just introduced, and the
reduction commutes the cut upwards on the right (resp. on the left) to the
places where it was introduced, so that eventually logical cut rules such as
the third or the fourth rule can be applied :

〈t+1 | µx
+.c〉 = 〈t+1 | µx

+.C[〈x+ | t−2 〉]〉
↓

c[t+1 /x
+] = C[〈t+1 | t

−
2 〉

This commutation can be treated as progressive (explicit substitution) or
as a 1 shot reduction (as in λ-calculus).

16

Syntax for two-sided polarised classical logic

One has in addition positive and negative contexts :

Commands c : (Γ `∆)
Positive terms Γ ` v+ : P |∆ Negative terms Γ ` v− : N |∆
Positive contexts Γ ` |∆ Negative contexts Γ ` |∆

Terms :

c ::= 〈v+ | e+〉 || 〈v− | e−〉
t ::= t+ || t− x ::= x+ || x− α = α+ || α−
v+ ::= x+ || µα+.c || (v1, v2) || inl(v) || inr(v) || (e−)¬

t− ::= x− ||µα−.c ||µ[α1, α2].c ||µ[α1[fst].c1, α2[snd].c2] || (e+)¬

e+ ::= α+ || µ̃x−.c || [e1, e2] || e[fst] || e[snd] || (t−)¬

e− ::= α− || µ̃x+.c || µ̃(x1, x2).c || µ̃[inl(x1).c1, inr(x2).c2] || (t+)¬

17

Typing rules for two-sided polarised classical logic

x : A ` x : A | |α : A ` α : A

Γ ` v : A |∆
Γ | v¬ : ¬A `∆

Γ | e : A `∆

Γ ` e¬ : ¬A |∆

c : (Γ ` α1 : A1, α2 : A2,∆)

Γ ` µ[α1, α2].c : A1OA2 |∆
c : (Γ, x1 : A1, x2 : A2 `∆)

Γ | µ̃(x1, x2).c : A1 ⊗A2 `∆

etc. . .

18

Reduction rules for for two-sided polarised classical logic

〈v+ | µ̃x+.c〉 → c[v+/x+] (v+ 6= µα+.c)
〈µα−.c | e−〉 → c[e−/α−] (e− 6= µ̃x−.c)
〈v− | µ̃x−.c〉 → c[v−/x−]
〈µα+.c | e+〉 → c[e+/α+]
〈(v1, v2) | µ̃(x1, x2).c〉 → c[v1/x1, v2/x2]
〈µ[α1, α2].c | [e1, e2]〉 → c[e1/α1, e2/α2]
〈inl(v1) | µ̃[inl(x1).c1, inr(x2).c2]〉 → c1[v1/x1]
〈µ(α1[fst].c1, α2[snd].c2)) | e1[fst]〉 → c1[e1/α1]
〈e¬ | v¬〉 → 〈v | e〉

NB : In principle, one would have four choices to avoid the critical pairs,
but the one here seems the most meaningful one in view of the focalising
restriction.

19

III) Focalised systems

20

Focalisation

The restriction on the µx+ rule suggests a global call-by-value regime for
the substitution of positive terms. This is achieved by (we revert to one-
sided for simplicity) :

adding a new typing judgement :

Values ` V + : P ; ∆

and restricting the syntax as follows :

c ::= 〈t+ | t−〉
x ::= x+ || x−
V + ::= x+ || (V1, V2) || inl(V) || inr(V)
V ::= V + || t−
t+ ::= V + || µx−.c
t− ::= x− || µx+.c || µ(x1, x2).c || µ[inl(x1).c1, inr(x2).c2]

21

Illustrating focalisation

A focalised proof A non focalised proof

` N |AOB,Γ1

` N ⊕ P ; AOB,Γ1 `M |Γ2

` (N ⊕ P)⊗M ; AOB,Γ1,Γ2

` N ⊕ P,A,B,Γ1

` N ⊕ P,AOB,Γ1 `M,Γ2

` (N ⊕ P)⊗M,AOB,Γ1,Γ2

22

Typing rules for one-sided focalised classical logic

(` V : A ||Γ stands for either ` V + : P ; Γ or ` t− : N |Γ)

` x+ : P ; x+ : P ` x− : N |x− : N

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` V + : P ; Γ

` V + : P |Γ
c : (` x : A,Γ)

` µx.c : A |Γ

` V1 : A1 ||Γ ` V2 : A2 ||∆
` (V1, V2) : A1 ⊗A2 ; Γ,∆

` V1 : A1 ||Γ
` inl(V1) : A1 ⊕A2 ; Γ

c : (` x1 : A1, x2 : A2,Γ)

` µ(x1, x2).c : A1OA2 |Γ
c1 : (` x1 : A1,Γ) c2 : (` x2 : A2,Γ)

` µ[inl(x1).c1, inr(x2).c2] : A1NA2 |Γ

c : (` Γ)

c : (` x : A,Γ)

c : (` x1 : A, x2 : A,Γ)

c[x/x1, x/x2] : (` x : A,Γ)
23

Reduction rules for one-sided focalised classical logic

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]
〈(V1, V2) | µ(x1, x2).c〉 → c[V1/x1, V2/x2]
〈inl(V1) | µ[inl(x1).c1, inr(x2).c2]〉 → c1[V1/x1]

Call-by-value regime for substitution of positive variables, call-by-name re-
gime for substitution of negative variables.

In the two-sided setting, we have in addition call-by-value regime for sub-
stitution of negative continuation variables, and call-by-name regime for
substitution of positive continuation variables.

24

Explicit polarisation

P ::= X || P⊗P || P⊕P || ↓N N ::= X || NON || N&N || ↑P A ::= P || N

(not only formulas, but now also connectives have polarities, i.e. the tensor
takes two positives and returns a positive)

25

Illustrating explicit versus implicit

Implicit Explicit

` N |Γ1 ` P ; Γ2

` N ⊗ P ; Γ1,Γ2

` N |Γ1

` ↓N ; Γ1 ` P ; Γ2

` ↓N ⊗ P ; Γ1,Γ2

Read (bottom-up) ↓ as marking explicitly the exit from the focalisation phase.

26

Syntax for one-sided explicit focalised classical logic

Terms :

c ::= 〈t+ | t−〉
V + ::= x+ || (V +

1 , V +
2) || inl(V +) || inr(V +) || (t−)↓

t+ ::= V + || µx−.c
t− ::= x− || µx+.c || µ(x+

1 , x
+
2).c || µ[inl(x+

1).c1, inr(x+
2).c2] || µ(x−)↓.c

27

Typing rules for one-sided explicit focalised classical logic

` x+ : P ; x+ : P ` x− : N |x− : N

` t+ : P |Γ ` t− : P |∆

〈t+ | t−〉 : (` Γ,∆)

` V + : P ; Γ

` V + : P |Γ
c : (` x : A,Γ)

` µx.c : A |Γ

c : (` Γ)

c : (` x+ : A,Γ)

c : (` x+
1 : A, x+

2 : A,Γ)

c[x+
2 /x

+
1] : (` x+

2 : A,Γ)

` V +
1 : P1 ; Γ ` V +

2 : P2 ; ∆

` (V +
1 , V +

2) : P1 ⊗ P2 ; Γ,∆

` V +
1 : P1 ; Γ

` inl(V +
1) : P1 ⊕ P2 ; Γ

c : (` x+
1 : N1, x

+
2 : N2,Γ)

` µ(x+
1 , x

+
2).c : N1ON2 |Γ

c1 : (` x+
1 : N1,Γ) c2 : (` x+

2 : N2,Γ)

` µ[inl(x+
1).c1, inr(x+

2).c2] : N1NN2 |Γ

` t− : N |Γ

` (t−)↓ : ↓N ; Γ

c : (` x− : P,Γ)

` µ(x−)↓.c : ↑P |Γ
28

Reduction rules for one-sided explicit focalised classical logic

〈V + | µx+.c〉 → c[V +/x+]
〈µx−.c | t−〉 → c[t−/x−]

〈(V +
1 , V +

2) | µ(x+
1 , x

+
2).c〉 → c[V +

1 /x+
1 , V

+
2 /x+

2]

〈inl(V +
1) | µ[inl(x+

1).c1, inr(x+
2).c2]〉 → c1[V +

1 /x+
1]

〈(t−)↓ | µ(x−)↓.c〉 → c[t−/x−]

29

Weakly focalised classical logic

This system is essentially (an explicit version of) Girard’s LC (Π is a set
consisting of at most one positive formula). From now on, relax, we give up
on proof-term syntax (the syntax for weakly focalised systems is still under
elaboration)

` P ; P

` P ; Γ ` [Q] ; P ,∆

` [Q] ; Γ,∆

` [Q] ; P,Γ ` ; P ,∆

` [Q] ; Γ,∆

` P ; Γ

` ; P,Γ

` [Q] ; Γ

` [Q] ; Γ, A

` [Q] ; Γ, A,A

` [Q] ; Γ, A

` P1 ; Γ ` P2 ; ∆

` P1 ⊗ P2 ; Γ,∆

` P1 ; Γ

` P1 ⊕ P2 ; Γ

` P2 ; Γ

` P1 ⊕ P2 ; Γ

` ; N,Γ

` ↓N ; Γ

` [Q] ; N1, N2,Γ

` [Q] ; N1ON2,Γ

` [Q] ; N1,Γ ` [Q] ; N2,Γ

` [Q] ; N1 &N2,Γ

` [Q] ; P,Γ

` [Q] ; ↑P,Γ

30

Synthesizing Laurent’s LLP

We apply the following two restrictions to weakly focalised classical logic :
– allow the weakening and contraction rules only for A = N ,
– replace the two rules

` P ; Γ

` ; P,Γ

` [Q] ; P,Γ

` [Q] ; ↑P,Γ

with the rule
` P ; Γ

` ; ↑P,Γ

Then it is then easy to check that in the resulting system the contexts (i.e.
the formulas on the right of the stoup) are all negative (and hence the n−cut
can never be applied)

Then the presence of a stoup is superfluous (there is no other positive
formula that one might be tempted to change for !).

31

System LJ0

One can then reorganise the sequents in “all positive form”, and the result
is the following intutionnistic system (also called LJ0).

Formulas : P ::= X || P⊗P || P⊕P || ¬+P (where ¬+P stands for ↓P)

P ` P
P1 ` P P2, P ` [Q]

P1,P2 ` [Q]

P ` [Q]

P, P ` [Q]

P, P, P ` [Q]

P, P ` [Q]

P1 ` P1 P2 ` P2

P1,P2 ` P1 ⊗ P2

P ` P1

P ` P1 ⊕ P2

P ` P2

P ` P1 ⊕ P2

P, P `
P ` ¬+P

P, P1, P2 ` [Q]

P, P1 ⊗ P2 ` [Q]

P, P1 ` [Q] P, P2 ` [Q]

P, P1 ⊕ P2 ` [Q]

P ` P
P,¬+P `

32

Translating weakly focalised classical logic to LJ0

Weakly focalised classical proofs of
{
` ; P,N
` P ; P,N

}
translate straightfor-

wardly to proofs of
{
N , ↓P `
N , ↓P ` P

}
in LJ0.

33

The reversing translation to linear logic

The key observation (that goes back to Quatrini-Tortora) is that the struc-
tural rules of linear logic apply “almost” to all negative formulas, thanks to
their reversibility (whence the name reversing).

One defines the following translation on the formulas of LLP :

Xρ = !X (P⊗Q)ρ = P ρ⊗Qρ (P⊕Q)ρ = P ρ⊕Qρ (¬+P)ρ = !P ρ

Then the translation carries proofs of
{
P `
P ` P

}
to linear logic proofs of{

` Pρ
` Pρ, P ρ

But in fact the natural target of this translation is Tensor logic. And we learn
this from model constructions.

34

Melliès’ tensor logic TL

Formulas : P ::= X || P ⊗ P || P ⊕ P || ¬◦P || !P

P ` P
P1 ` P P2, P ` [Q]

P1,P2 ` [Q]

P ` [Q]

P, !P ` [Q]

P, !P, !P ` [Q]

P, !P ` [Q]

P, P ` [Q]

P, !P ` [Q]
!P ` P
!P ` !P

P1 ` P1 P2 ` P2

P1,P2 ` P1 ⊗ P2

P ` P1

P ` P1 ⊕ P2

P ` P2

P ` P1 ⊕ P2

P, P `
P ` ¬◦P

P, P1, P2 ` [Q]

P, P1 ⊗ P2 ` [Q]

P, P1 ` [Q] P, P2 ` [Q]

P, P1 ⊕ P2 ` [Q]

P ` P
P,¬◦P `

35

Categorical models

– focalised classical logic : control categories (Selinger)
– LJ0 : response categories (i.e., cartesian and cocartesian categories

where coproducts distribute over product, with an exponentiable objet
R) (cf. e.g. Hofmann, Lafont, Reus, Streicher)

– We consider the following class of models for tensor logic (à la La-
font) : monoidal and cocartesian categories C where coproducts dis-
tribute over tensor, with a (linearly) exponentiable object RL, and a right
adjoint ! to the forgetful functor U : ⊗−Com(C)→ C.

Proposition : Given a model of TL à la Lafont, ⊗−Com(C) (the category
of comonoid objects of C) is a response category

36

Proof of the proposition

– If C is symmetric monoidal, then ⊗−Com(C) is cartesian (standard for
any monoidal category C.)

– If C further has distributive coproducts, then U creates distributive co-
products in ⊗−Com(C) : indeed, P ⊕ Q gets a comonoid structure by
setting εP⊕Q = [εP , εQ] and δP⊕Q = ι◦(δP ⊕δQ), where ι is obtained
by composing (in diagrammatic order) the injection into the coproduct
that is isomorphic to (P ⊕Q)⊗ (P ⊕Q), followed by that isomorphism.

– Finally, we set R =!RL and RP =!(P (RL), and we get

⊗−Com(C)[Q,RP] ∼= C[Q,P (RL]
∼= C[Q⊗ P,RL]
∼= ⊗−Com(C)[Q⊗ P, !RL]

37

Generalising the reversing translation

Xρ =!X (P⊗Q)ρ = P ρ⊗Qρ (P⊕Q)ρ = P ρ⊕Qρ (¬+P)ρ = !¬◦P ρ

Then the translation carries proofs of
{
P `
P ` P

}
to proofs of

{
Pρ `
Pρ ` P ρ

}
in TL.

38

Syntax of polarised CLC

A polarised version of CLC is needed to get the commutation advocated by
Laurent and Regnier precisely right.

N ::= M → N || ¬P P ::= X || ¬0N

We set A ::= N || P .

c ::= t+t− || t−t+
t+ ::= x+ || λx−.c
t− ::= l− || x− || λx+.c || λx−.t− || t−t−
x ::= x+ || x−

In the typing rules, contexts have the form Γ; [l− : N], where Γ is a list
of declarations x : A, and [l− : N] is either empty or a single (linear)
declaration.

39

Typing rules of polarised CLC

Γ, x : A ; ` x : A Γ ; l− : N ` l− : N

Γ, x− : N1 ; [M] ` t− : N2

Γ ; [M] ` λx−.t− : N1 → N2

Γ ; [M] ` t−1 : N1 → N2 Γ ; ` t−2 : N1

Γ ; [M] ` t−1 t
−
2 : N2

c : (Γ ; l− : N `)

Γ ; ` λl−.c : ¬0N

Γ ; ` t+1 : ¬0N Γ ; [M] ` t−2 : N

t+1 t
−
2 : (Γ ; [M] `)

c : (Γ, x+ : P ; [M] `)

Γ ; [M] ` λx+.c : ¬P

Γ ; [M] ` t−1 : ¬P Γ ; ` t+2 : P

t−1 t
+
2 : (Γ ; [M] `)

We note that the judgements are of either of the two forms

Γ ; [M] ` [N] Γ ; ` P

40

Translation of CBN λµ calculus into CLC

One translates formulas and judgements as follows :

(X)K = ¬X (M → N)K = MK → NK

if
{
c : (N1 ` N2)
N1 ` v : N | N2

}
, then

{
cK : (NK

1 ,¬0NK
2 ; `)

NK
1 ,¬0NK

2 ; ` vK : NK

where more precisely, each x : N inN1 becomes x : NK , and each α : N

in N2 becomes x+
α : ¬0N

K .

xK = x (λx.v)K = λx.vK (v1v2)K = vK1 v
K
2 ([α]v)K = x+

α v
K (µα.c)K = CNK(λxα.c

K)

where, for a negative formula N of CLC, CN : ¬¬0N → N is defined as
follows by induction :

C¬P = λx−.λy+.x−(λl−.l−y+)
CM→N = λx−.λy−.CN(λz+.x−(λf−.z+(f−y−)))

41

Translation of CLC to TL

Xγ = X (¬0N)γ = Nγ
(M → N)γ = (!¬◦Mγ)⊗Nγ (¬P)γ = !P γ

γ(Γ, X) = γ(Γ), !X γ(Γ,¬0N) = γ(Γ), Nγ γ(Γ, N) = !¬◦Nγ

if
{

Γ ; [M] ` [N]
Γ ; ` P

}
, then

{
γ(Γ), [Nγ] ` [Mγ]
γ(Γ) ` P γ

42

