Concrete
Process
Categories

Concrete Process Categories

Wolfgang Jeltsch

TTU Kiiberneetika Instituut

Teooriaseminar
4 October 2012

Concrete
Process
Categories

@ Introduction
© Processes

© Causality

@ Conclusions

Concrete
Process
Categories

@ Introduction

Introduction

Functional reactive programming

Concrete
Process
Categories

@ extension of functional programming

@ supports description of temporal behavior

Introduction

@ two key concepts:

o time-dependent type membership
e special type constructors:

O time-varying values
<& events
@ Curry—Howard correspondence to temporal logic:
o time-dependent trueness
o special operators:
O will always hold
< will eventually hold

Categorical models of simply typed calculus

Concrete

Se—— @ models are cartesian closed categories with coproducts
Categeries @ use of basic category structure:

type | object

Introduction

Joperation — morphisml

type object

@ use of CCCC structure:

product type T X H——— AX B product
sum type T+ T | A+ B coproduct

function type T - T+ BA exponential
unit type 1 — 1 terminal object

empty type 0O +— 0 initial object

Categorical models of FRP

Concrete
Process
Categories

@ ingredients:
totally ordered set (T,<) time scale
lpiodection CCCC B simple types and functions

e product category BT models FRP types and operations
with indices denoting inhabitation times:

Meanings of FRP type constructors

Concrete

Process "] genera| piCtUre:

Categories

ch- simple type constructors ——— CCCC structure of BT

Tnedleiin type constructors O and < |

functors O and ¢

e CCCC structure of BT from CCCC structure of B
with operations working pointwise

@ functors O and < defined as follows:

A= [A®)

t'e[t,00)

(A = [A()

t'e[t,00)

Concrete

Process
Categories

Processes

© Processes

From “until” to processes

Concrete
Process . . R
Categories @ more temporal operators from linear-time temporal logic:

i > strong “until”

» weak “until”

@ semantics given by functors > and »:

Processes

(A=B)(t)=][] I A(") xB(t)
t'e[t,00) \ t'e[t,t’)
(A»B)(t)=(AxB)(t)+ [] A(Y)

t'e[t,00)

@ FRP analogs of “until” proofs are processes:

e normally finite-length time-varying value plus terminal event
e in the case of B also nontermination possible

Applications of processes

Concrete
Process

Categories @ stereo playback with different guarantees:
(R x R)» 1 none
(R xR)>1 termination
(R x R) » 0 nontermination

@ stereo playback with additional information:

(R x R)» (1+1) reason of termination
(end of track vs. abort)

Processes

@ alternating stereo/mono playback with different guarantees:

vo . (R x R)» R » o nontermination

vo . (R xR) >R o switch, nontermination
vo.(RxR)» (1+Rw» (1+0)) none
vo.(RxR)>(1+Rr>(1+0)) switch
po . (RxR)>(1+ R (1+0)) termination

Processes as the core concept of FRP

Concrete
Process
Categories

@ introduction of processes increases expressiveness

Processes

@ processes cover time-varying values and events
as special cases:

OA=ZA» 0
CAZIP>A

Concrete
Process

Categories

Causality

© Causality
@ Causality wanted

@ Concrete process categories
@ Consequences

Concrete
Process

Categories

Ifgang

Causality wanted

© Causality
o Causality wanted

An example program component

(;::ilccrees;e @ looks for the next key press up to a certain timeout
catesoris @ emits a value of type &(Key + 1) when it starts:
Case 1 key press before timeout:

I

I
*

Causality wanted t tk t
4
@

Ll(K) tk

Case 2 no key press before timeout:

t £
4
ot

1o(tt)

A noncausal operation

Concrete
Process
Categories

@ hypothetical polymorphic operation d from (11 + 72)
to O + O

11(x) @t — 11(x@t)
1(y)@t — 1n(y@t)

Causality wanted
@ applying d to the output of the key press listener
gives value of type OKey 4 O1:
key press before timeout ¢1(K @ ty)
no key press before timeout ¢p(tt @ t*)
o tells us immediately if the user will press a key before
the timeout

@ so d cannot exist

Semantics allow for noncausal operations

Concrete
Process
Categories

@ polymorphic operations from (11 4+ 1) to O + O
modeled by natural transformations 7 with

TaB: O(A+ B) = CA+ OB

Sy vz o there is such a 7 (which is even an isomorphism):
TT(A() +8()) = [TA) + T 8(¢)
t'>t t'>t t'>t

@ reason:

semantics do not deal with time-dependent knowledge
about values

Concrete
Process

Categories

Eoreis s e Causality

categories

o Concrete process categories

Knowledge-aware semantics

Concrete

Process o replace category BT by category B/ where
Categories
I={(t,t,) € Tx T |t <t}

@ dealing with knowledge at t,:

knowledge type | A(t, to)
S J knowledge transformation ———— f(t, to)l
knowledge type B(t, t)

e (Aw» B)(t,t,) defined as follows:

11 I[I A) xB(t)|+ J] At t)

t'elt,t] \ t"€[t,t!) t'elt,to]

Compatibility of knowledge transformations

Concrete

e knowledge transformations may be incompatible
Sl @ extend set / to category Z by adding morphisms

(t to,) : (£, 8)) = (t, to)

for t <t, < t)

replace product category B’ by functor category B
objects A(t, to, t) model knowledge reduction
morphisms of BZ are natural transformations

means that knowledge transformations are compatible:

A(t, to, t!
At, to) (£ fo.) A(t, t))

Concrete process
categories

fit,0) fie,e)

B(t, t,) B(t, t)

Upper bounds for occurrence times

Concrete
Process

Categories definition of functor > not directly possible
)BIXBI

introduction of new functor >_ : T — (B*
where T is the category of (T, <)

>, models a process type constructor with upper bound t,
for termination time

Conereteprces o (A, B)(t, t;) defined as follows:
0 if ty <t
Ht’e[t,tb] (Ht”e[t,t') A(t", to) x B(t, to)> ift<tp<to
(A» B)(t, to) it to < tp

D(tb,t{)) models type conversion

Definition of the >-functor

Concrete

Process @ type constructor > is the least upper bound of all
Categories
>y, -constructors

@ functor > must be a colimit of the functor >_:

€9

Concrete process > ty . . . > t!

categories

T4/
t,

REGEEEEY

Concrete
Process

Categories

Ifgang

© Causality

Consequences

o Consequences

The shape of the >-functor

Concrete
Process
Categories

If (T,<) has a maximum tyayx, then > = >y .

Consequences

If (T,<) has no maximum, then > = ».

Causality ensured

Concrete
Process
Categories

There are categorical models that do not contain any natural
transformation T with

Consequences

TAVBZQ(A+B)—><>A+<>B

Concrete
Process
Categories

Conclusions

@ Conclusions

Conclusions

Concrete
Process
Categories

@ processes:

o result of extending the Curry—Howard correspondence
between FRP and temporal logic to cover “until” operators

o make FRP more expressive

o generalize time-varying values and events nicely

@ knowledge-aware categorical models:
o express causality of FRP operations
Conclusions e cannot express liveness constraint of > for unbounded time
@ ultimate goal is an axiomatic semantics with the following
properties:
o expresses causality

o expresses liveness constraint of > generally
@ covers concrete process categories as a special case

	Introduction
	Processes
	Causality
	Causality wanted
	Concrete process categories
	Consequences

	Conclusions

