Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wante Concrete proces categories Consequences

Conclusions

Concrete Process Categories

Wolfgang Jeltsch

TTÜ Küberneetika Instituut

Teooriaseminar 4 October 2012

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanted Concrete proces categories Consequences

Conclusions

2 Processes

3 Causality

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wante Concrete proces categories Consequences

Conclusions

1 Introduction

Processes

Causality

4 Conclusions

Functional reactive programming

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

- Causality
- Causality wanted Concrete process categories Consequences

Conclusions

- extension of functional programming
- supports description of temporal behavior
- two key concepts:
 - time-dependent type membership
 - special type constructors:
 - □ time-varying values
 - events
- Curry–Howard correspondence to temporal logic:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- time-dependent trueness
- special operators:
 - will always hold
 - $\diamond~$ will eventually hold

Categorical models of simply typed calculus

Concrete Process Categories

Wolfgang Jeltsch

Introduction

- Processes
- Causality
- Causality wanted Concrete process categories Consequences
- Conclusions

models are cartesian closed categories with coproductsuse of basic category structure:

- use of CCCC structure:
 - product type $\tau_1 \times \tau_2 \longmapsto A \times B$ productsum type $\tau_1 + \tau_2 \longmapsto A + B$ coproductfunction type $\tau_1 \rightarrow \tau_2 \longmapsto B^A$ exponentialunit type1 \longmapsto 1terminal object0initial object

Categorical models of FRP

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanter Concrete proces categories Consequences

Conclusions

• ingredients:

totally ordered set (T, ≤) time scale CCCC B simple types and functions
product category B^T models FRP types and operations with indices denoting inhabitation times:

Meanings of FRP type constructors

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

general picture:

simple type constructors \longmapsto CCCC structure of $\mathcal{B}^{\mathcal{T}}$ type constructors \Box and $\Diamond \longmapsto$ functors \Box and \Diamond

 CCCC structure of B^T from CCCC structure of B with operations working pointwise

• functors \Box and \diamond defined as follows:

$$(\Box A)(t) = \prod_{t' \in [t,\infty)} A(t')$$

 $(\diamondsuit A)(t) = \prod_{t' \in [t,\infty)} A(t')$

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

1 Introduction

2 Processes

Causality

4 Conclusions

From "until" to processes

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanter Concrete proces categories Consequences

- more temporal operators from linear-time temporal logic:
 - strong "until"
 - weak "until"
 - semantics given by functors \triangleright and \blacktriangleright :

$$(A \triangleright B)(t) = \prod_{t' \in [t,\infty)} \left(\prod_{t'' \in [t,t')} A(t'') \times B(t') \right)$$
$$(A \triangleright B)(t) = (A \triangleright B)(t) + \prod_{t' \in [t,\infty)} A(t')$$

- FRP analogs of "until" proofs are processes:
 - normally finite-length time-varying value plus terminal event
 - in the case of \blacktriangleright also nontermination possible

Applications of processes

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

• stereo playback with different guarantees:

 $(\mathbb{R} \times \mathbb{R}) \triangleright 1$ none

 $(\mathbb{R} \times \mathbb{R}) \triangleright 1$ termination

 $(\mathbb{R} \times \mathbb{R}) \triangleright 0$ nontermination

• stereo playback with additional information:

 $(\mathbb{R} \times \mathbb{R}) \triangleright (1+1)$ reason of termination (end of track vs. abort)

• alternating stereo/mono playback with different guarantees:

 $\begin{array}{c} \nu\sigma . (\mathbb{R} \times \mathbb{R}) \triangleright \mathbb{R} \triangleright \sigma \text{ nontermination} \\ \nu\sigma . (\mathbb{R} \times \mathbb{R}) \triangleright \mathbb{R} \triangleright \sigma \text{ switch, nontermination} \\ \nu\sigma . (\mathbb{R} \times \mathbb{R}) \triangleright (1 + \mathbb{R} \triangleright (1 + \sigma)) \text{ none} \\ \nu\sigma . (\mathbb{R} \times \mathbb{R}) \triangleright (1 + \mathbb{R} \triangleright (1 + \sigma)) \text{ switch} \\ \mu\sigma . (\mathbb{R} \times \mathbb{R}) \triangleright (1 + \mathbb{R} \triangleright (1 + \sigma)) \text{ termination} \end{array}$

Processes as the core concept of FRP

- Concrete Process Categories
- Wolfgang Jeltsch
- Introduction
- Processes
- Causality
- Causality wanted Concrete process categories Consequences
- Conclusions

- introduction of processes increases expressiveness
- processes cover time-varying values and events as special cases:

$$\Box A \cong A \blacktriangleright 0$$
$$\Diamond A \cong 1 \triangleright A$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wante Concrete proces categories Consequences

Conclusions

Introduction

Processes

3 Causality

- Causality wanted
- Concrete process categories

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Consequences

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

Introductio

Processes

3 Causality

- Causality wanted
- Concrete process categories

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Consequences

An example program component

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

looks for the next key press up to a certain timeout

• emits a value of type \diamond (Key + 1) when it starts:

Case 1 key press before timeout:

A noncausal operation

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

hypothetical polymorphic operation *d* from ◊(τ₁ + τ₂) to ◊τ₁ + ◊τ₂:

$$\iota_1(x) @ t' \mapsto \iota_1(x @ t')$$
$$\iota_2(y) @ t' \mapsto \iota_2(y @ t')$$

 applying *d* to the output of the key press listener gives value of type ◇Key + ◇1:

key press before timeout $\iota_1(K @ t_k)$ no key press before timeout $\iota_2(tt @ t^*)$

• tells us immediately if the user will press a key before the timeout

so d cannot exist

Semantics allow for noncausal operations

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

• polymorphic operations from $\Diamond(\tau_1 + \tau_2)$ to $\Diamond\tau_1 + \Diamond\tau_2$ modeled by natural transformations τ with

$$au_{A,B}: \diamondsuit(A+B)
ightarrow \diamondsuit A + \diamondsuit B$$

• there is such a τ (which is even an isomorphism):

$$\prod_{t' \ge t} \left(A(t') + B(t') \right) \cong \prod_{t' \ge t} A(t') + \prod_{t' \ge t} B(t')$$

reason:

semantics do not deal with time-dependent knowledge about values

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanted Concrete process categories

Conclusions

Processes

3 Causality

- Causality wanted
- Concrete process categories

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Consequences

Knowledge-aware semantics

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanted Concrete process categories Consequences

Conclusions

 \bullet replace category $\mathcal{B}^{\mathcal{T}}$ by category $\mathcal{B}^{\mathcal{I}}$ where

$$I = \{(t, t_{o}) \in T \times T \mid t \leqslant t_{o}\}$$

• dealing with knowledge at t_o:

• $(A \triangleright B)(t, t_{o})$ defined as follows: $\prod_{t' \in [t, t_{o}]} \left(\prod_{t'' \in [t, t')} A(t'', t_{o}) \times B(t', t_{o}) \right) + \prod_{t' \in [t, t_{o}]} A(t', t_{o})$

Compatibility of knowledge transformations

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanted Concrete process categories Consequences

Conclusions

knowledge transformations may be incompatible
extend set *I* to category *I* by adding morphisms

$$(t, t_{o}, t_{o}')$$
: $(t, t_{o}') \rightarrow (t, t_{o})$

for $t \leqslant t_{\sf o} \leqslant t'_{\sf o}$

- replace product category \mathcal{B}^{I} by functor category $\mathcal{B}^{\mathcal{I}}$
- objects $A(t, t_o, t'_o)$ model knowledge reduction
- morphisms of $\mathcal{B}^{\mathcal{I}}$ are natural transformations
- means that knowledge transformations are compatible:

$$\begin{array}{c} A(t, t_{o}) \xleftarrow{A(t, t_{o}, t_{o}')} & A(t, t_{o}') \\ f_{(t, t_{o})} \downarrow & \downarrow f_{(t, t_{o}')} \\ B(t, t_{o}) \xleftarrow{B(t, t_{o}, t_{o}')} & B(t, t_{o}') \end{array}$$

Upper bounds for occurrence times

Concrete Process Categories

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanted Concrete process categories

onclusions

• definition of functor \triangleright not directly possible

- introduction of new functor $\triangleright_{-} : \mathcal{T} \to (\mathcal{B}^{\mathcal{I}})^{\mathcal{B}^{\mathcal{I}} \times \mathcal{B}^{\mathcal{I}}}$ where \mathcal{T} is the category of (\mathcal{T}, \leqslant)
- \triangleright_{t_b} models a process type constructor with upper bound t_b for termination time
- $(A \triangleright_{t_{b}} B)(t, t_{o})$ defined as follows:

$$\begin{cases} 0 & \text{if } t_{b} < t \\ \prod_{t' \in [t, t_{b}]} \left(\prod_{t'' \in [t, t')} A(t'', t_{o}) \times B(t', t_{o}) \right) & \text{if } t \leqslant t_{b} \leqslant t_{o} \\ (A \blacktriangleright B)(t, t_{o}) & \text{it } t_{o} < t_{b} \end{cases}$$

• $\triangleright_{(t_b,t_b')}$ models type conversion

Definition of the ⊳-functor

Concrete Process Categories

- Wolfgang Jeltsch
- Introduction

Processes

Causality Causality wanted Concrete process

categories

- type constructor ▷ is the least upper bound of all ▷_{th}-constructors
- functor \triangleright must be a colimit of the functor \triangleright_{-} :

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wante Concrete proces categories Consequences

Conclusions

Introduction

Processes

3 Causality

- Causality wanted
- Concrete process categories

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Consequences

The shape of the \triangleright -functor

Wolfgang Jeltsch

Introduction

Processes

Causality

Causality wanted Concrete process categories Consequences

Conclusions

Theorem

If (T, \leqslant) has a maximum t_{max} , then $\rhd \cong \rhd_{t_{max}}$.

Theorem

If (T, \leq) has no maximum, then $\rhd \cong \triangleright$.

Causality ensured

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wante Concrete proces categories Consequences

Conclusions

Theorem

There are categorical models that do not contain any natural transformation τ with

 $au_{A,B}: \diamondsuit(A+B) \to \diamondsuit A + \diamondsuit B$.

Wolfgang Jeltsch

Introduction

Processes

Causality Causality wanter Concrete proces categories Consequences

Conclusions

1 Introduction

Processes

Causality

Conclusions

Concrete Process Categories

- Wolfgang Jeltsch
- Introduction
- Processes
- Causality
- Causality wanted Concrete process categories Consequences
- Conclusions

o processes:

- result of extending the Curry–Howard correspondence between FRP and temporal logic to cover "until" operators
- make FRP more expressive
- generalize time-varying values and events nicely
- knowledge-aware categorical models:
 - express causality of FRP operations
 - $\bullet\,$ cannot express liveness constraint of \rhd for unbounded time

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- ultimate goal is an axiomatic semantics with the following properties:
 - expresses causality
 - $\bullet\,$ expresses liveness constraint of $\rhd\,$ generally
 - covers concrete process categories as a special case