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Linear logic

• useful for reasoning about resources

• each proposition must be used exactly once in a proof

• very different from the normal understanding of logic

• classical and intuitionistic variant

• in this talk, only intuitionistic linear logic
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Linear logic formulas

• language:

F ::= F ⊗ F | 1 | F & F | > | F ⊕ F | 0 | F ( F | !F

• meanings:

α⊗ β α and β hold simultaneously
1 nothing holds

α & β α and β hold (not necessarily simultaneously)
> tautology

α⊕ β α or β holds
0 absurdity

α( β if α holds in addition, then β holds
!α α holds arbitrarily often
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Linear logic example

• atomic propositions:

e I have one euro.
s/p/i I get a soup/a pancake/an icecream.

• derived propositions:
• For four euros, I get a soup and a pancake:

e ⊗ e ⊗ e ⊗ e ( s ⊗ p

• For two euros, I get a soup or a pancake (my choice):

e ⊗ e ( s & p

• For two euros, I get a pancake or an icecream
(cafeteria’s choice):

e ⊗ e ( p ⊕ i

• I am the central bank:
!e
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Linear λ-calculus

• the Curry–Howard analog of intuitionistic linear logic
• values have to be used exactly once:

• a value can represent the current state of an object
• changes to the state (destructive updates) expressible

as pure functions

• some functions with destructive updates:
• array update:

ι⊗ α⊗ Array ι α( Array ι α

• opening a file:

FileName⊗World ( File⊗World

• writing to an opened file:

String⊗ File ( File

• closing a file:
File⊗World ( World
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Products and coproducts

• intuitionistic (non-linear) logic:
• finite products for ∧ and >
• finite coproducts for ∨ and ⊥

• intuitionistic linear logic:
• finite products for & and >
• finite coproducts for ⊕ and 0

• seems strange that ∧/> and &/> are modeled by the same
constructions, although they denote quite different things

• however, analogous statements hold for ∧/> and &/>:

α ` α ∧ α α ` α & α

α ∧ β ` α α & β ` α
α ` > α ` >
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Symmetric monoidal structure

• axioms of ⊗ and 1:
• associativity of ⊗:

(α⊗ β)⊗ γ ` α⊗ (β ⊗ γ)

α⊗ (β ⊗ γ) ` (α⊗ β)⊗ γ

• commutativity of ⊗:

α⊗ β ` β ⊗ α

• 1 as neutral element:

1⊗ α ` α
α ` 1⊗ α

• symmetric monoidal structure for ⊗ and 1
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Adjunctions

• non-linear logic:
• cartesian closed structure for ∧ and →
• −B defined as right-adjoint of −× B
• corresponds to equivalence of

α ∧ β ` γ

and
α ` β → γ

• linear logic:
• symmetric monoidal closed structure for ⊗ and (
• B ( − defined as right-adjoint of −⊗ B
• corresponds to equivalence of

α⊗ β ` γ

and
α ` β ( γ
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Structure for !

• symmetric lax monoidal functor structure:

!α⊗ !β ` !(α⊗ β)

1 ` !1

• comonad structure:

!α ` α
!α ` !!α

• commutative comonoid structure:

!α ` !α⊗ !α

!α ` 1

• some additional coherence conditions
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Linear and non-linear models

• for now:
• non-linear logic with only ∧, >, and →
• linear logic with only ⊗, 1, and (

• categorical models:

non-linear logic cartesian closed category:

(C,×, 1,→)

linear logic symmetric monoidal closed category:

(L,⊗, I ,()

• beware:

proposition > =̂ object 1

proposition 1 =̂ object I
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Interaction

• symmetric lax monoidal adjunction (F , ϕ, ψ) a (G , υ, ν)
between (L,⊗, I ) and (C,×, 1):

• adjunction F a G between L and C:

F : C → L
G : L → C

• (F , ϕ, ψ) and (G , υ, ν) are symmetric lax monoidal functors
between (L,⊗, I ) and (C,×, 1):

ϕX ,Y : FX ⊗ FY → F (X × Y ) ψ : I → F1

υA,B : GA× GB → G (A⊗ B) ν : 1→ GI

• unit and counit of F a G are monoidal transformations
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Isomorphisms

Theorem
If (F , ϕ, ψ) a (G , υ, ν) is a lax monoidal adjunction,
then ϕ and ψ are isomorphisms.

• inverses:

ϕ−1
X ,Y : F (X × Y )→ FX ⊗ FY

ϕ−1
X ,Y = Φ−1(υFX ,FY ◦ (ηX × ηY ))

ψ−1 : F1→ I

ψ−1 = Φ−1(ν)

• closer relationship between × and ⊗ as well as 1 and I :

FX ⊗ FY ∼= F (X × Y )

I ∼= F1
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Derived structure for !

• adjunction F a G gives rise to a comonad (!, ε, δ):

! : L → L δ : FG → FGFG

! = FG δ = FηG

• symmetric monoidal functor structures for F and G
give rise to a symmetric monoidal functor structure for !

• commutative comonoid structure can be derived:

ξA : FGA→ FGA⊗ FGA

ξA = ϕ−1
GA,GA ◦ F∆GA

χA : FGA→ I

χA = ψ−1 ◦ F !GA

• further coherence conditions follow
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More structure

• more structure can be required:
• finite products in L for & and >:

(L,&,>)

• finite coproducts in C for ∨ and ⊥:

(C,+, 0)

• finite coproducts in L for ⊕ and 0:

(L,⊕, 0)

• no additional coherence conditions

• interesting properties can still be derived
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More isomorphisms

• right-adjoints preserve limits:

GA× GB ∼= G (A & B)

1 ∼= G>

• consequence:

!A⊗ !B ∼= !(A & B)

I ∼= !>

• left-adjoints preserve colimits:

FX ⊕ FY ∼= F (X + Y )

0 ∼= F0
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