Verification of Redecoration for Infinite Triangular Matrices in Coq

Celia Picard
joint work with Ralph Matthes

13/09/2012

Introduction

The finite case: finite triangles seen as triangular matrices

- Type E fixed throughout
- Special type A for elements of the diagonal
- Inductive family Trifin A

Introduction

The finite case: definitions

Triangles and trapeziums

Formal definition

$$
\frac{a: A}{s g_{f i n} a: \operatorname{Tr}_{f i n} A} \quad \frac{a: A \quad t: \operatorname{Tri}_{f i n}(E \times A)}{\text { constr }_{f i n} a t: \operatorname{Tri}_{\text {fin }} A}
$$

Introduction

The finite case: redecoration

Verifications of redecoration:

- against a list-based model
- comonad laws

All details in:
[A. Abel, R. Matthes, and T. Uustalu. Iteration and coiteration schemes for higher-order and nested datatypes. Theoretical Computer Science 2005]
[R. Matthes and M. Strecker. Verification of the redecoration algorithm for triangular matrices. TYPES 2007]

ACADIE

Outline

(9) Reference Representation with a Coinductive Family
(2) Another Conception of Triangles
(3) Conclusion

Outline

(9) Reference Representation with a Coinductive Family - Definitions

- Redecoration
- Properties of redecoration

(2) Another Conception of Triangles

(3) Conclusion

Reference Representation with a Coinductive Family

Definitions

Definition of the infinite triangles

$$
\xlongequal[\text { constr at: } \operatorname{Tri} A]{\operatorname{A:A} \quad \operatorname{Tri}(E \times A)} \quad \operatorname{Trap} A=\operatorname{Tri}(E \times A)
$$

Projections and function cut

	rest	top : \forall A. Tri $A \rightarrow A$
top (A)	E E E	top (constr ar) $:=a$
	$A E E$	rest: $\forall A$. Tri $A \rightarrow \operatorname{Trap} A$

Outline

(9) Reference Representation with a Coinductive Family

- Definitions
- Redecoration
- Properties of redecoration
(2) Another Conception of Triangles
(3) Conclusion

Reference Representation with a Coinductive Family

Redecoration

The lift operation

$$
\begin{aligned}
& \text { lift : } \forall A \forall B .(\text { Tri } A \rightarrow B) \rightarrow \\
& \text { Tri }(E \times A) \rightarrow E \times B \\
& \text { lift } f r:=\langle\text { fst }(\text { top } r), f(\text { cut } r)\rangle
\end{aligned}
$$

The redec operation

Outline

(9) Reference Representation with a Coinductive Family

- Definitions
- Redecoration
- Properties of redecoration

(2) Another Conception of Triangles

(3) Conclusion

Reference Representation with a Coinductive Family

Properties of redecoration - New tools on Tri
Equivalence relation on Tri and associated result

$$
\xlongequal{t_{1}, t_{2}: \operatorname{Tri} A \quad \text { top } t_{1}=\text { top } t_{2} \quad \text { rest } t_{1} \simeq \text { rest } t_{2}}
$$

$$
\forall A \forall B \forall\left(f f^{\prime}: \operatorname{Tri} A \rightarrow B\right) .\left(\forall t, f t=f^{\prime} t\right) \Rightarrow \forall t, \text { redec } f t \simeq \operatorname{redec} f^{\prime} t
$$ with full extensionality of lift.

New tools to manipulate Tri

	es_cut r frow t	es_cut: $\forall A$. Trap $A \rightarrow \operatorname{Str} E$ es_cut (constr $\langle e, a\rangle r$) := e :: (es_cut r)
A	E E E --	frow : $\forall A$. $\operatorname{Tri} A \rightarrow \operatorname{Str} E$ frow $t:=$ es_cut (rest t)
	$\begin{aligned} A \\ A \end{aligned}$	addes : $\forall A$. Str $E \rightarrow \operatorname{Tri} A \rightarrow \operatorname{Trap} A$ addes (e :: es) (constr ar) := constr $\langle e, a\rangle$ (addes es r)
		$\forall A \forall(r: T r a p ~ A) . ~ a d d e s ~\left(e s _c u t ~ r\right) ~(c u t ~ r ~) ~$

Reference Representation with a Coinductive Family

Properties of redecoration - Comonad

Comonad laws

$$
\begin{align*}
& \forall A \forall B \forall f^{\text {Tri }} A \rightarrow B \forall t^{\text {Tri } A} . \operatorname{top}(\text { redec } f t)=f t \tag{1}\\
& \forall A \forall t^{\text {Tri }} \text {. redec top } t \simeq t \tag{2}\\
& \forall A \forall B \forall f^{\text {Tri } A \rightarrow B} \forall g^{\text {Tri } B \rightarrow C_{\forall}} \forall t^{\text {Tri } A} . \\
& \quad \text { redec }(g \circ \text { redec } f) t \simeq \operatorname{redec} g(\text { redec } f) \tag{3}
\end{align*}
$$

Application to Tri

- The type transformation Tri, the projection function top (counit) and redec (cobind) form a constructive weak comonad w. r. t. \simeq. Weak: compatibility of g in (3) required.
- Proved with a stronger form of (2):

$$
\begin{align*}
& \forall A \forall(f: \operatorname{Tri} A \rightarrow A) \cdot(\forall(t: \operatorname{Tri} A), f t=\operatorname{top} t) \\
& \Rightarrow \forall(t: \operatorname{Tri} A) \cdot \operatorname{redec} f t \simeq t \tag{2'}
\end{align*}
$$

Outline

(1) Reference Representation with a Coinductive Family

(2) Another Conception of Triangles

- Definitions
- Redecoration
(3) Conclusion

Another Conception of Triangles

Definitions (1/2)

New visualization

$$
\begin{gathered}
A E E E \\
\hdashline A-E \cdot \\
\hdashline A-E \\
A
\end{gathered}
$$

$$
\operatorname{Tri}^{\prime} A:=\operatorname{Str}(A \times \operatorname{Str} E)
$$

The three parts of the definition

frow'	top $^{\prime}: ~ \forall A$. Tri' $A \rightarrow A$
top ${ }^{(A) E ~ E ~ E ~}$	top $\left.{ }^{\prime}(\langle a, e s\rangle):: t\right):=a$
A E E \cdots	$\text { frow }^{\prime}: \forall A \text {. Tri' } A \rightarrow \operatorname{Str} E$
A	$\text { rest' }: \forall A . \text { Tri' }^{\prime} \rightarrow \text { Trri' }^{A}$
,	$\left.\operatorname{rest}^{\prime}(\langle a, e s\rangle):: t\right):=t$

Another Conception of Triangles

Definitions (2/2)

Equivalence relation

$$
\xlongequal{t_{1}, t_{2}: \text { Tri' }^{\prime} \text { top' } t_{1}=\operatorname{top}^{\prime} t_{2} \quad \text { frow' }^{\prime} t_{1} \equiv \text { frow' }^{\prime} t_{2} \quad \text { rest }^{\prime} t_{1} \cong \text { rest }^{\prime} t_{2}}
$$

with \equiv relation on Str (cannot use it directly)

Conversion functions to/from Tri

$\forall A \forall\left(t\right.$: $\left.\operatorname{Tri}{ }^{\prime} A\right)$. toStrRep $($ fromStrRep $t) \cong t$
$\forall A \forall(t: \operatorname{Tri} A)$. fromStrRep $(t o S t r R e p t) \simeq t$

Outline

(1) Reference Representation with a Coinductive Family

(2) Another Conception of Triangles

- Definitions
- Redecoration
(3) Conclusion

Another Conception of Triangles

Redecoration

Definition - Much simpler than redec

redec' $: \forall A \forall B .($ Tri' $A \rightarrow B) \rightarrow$ Tri' $A \rightarrow$ Tri' B
redec' $f t:=\langle f t$, frow' $t\rangle::$ redec $^{\prime} f\left(\right.$ rest $\left.^{\prime} t\right)$

Results

$$
\begin{aligned}
\forall f t, & \left(\forall t t^{\prime}, t \cong t^{\prime} \Rightarrow f t=f t^{\prime}\right) \\
\Rightarrow & r e d e c^{\prime} t \cong t o \operatorname{StrRep}(\text { redec }(f \circ \text { toStrRep })(\text { fromStrRep } t)) \\
\forall f t, & \left(\forall t t^{\prime}, t \simeq t^{\prime} \Rightarrow f t=f t^{\prime}\right) \\
\Rightarrow & \text { redec } f t \simeq \operatorname{fromStrRep}\left(r e d e c^{\prime}(f \circ \text { fromStrRep })(\text { toStrRep } t)\right)
\end{aligned}
$$

Another Conception of Triangles

Simplifying again

E E

Another Conception of Triangles

Simplifying again

tails : $\forall A$. Str $A \rightarrow \operatorname{Str}(\operatorname{Str} A) \quad$ lift' $: \forall A \forall B .\left(\operatorname{Tri} i^{\prime} A \rightarrow B\right) \rightarrow \operatorname{Tri} A \rightarrow B \times \operatorname{Str} E$ tails $s:=s::$ tails(tls) lift' $f:=\lambda x .\langle f x$, frow' $x\rangle$

Another Conception of Triangles

Simplifying again

tails : $\forall A$. Str $A \rightarrow \operatorname{Str}(\operatorname{Str} A) \quad$ lift' $: \forall A \forall B .\left(\operatorname{Tri} i^{\prime} A \rightarrow B\right) \rightarrow \operatorname{Tri} A \rightarrow B \times \operatorname{Str} E$ tails $s:=s::$ tails(tls) lift' $f:=\lambda x .\langle f x$, frow' $x\rangle$
redec ${ }_{a l t}^{\prime}: \forall A \forall B .\left(\right.$ Tri' $\left.^{\prime} A \rightarrow B\right) \rightarrow$ Tri' $^{\prime} A \rightarrow$ Tri' $^{\prime} B$ redec alt $f t:=\operatorname{map}\left(\right.$ lift $\left.^{\prime} f\right)($ tails $t)$

$$
r e d e c^{\prime} f t \equiv r e d e c_{a l t}^{\prime} f t
$$

Another Conception of Triangles
 Generalizing

Generalizing redecoration (redecoration on Str)

$$
\begin{aligned}
& \text { redec gen : } \forall A \forall B \text {. }(\operatorname{Str} A \rightarrow B) \rightarrow \operatorname{Str} A \rightarrow \operatorname{Str} B \\
& \text { redec }_{\text {gen }}^{\prime} f s:=\operatorname{map} f(\text { tails } s) \\
& \forall A \forall B \forall\left(f: \text { Tri' }^{\prime} A \rightarrow B\right)\left(t: \text { Tri' }^{\prime} A\right) . \text { redec }_{\text {alt }}^{\prime} f t=\operatorname{redec}_{g e n}^{\prime}\left(l i f t{ }^{\prime} f\right) t
\end{aligned}
$$

Comonads

- The type transformation Str, the projection function $h d$ and redec ${ }_{g e n}^{\prime}$ form a constructive comonad with respect to \equiv
- The type transformation Tri', the projection function top' and redec ${ }_{a l t}^{\prime}$ form a constructive comonad with respect to \equiv (more precisely, the equivalence relation is $\equiv_{A \times S t r E}$ for every A) - stronger result than before

Conclusion

- Redecoration for infinite triangles:
- dualized directly from representation of finite triangles:
- columnwise visualization
- tricky algorithm for redec (polymorphic recursion)
- constructive weak comonad
- representation with streams:
- row-wise visualization
- purely coinductive
- simple versions of redecoration
- constructive comonad
- Easier to work on totally infinite structure than with partially finite ones. Even easier than finite triangles.
- www.irit.fr/~Celia.Picard/Coq/Redecoration/

Conclusion

- Redecoration for infinite triangles:
- dualized directly from representation of finite triangles:
- columnwise visualization
- tricky algorithm for redec (polymorphic recursion)
- constructive weak comonad
- representation with streams:
- row-wise visualization
- purely coinductive
- simple versions of redecoration
- constructive comonad
- Easier to work on totally infinite structure than with partially finite ones. Even easier than finite triangles.
- www.irit.fr/~Celia.Picard/Coq/Redecoration/

Thanks for your attention.

