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Maxflow - Mincut theorem

Problem
Given a network with only one source and only one sink, find a maximum
value flow for the network.

Maxflow - Mincut theorem gives the solution to this issue.
I Important theorem in graph theory and linear programming.
I Can be used to derive Menger’s theorem and König’s theorem.
I Numerous applications.

Niccolò Veltri
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The theorem’s statement

Theorem (MAXFLOW MINCUT)
In a network N the maximum flow value is equal to the minimum capacity of
a s-t cut of N.
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Necessary definitions

I Directed graph [DIR GRAPH]
|- DIR_GRAPH v e <=>

(!x y. x,y IN e ==> x IN v /\ y IN v /\ ˜(x = y))

I Network [NET]
|- NET v e s t c <=>

DIR_GRAPH v e /\
s IN v /\
t IN v /\
˜(s = t) /\
(!x y. x,y IN e ==> &0 <= c (x,y)) /\
(!x y. ˜(x,y IN e) ==> c (x,y) = &0)
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Necessary definitions

I Flow [FLOW]
|- FLOW v e s t c f <=>

NET v e s t c /\
(!x y. x,y IN e ==> f (x,y) <= c (x,y)) /\
(!x y. x,y IN e ==> &0 <= f (x,y)) /\
(!w. w IN v /\ ˜(w = s) /\ ˜(w = t)

==> isum (IN_NODES e w) f = isum (OUT_NODES e w) f)

I Flow value [FLOW VALUE]
|- FLOW_VALUE e s =

(\f. isum (OUT_NODES e s) f - isum (IN_NODES e s) f)
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Flow variation in the sink

For the property of conservation of flow in inner vertexes we have
[FLOW IN SOURCE EQ FLOW OUT END]

|- !v e s t c f.
FINITE v /\ FLOW v e s t c f
==> FLOW_VALUE e s f =

isum (IN_NODES e t) f -
isum (OUT_NODES e t) f
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Necessary definitions

I Directed walk [DIR WALK]
|- (!a b e. DIR_WALK e a b [] <=> a = b) /\

(!a b e h h1 h2 t.
DIR_WALK e a b (CONS (h,h1,h2) t) <=>
a = h /\
h = h1 /\
h1,h2 IN e /\
DIR_WALK (e DELETE (a,h2)) h2 b t)

I s-t cut [CUT]
|- CUT v e s t c z <=>

NET v e s t c /\
z SUBSET e /\
(!l. DIR_WALK e s t l ==> (?q. q IN z /\ MEM (FST q,q) l))
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The theorem’s statement in HOL Light

|- !v e s t c.
FINITE v /\ NET v e s t c
==> (?f z.

FLOW v e s t c f /\
CUT v e s t c z /\
FLOW_VALUE e s f = isum z c /\
(!f’. FLOW v e s t c f’

==> FLOW_VALUE e s f’ <=
FLOW_VALUE e s f) /\

(!z’. CUT v e s t c z’
==> isum z c <= isum z’ c))
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Generalized source

A generalized source of a network is a subset of vertexes such that it contains
the source but not the sink. For a generalized source V ′ it is valid that

v(f ) =
∑
v∈V′

 ∑
e∈U(v)

f (e)−
∑

e∈E(v)

f (e)

 .

E(w) ! IN NODES e w
U(w) ! OUT NODES e w
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Arcs pointing in (out) a subset of vertexes

Let V ′ be a subset of vertexes in a network. We define E(V ′) (respectively
U(V ′)) as the the set of arcs that point in (out) V ′:

|- IN_ARCS e v’ = {x,y | x,y IN e /\ y IN v’ /\ ˜(x IN v’)}

|- OUT_ARCS e v’ = {x,y | x,y IN e /\ x IN v’ /\ ˜(y IN v’)}
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Flow variation in a neighbourhood of the source

A generalized source behaves like a source
[FLOW VALUE FOR SUBSET]:

|- !c v s t e f v’.
FINITE v /\
FLOW v e s t c f /\
v’ SUBSET v /\
s IN v’ /\
˜(t IN v’)
==> FLOW_VALUE e s f =

isum (OUT_ARCS e v’) f - isum (IN_ARCS e v’) f
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The flow value never exceeds the capacity of a s-t cut

First important lemma
[FLOW VALUE IS BOUNDED BY CUT CAPACITY]:

|- !v e s t c f z.
FINITE v /\ FLOW v e s t c f /\ CUT v e s t c z
==> FLOW_VALUE e s f <= isum z c
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The flow value never exceeds the capacity of a s-t cut

Let Z be a s-t cut for the considered network.
Let S be the set of vertexes connected to the source through directed walk
that not contains arcs in Z.
If we prove that U(S) ⊆ Z then the theorem
FLOW VALUE IS BOUNDED BY CUT CAPACITY is proved.

v(f ) =
∑

e∈U(S)

f (e)−
∑

e∈E(S)

f (e) ≤
∑

e∈U(S)

f (e) ≤
∑
e∈Z

f (e) ≤
∑
e∈Z

c(e) = c(Z).
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The flow value never exceeds the capacity of a s-t cut

To prove that U(S) ⊆ Z we had to prove some basic properties of directed
walks:

I DIR WALK EXTENSION

|- !l e a b c.
DIR_WALK e a b l /\ b,c IN e /\ ˜MEM (b,b,c) l
==> DIR_WALK e a c (APPEND l [b,b,c])

I DIR WALK SUBSET

|- !l a b e e’.
e’ SUBSET e /\ DIR_WALK e’ a b l ==> DIR_WALK e a b l
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The flow value never exceeds the capacity of a s-t cut

Let’s take e = (u, v) ∈ U(S). Then exists a directed walk P from s to u that
not contains arcs in Z.

P

s

u
v

S

DIR WALK EXTENSION ⇒ e ∈ Z
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Existence of a flow with greater value

Let’s now see under which conditions, given a flow for a network, we can
construct a flow with greater value. The key to solve this issue lies in the
definition below of the set Sf [SF] of a given flow f .

|- SF c f v e s = {w | w IN v /\ (?j. DIR_REACH c f v e s w j)}

where

|- (!a b v e c f. DIR_REACH c f v e a b [] <=> a = b /\ b IN v) /\
(!a b v e c f h h1 h2 t.

DIR_REACH c f v e a b (CONS (h,h1,h2) t) <=>
a IN v /\
a = h /\
h1,h2 IN e /\
(a = h1 /\
f (h1,h2) < c (h1,h2) /\
DIR_REACH c f (v DELETE a) (e DELETE (h1,h2)) h2 b t \/
a = h2 /\
&0 < f (h1,h2) /\
DIR_REACH c f (v DELETE a) (e DELETE (h1,h2)) h1 b t))
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Existence of a flow with greater value

Second important result [GREATER FLOW]:

|- !v e s t c f.
FINITE v /\ FLOW v e s t c f /\ t IN SF c f v e s
==> (?f’.

FLOW v e s t c f’ /\
FLOW_VALUE e s f < FLOW_VALUE e s f’)
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(i) Existence of f ′

t ∈ Sf , then exists a DIR REACH between the sorce and the sink.
Let’s define for every arc e in this DIR REACH

δ(e) =

{
c(e)− f (e) if e points right
f (e) if e points left

δ(e) > 0⇒ δ = min{δ(e) | e in the DIR REACH} > 0.
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(i) Existence of f ′

f ′(e) =


f (e) + δ if e in the DIR REACH and points right,
f (e)− δ if e in the DIR REACH and points left,
f (e) if e not in the DIR REACH.

Niccolò Veltri

Formalization of Graph Theory in HOL: the Maxflow - Mincut Theorem



(ii) f ′ is a flow

1. f ′(e) ≤ c(e) for every e ∈ E;

2.
∑

e∈E(v)

f ′(e) =
∑

e∈U(v)

f ′(e) for every v ∈ V, v 6= s, t.

That is equivalent to prove that in the DIR REACH there are as many
arcs immediately preceding a vertex v as arcs immediately following v.

Niccolò Veltri
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Niccolò Veltri

Formalization of Graph Theory in HOL: the Maxflow - Mincut Theorem



(ii) f ′ is a flow

We choose the following bijection

\p. @q. (FST q = w /\ MEM (FST q,q) j) \/ (SND q = w /\ MEM (SND q,q) j)

The fundamental result turned out to be:
I EXISTS ARC IN DIR REACH

|- !l c f a b v e x w.
DIR_REACH c f v e a b l /\
˜(w = b) /\
(MEM (x,x,w) l \/ MEM (x,w,x) l)
==> (?y. MEM (w,w,y) l \/ MEM (w,y,w) l)
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(iii) f ′ has greater value than f

Let’s eu be the last arc in the DIR REACH. Let’s assume it points right.
v(f ) measures the flow variation in the sink +
NO ARC BEGINS WITH TERMINAL ⇒

v(f ′) =
∑

e∈E(t)

f ′(e)−
∑

e∈U(t)

f ′(e)

=
∑

e∈E(t)\eu

f (e) + f ′(eu)−
∑

e∈U(t)

f (e)

= v(f ) + δ

Similarly if eu points left.
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Maxflow - Mincut theorem

The results proven give us the following
EXISTS FLOW WITHOUT TERMINAL IN SF :

|- !v e s t c.
FINITE v /\ NET v e s t c
==> (?f. FLOW v e s t c f /\ ˜(t IN SF c f v e s))
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Maxflow - Mincut theorem

We need to prove that the value of the flow found in
EXISTS FLOW WITHOUT TERMINAL IN SF is equal to the capacity of
some s-t cut.
The theorem OUT ARCS SF IS CUT finds the cut:

|- !v e s t c f.
FLOW v e s t c f /\ ˜(t IN SF c f v e s)
==> CUT v e s t c (OUT_ARCS e (SF c f v e s))
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Niccolò Veltri

Formalization of Graph Theory in HOL: the Maxflow - Mincut Theorem



Maxflow - Mincut theorem

The proof of OUT ARCS SF IS CUT is based on the theorem
DIVIDED DIR WALK:

|- !l v e a b v’.
DIR_GRAPH v e /\
DIR_WALK e a b l /\
a IN v’ /\
˜(b IN v’) /\
v’ SUBSET v
==> (?x y l1 l2.

l = APPEND l1 (CONS (x,x,y) l2) /\
x IN v’ /\
˜(y IN v’))
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Maxflow - Mincut theorem

We just need to prove that v(f ) = c(U(Sf ))
[FLOW VALUE EQ CUT CAPACITY]:

|- !v e s t c f.
FINITE v /\ FLOW v e s t c f /\ ˜(t IN SF c f v e s)
==> FLOW_VALUE e s f = isum (OUT_ARCS e (SF c f v e s)) c

Niccolò Veltri

Formalization of Graph Theory in HOL: the Maxflow - Mincut Theorem



Maxflow - Mincut theorem

If e = (x, y) ∈ U(Sf ) then exists a DIR REACH from the source to x and
doesn’t exists a DIR REACH from the source to y. If f (e) < c(e) then exists
a DIR REACH from the source to y, which is absurd.
Then f (e) = c(e).
Similarly if e ∈ E(Sf ) then f (e) = 0.
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Maxflow - Mincut theorem

Therefore

v(f ) =
∑

e∈U(Sf )

f (e)−
∑

e∈E(Sf )

f (e) =
∑

e∈U(Sf )

c(e) = c(U(Sf ))

and the theorem MAXFLOW MINCUT is proven.
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De Bruijn’s factor

The De Bruijn factor is the quotient of the size of a formalization of a
mathematical text and the size of its informal original.
In HOL Light it’s about 4.

I The De Bruijn factor of the Maxflow - Mincut theorem is 4;
I The formalization in HOL Light of the Maxflow - Mincut theorem

consists in 3027 source lines of code, of which more than half are
needed to prove the lemma on the exstence of a flow with greater value.
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What else is in the library

Theorem
Let G = (V,E) be a finite graph, then

∑
v∈V dG(v) = 2|E|.

Theorem
Let G = (V,E) a finite connected graph, then |E| ≥ |V| − 1.

Theorem
Given a graph G = (V,E), exists a polynomial P(G, c), called chromatic
polynomial, that counts the vertex coloring of G using c colors.
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