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Maxflow - Mincut theorem

Problem
Given a network with only one source and only one sink, find a maximum
value flow for the network.
Maxflow - Mincut theorem gives the solution to this issue.
» Important theorem in graph theory and linear programming.
» Can be used to derive Menger’s theorem and Konig’s theorem.

» Numerous applications.
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The theorem’s statement

Theorem (MAXFLOW_MINCUT)

In a network N the maximum flow value is equal to the minimum capacity of
a s-t cut of N.
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Necessary definitions

» Directed graph [DIR_GRAPH]

|- DIR_GRAPH v e <=>
('x y. x5,y IN e ==> x IN v /\ y IN v /\ "(x = y))
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Necessary definitions

» Directed graph [DIR_GRAPH]
|- DIR_GRAPH v e <=>
(!'x y. x,y IN e ==> x IN v /\ y IN v /\ "(x =vy))
» Network [NET]

|- NET v e s t c <=>
DIR_GRAPH v e /\
s IN v /\
t IN v /\
(s = t) /\
(x y. x,y IN e ==> &0 <= c (x,y)) /\
(!'x y. "(x,y IN e) ==> c (x,y) = &0)
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Necessary definitions

» Flow [FLOW]

|- FLOW v e s t ¢ £ <=>
NET v e s t ¢ /\

(!x y. x,y IN e ==> £ (x,y) <= c (x,y)) /\
('x y. x,y IN e ==> &0 <= £ (x,y)) /\
(!'w. w IN v /\ “(w =35s) /\ “(w=1t)
==> isum (IN_NODES e w) f = isum (OUT_NODES e w) f)
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Necessary definitions

» Flow [FLOW]

|- FLOW v e s t ¢ f <=>
NET v e s t ¢ /\

(!x y. x,y IN e ==> £ (x,y) <= c (x,y)) /\
('x y. x,y IN e ==> &0 <= £ (x,y)) /\
(!'w. w IN v /\ “(w =35s) /\ “(w=1t)

==> isum (IN_NODES e w) f

= isum (OUT_NODES e w) f)
» Flow value [FLOW_VALUE]

|- FLOW_VALUE e s =
(\f. isum (OUT_NODES e s) f - isum (IN_NODES e s) f)
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Flow variation in the sink

For the property of conservation of flow in inner vertexes we have
[FLOW_IN_SOURCE_EQ_FLOW_OUT_END]

|- !lve st cf.
FINITE v /\ FLOW v e s t ¢ £
==> FLOW_VALUE e s f =
isum (IN_NODES e t) f -
isum (OUT_NODES e t) f

the Maxflow



Necessary definitions

» Directed walk [DIR_WALK]

|- ('a b e. DIR_WALK e a b [] <=> a = b) /\
('a b e hhl h2 t.
DIR_WALK e a b (CONS (h,hl,h2) t) <=>
a =h /\
h = hl /\
hl,h2 IN e /\
DIR_WALK (e DELETE (a,h2)) h2 b t)
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Necessary definitions

» Directed walk [DIR_WALK]
|- ('la b e. DIRWALK e a b [] <=> a = b) /\
(labehhl h2 t.
DIR_WALK e a b (CONS (h,hl,h2) t) <=>
a =nh /\
h = hl /\
hl,h2 IN e /\
DIR_WALK (e DELETE (a,h2)) h2 b t)
> s-tcut [CUT]
|- CUT v e s t c z <=>
NET v e s t c /\
z SUBSET e /\

(!1. DIR WALK e s t 1 ==> (?q. q IN z /\ MEM (FST q,q) 1))
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The theorem’s statement in HOL Light

|- lve s t c.
FINITE v /\ NET v e s t ¢
==> (?f z.
FLOW v e s t ¢ £ /\
CUT vestecz/\
FLOW_VALUE e s £ = isum z c /\
('f’. FLOW v e s t ¢ £’
==> FLOW_VALUE e s f’ <=
FLOW_VALUE e s f) /\
(!z’". CUT v e s t c z’
==> isum z c <= isum z’ c))




Generalized source

A generalized source of a network is a subset of vertexes such that it contains
the source but not the sink. For a generalized source V’ it is valid that

()= D flo =Y flo)

veV’ \eeU(®v) e€E(v)

E(w) e~ IN.NODES e w
U(w) e~ OUT_NODES e w
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Arcs pointing in (out) a subset of vertexes

Let V' be a subset of vertexes in a network. We define E(V’) (respectively
U(V")) as the the set of arcs that point in (out) V’:

|- IN_ARCS e v/ = {x,y | x,y IN e /\ y IN v/ /\ "(x IN v’)}

|- OUT_ARCS e v’/ = {x,y | x,y IN e /\ x IN v/ /\ “(y IN v’)}
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Flow variation in a neighbourhood of the source

A generalized source behaves like a source
[FLOW_VALUE_FOR_SUBSET]:

|- !'cvstefv.
FINITE v /\
FLOW v e s t ¢ £ /\
v’ SUBSET v /\
s IN v/ /\
“(t IN V)
==> FLOW_VALUE e s f =
isum (OUT_ARCS e v’) f - isum (IN_ARCS e v’) f

e Maxflow - Min



The flow value never exceeds the capacity of a s-f cut

First important lemma
[FLOW_VALUE_IS_BOUNDED_BY_CUT_CAPACITY]:

|- 'vestcfz.
FINITE v /\ FLOW v e s t ¢ £ /\ CUT ve s t c z
==> FLOW_VALUE e s f <= isum z c
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The flow value never exceeds the capacity of a s-f cut

Let Z be a s-t cut for the considered network.
Let S be the set of vertexes connected to the source through directed walk
that not contains arcs in Z.
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The flow value never exceeds the capacity of a s-f cut

Let Z be a s-f cut for the considered network.

Let S be the set of vertexes connected to the source through directed walk
that not contains arcs in Z.

If we prove that U(S) C Z then the theorem
FLOW_VALUE_IS_BOUNDED_BY_CUT_CAPACITY is proved.

v() = D flo)— 3 fle)< D flo) <Y fle) £ ele) = c(2).

ecU(S) e€E(S) ecU(S) ecZ ecZ
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The flow value never exceeds the capacity of a s-f cut

To prove that U(S) C Z we had to prove some basic properties of directed
walks:
» DIR.WALK_EXTENSION

|- !'1 e abec.
DIR_WALK e a b 1 /\ b,c IN e /\ "MEM (b,b,c) 1
==> DIR_WALK e a c (APPEND 1 [b,b,c])
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The flow value never exceeds the capacity of a s-f cut

To prove that U(S) C Z we had to prove some basic properties of directed

walks:
» DIR.WALK_EXTENSION

|- !'1 e abec.
DIR_WALK e a b 1 /\ b,c IN e /\ "MEM (b,b,c) 1
==> DIR_WALK e a c (APPEND 1 [b,b,c])

» DIR.WALK_SUBSET

|- !'1 abee’.
e’ SUBSET e /\ DIR_WALK e’ a b 1 ==> DIR_WALK e a b 1
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The flow value never exceeds the capacity of a s-f cut

Let’s take e = (u,v) € U(S). Then exists a directed walk P from s to u that
not contains arcs in Z.

heory in HOL: the Maxflow - Mincut Theorem



The flow value never exceeds the capacity of a s-f cut

Let’s take e = (u,v) € U(S). Then exists a directed walk P from s to u that
not contains arcs in Z.

DIR_WALK_EXTENSION = e€Z
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Existence of a flow with greater value

Let’s now see under which conditions, given a flow for a network, we can
construct a flow with greater value. The key to solve this issue lies in the
definition below of the set Sy [SF] of a given flow f.

|- SF c £f ves

{w | w IN v /\ (?j. DIR REACH ¢ f ve s w Jj)}
where

|- ('la bvecf. DIRREACH c f veabl]
(!la bvecfhhl h2 t.

DIR_REACH ¢ f v e a b (CONS (h,hl,h2) t)

<=>a =Db /\ b IN v) /\

<=>

a IN v /\

a=nh /\
hl,h2 IN e /\

(a = hl /\

f (hl,h2) < ¢ (hl,h2) /\

DIR_REACH c f (v DELETE a) (e DELETE (hl,h2)) h2 b t \/
a = h2 /\

&0 < f (h1,h2) /\

DIR_REACH c f (v DELETE a) (e DELETE (hl,h2)) hl b t))
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Existence of a flow with greater value

Second important result [GREATER FLOW]:

|- !lvestcf.
FINITE v /\ FLOW v e s t ¢ £ /\ t IN SF c f v e s
==> (?f’.
FLOW v e s t c £/ /\
FLOW_VALUE e s f < FLOW_VALUE e s f’)

the Maxflow



(i) Existence of f'

t € Sy, then exists a DIR_REACH between the sorce and the sink.
Let’s define for every arc e in this DIR_REACH

c(e) —f(e) if e points right
fle) if e points left
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(i) Existence of f'

t € Sy, then exists a DIR_REACH between the sorce and the sink.
Let’s define for every arc e in this DIR_REACH

5(e) c(e) —f(e) if e points right
(4 =
fle) if e points left

d(e) > 0= 6 = min{d(e) | e in the DIR_.REACH} > 0.
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(i) Existence of f'

fle)+ 6 if einthe DIR_REACH and points right,
f'(e) =< f(e) = ifeinthe DIR_REACH and points left,
fle) if e not in the DIR_REACH.
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(ii) f' is a flow

1. f'(e) < ()foreveryeGE;
2. Z Zf’(e)foreveryveV,v;«és,t.

e€E(v) ecU(v)

ory in HOL: the Maxflow - Minc



(ii) f' is a flow

1. f'(e) < c(e) for every e € E;
2. Zf = Zf’(e)foreveryveV,v;«és,t.

e€E(v) ecU(v)
That is equivalent to prove that in the DIR_REACH there are as many
arcs immediately preceding a vertex v as arcs immediately following v.
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(ii) f' is a flow

We choose the following bijection

\p. @q. (FST g = w /\ MEM (FST q,9) Jj) \/ (SND g = w /\ MEM (SND q,q) 3J)
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(ii) f' is a flow

We choose the following bijection

\p. @q. (FST g = w /\ MEM (FST q,9) Jj) \/ (SND g = w /\ MEM (SND q,q) 3J)

The fundamental result turned out to be:
» EXISTS_ARC_IN_DIR_REACH

|- !l cfabvexuw.
DIR_REACH ¢ f ve ab 1l /\
“(w=Db) /\
(MEM (x,x,w) 1 \/ MEM (x,w,x) 1)
==> (?y. MEM (w,w,y) 1 \/ MEM (w,y,w) 1)
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(iii) ' has greater value than f

Let’s ¢, be the last arc in the DIR_REACH. Let’s assume it points right.
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(iii) ' has greater value than f

Let’s ¢, be the last arc in the DIR_REACH. Let’s assume it points right.
v(f) measures the flow variation in the sink ~ +

NO_ARC_BEGINS WITH_TERMINAL =
= > fle=> fl(e
e€E(1) ecU(1)
= > flo+fle)— D fle)
e€E(1)\ey ecU(r)
= () +9

Similarly if e, points left.
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Maxflow - Mincut theorem

The results proven give us the following
EXISTS FLOW.WITHOUT_TERMINAL_IN_SF :

|- lve s t c.
FINITE v /\ NET v e s t ¢
==> (?f. FLOW v e s t ¢ £ /\ "(t IN SF c f v e s))

the Maxflow - Mincut Theorem



Maxflow - Mincut theorem

We need to prove that the value of the flow found in
EXISTS_FLOW_WITHOUT_TERMINAL_IN_SF is equal to the capacity of
some s-f cut.
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Maxflow - Mincut theorem

We need to prove that the value of the flow found in
EXISTS_FLOW_WITHOUT_TERMINAL_IN_SF is equal to the capacity of
some s-f cut.

The theorem OUT_ARCS_SF_IS_CUT finds the cut:

- !vestocf.

FLOW v e s t ¢ £ /\ "(t IN SF ¢ f v e s)
==> CUT v e s t ¢ (OUT_ARCS e (SF c f v e s))
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Maxflow - Mincut theorem

The proof of OUT_ARCS_SF_IS_CUT is based on the theorem
DIVIDED_DIR WALK:

- !'1veabv’.

DIR_GRAPH v e /\

DIR_WAIK e a b 1 /\

a IN v’ /\

(b IN v') /\

v/ SUBSET v

==> (?x y 11 12.
1 = APPEND 11 (CONS (x,x,y) 12) /\
x IN v’ /\
“(y IN v'))

the Maxflow



Maxflow - Mincut theorem

We just need to prove that v(f) = c(U(Sy))
[FLOW_VALUE_EQ_CUT_CAPACITY]:

|- 've s tcf.
FINITE v /\ FLOW v.e s t ¢ £ /\ “(t IN SF ¢ f v e s)
==> FLOW_VALUE e s £ = isum (OUT_ARCS e (SF c f v e s)) c
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Maxflow - Mincut theorem

If e = (x,y) € U(Sy) then exists a DIR_REACH from the source to x and
doesn’t exists a DIR_REACH from the source to y. If f(e) < c(e) then exists
a DIR_REACH from the source to y, which is absurd.

Then f(e) = c(e).

Similarly if e € E(Sy) then f(e) = 0.
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Maxflow - Mincut theorem

Therefore

v(f)= Y fle)= D fley= Y cle) =c(U(Sy)

ecU(Sy) e€E(Sy) e€U(Sy)

and the theorem MAXFLOW_MINCUT is proven.
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De Bruijn’s factor

The De Bruijn factor is the quotient of the size of a formalization of a
mathematical text and the size of its informal original.
In HOL Light it’s about 4.
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De Bruijn’s factor

The De Bruijn factor is the quotient of the size of a formalization of a
mathematical text and the size of its informal original.
In HOL Light it’s about 4.

» The De Bruijn factor of the Maxflow - Mincut theorem is 4;

» The formalization in HOL Light of the Maxflow - Mincut theorem
consists in 3027 source lines of code, of which more than half are
needed to prove the lemma on the exstence of a flow with greater value.
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What else is in the library

Theorem
Let G = (V,E) be a finite graph, then ), ., dc(v) = 2|E|.

Theorem
Let G = (V,E) a finite connected graph, then |E| > |V| — 1.

Theorem

Given a graph G = (V, E), exists a polynomial P(G, c), called chromatic
polynomial, that counts the vertex coloring of G using c colors.
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