Correctness-by-Construction in Stringology

Bruce W. Watson

FASTAR Research Group, Stellenbosch University, South Africa

bruce@fastar.org

Institute of Cybernetics at TUT, Tallinn, Estonia, 3 June 2013

fastar

Aim of this talk

v

Motivate for correctness-by-construction (CbC)

... especially in stringology

v

Introduce CbC as a way of explaining algorithms

v

Show how CbC can be used in inventing new ones

» Give some new notational tools

fastar

Contents

AR .

What's the problem?
Introduction to CbC
Example derivations
Conclusions & ongoing work
References

fastar

What is CbC?

Methodology sketch:
1. Start with a specification
...and a simple programming language
...and a logic
2. Refine the specification
...in tiny steps
... each of which is correctness-preserving
3. Stop when it's executable enough
What do we have at the end?
> An algorithm we can implement
> A derivation showing how we got there

» An interwoven correctness proof
fastar

Why is correctness critical in stringology?

» Many stringology problems in infrastructure soft-/hardware

Devil is in the details, cf. repeated corrections of articles

| 2
» Stringology is curriculum-core stuff
> The field is very rich — overviews, taxonomies, etc. are

needed to see interrelations

fastar

What are the alternatives?

Testing

Only shows the presence of bugs, not absence

» Most popular

A postiori proof

>

>

Automated proof

>
>

Think up a clever algorithm, then set about
proving it

Leads to a decoupling which can be problematic,
potential gaps, etc.

Most popular proof type

Requires a model of the algorithm

Potential discrepancy between algorithm and

model

Tedious fastar

Bonus?

We get a few things for free.
The ‘tiny’ derivation steps often have choices which can lead to
other algorithms, giving:

» Deriving a family of algorithms
...e.g. the Boyer-Moore type ‘sliding window' algorithms
» Taxonomizing a group of algorithms with a tree of derivations

» Explorative algorithmics — at each opportunity, try something
new

fastar

Short history

We stick to a CbC for imperative/procedural programs!:

» In the late 1960's

> Largely by these guys: [}
with Floyd, Knuth, Kruseman Aretz, ...

» Followed in the 80's by more work due to Gries, Broy,
Morgan, Bird, ...
» Taught in algorithmics at various uni’s

fastar

1Other paradigms exist of course: functional, logical

Key components

We're going to need
» A simple pseudo-code: guarded command language (GCL)
5 statement types
» A simple predicate language (first order predicate logic)

» A calculus and some strategies on these things

fastar

Hoare triples, frames, ...

Hoare triples, e.g. {P}S{Q}
» P and Q are predicates (assertions), saying something about
variables

P is called the precondition
Q is the postcondition
» S is some program statement (perhaps compound)
» For reasoning about total correctness: this triple asserts that

if P is true just before S executes, then S will terminate and
Q will be true

» Eg. {x=1}x:=x+1{x=2}
» Invented by Tony Hoare? and Robert Floyd
» Was used for (relatively ad hoc) reasoning on flow-charts
fastar

2He didn't just do Quicksort

Useful things you can do with Hoare triples

Dijkstra et al invented a calculus of Hoare triples
» Start with {P}S{Q} where S is to be invented/constructed
This triple is a algorithm skeleton
» We can elaborate S as a compound GCL statement
Using rules based on the syntactic structure of GCL
» Work backwards
Our post-condition is our only goal
What can we legally do?
» Strengthen the postcondition: achieve more than demanded
» Weaken the precondition: expect less than guaranteed

Morgan and Back invented refinement calculi

fastar

Sequences of statements

Given skeleton {P}S{Q}, split S into two (still abstract)
statements

{P}So; 51{Q}

What now?

» We would like the two new statements to each do part of the
work towards @

» ‘Part of the work' can be some predicate/assertion R, giving
{P}So: {R}51{Q}
» Now we can proceed with {P}So{R} and {R}S$1{Q}

more or less in isolation

Note that ';' is a sequence operator fastar

Example: sequence

{ pre m and n are integers }
S

{ post x=mmaxnAy=mminn }

can be made into

{ pre m and n are integers }

So;

{ x=mmaxn }

51

{ post x=mmaxnAy = mminn }

fastar
which can be further refined (next slides)

Assigning to a variable

Sometimes it's as simple as an assignment to a variable:
Refine {P}S{Q}
to {P}x := E{Q} (for expression E) if we can show that

P = Q[x:= E] i.e. Q with all x's replaced with E's
For example

{ pre m and n are integers }

So;

{ x=mmaxn }

y:=mminn

{ post x =mmaxnAy=mminn }

because clearly

(x = mmaxn A mminn= mminn) = (x = mmaxn) fastar

IF statement
Refine {P}S{Q} to

{ P}

if G0—>{P/\Go}50{ Q}
l] G1—>{P/\G1}51{ Q}
fi

{Q}

if P — GgV Gp
For example

{ pre m and n are integers }
fm>n—->x:=m; y:=n
| m<n—x:=n y:=m
fi
{ post x=mmaxnAy=mminn }
fastar

Note nondeterminism!

DO loops

What do we need to refine to a loop?

Invariant:

Variant:

>
>
>

vVVvyYyYyyswy

Predicate/assertion
True before and after the loop
True at the top and bottom of each iteration

Integer expression

Often based on the loop control variable
Decreasing each iteration, bounded below
Gives us confidence it's not an infinite loop

fastar

DO loops

For invariant / and variant expression V we get

{ P}
So;
{1}
do G- { ING }
51
{ I N (V decreased) }
od
{ IN=G}

{Q}

Remember to check P = [and IN-G = Q@
fastar

Example: DO loop

Given

{ x,i are integers and A is an array of integers and x € A }
S

{ post i is minimal such that A; = x }

we can choose
Invariant x & App...j)
Variant |A| —i

in

{ x,i are integers and A is an array of integers and x € A }
{ invariant x ¢ A ;) and variant |A| - }
do A # x —
[i=1i+1
od

{ post i is minimal such that A; = x } fastar

Example derivation: the Boyer-Moore family

Specification and starting point

{ pre p,S are strings }
T
{ post M = {x: p appears at S} }

Output variable M is used to accumulate the matches
We'll introduce auxiliary variables as needed, starting with j
left-to-right in S

The ‘collection’ M indicates we need a loop

fastar

Introducing the outer loop
Invariant / : M = {x : x < j A p appears at Sy}
Intuitively, this says we have accumulated the matches left of j
Variant V: |S| —

{ pre p,S are strings }

To;
{1}
do j <|S|—|pl = { InG<IS|=Ipl) }
T
{ I A(V has decreased) }
od

{In=G 18I~ 1p]))
{ post M = {x: p appears at 5} }
Clearly, To must set j, M and T; must
» Update M if there's a match at j
> Increase j to move right and decrease V tastar

» Ensure that / is true again

Updating M

Update M using a straightforward test

{ pre p,S are strings }
Jji=0, M:=10;
{1}
do j <|[S[—[p| = { IAU<ISI—Ipl) }
if pappearsat 5, = M := MU {}
[otherwise — skip
fi;
T2
{ I A (V has decreased) }
od
{ IA=0G<ISI=1pl) }
{ post M = {x: p appears at S,} }
fastar

More ideas on updating M

What does “p appears at S;" actually mean?
We can expand this to

Vo<x<|p| : Px = Sjtx

We can implement such a characterwise check from left-to-right or
vice-versa or in arbitrary orders
Can also be done in hardware, ...

fastar

Still more ideas on updating M

Consider doing it left-to-right
Invariant J :

v0§x<i CPx = Sj—&—x
Variant W : |p| — i in

i:=0;
{J}
do i <|p|Api=Si—
{ Jni<I|plApi=S5ti}
ii=i+1
{ JA (W has decreased) }
od;
{ JA=(<|p|Api=Sj+i) }
if j > |p| - M:= MU {j)
[otherwise — skip

fastar
fi

Updating j in the outer loop

Recall we can use J A =(i < |p| A pi = Sji) in updating j
Vo<x<i : Px = Sjax A (i < |p| A pi = Sji)

We would ideally like to move to the next match using

Ji=j+ (mini<, : p appears at Sj)

This really is the magic of ‘shifting windows’
How do we make this shift distance realistic?
Look at the predicate in the min

fastar

Realistic shift distances

Consider two predicates A = B (B is a weakening of A)
We have

min: B<min: A
k k
Additionally, for two predicates C, D
mkin (CvD)= (mkin : C) min(mkin : D)
and

mkin :(CAD)> (mkin : C) max(mkin : D)

So we can also split con-/disjuncts
fastar

Realistic shift distances

If we can ‘weaken’ predicate
p appears at Sj,

we have a usable shift
What do weakenings look like?

» Boyer-Moore di, d> shift predicate
» Mismatching character predicate
» Right-lookahead (Horspool) predicate

| S

Calculus of shift distances exploring all possible shifters

fastar

Final version of the algorithm

{ pre p,S are strings }
j:=0; M:=0;
do j < |S|—|p|—i:=0;
do i < |p|Ap; = Sjyi —
ii=i+1
od;
if > pl = Mi= MU {j)
[otherwise — skip
fi;
Jj :=J+ (mini<y : weakening of “p appears at ;4"
od
{ post M = {x: p appears at 5,} }

fastar

A totally new algorithm skeleton

{ pre p,S are strings }
{ Todo is a stack }
Todo:=0; M:=0;
Todo : = {[0,IS| — |p| + 1)};
do Todo # () — pop [/, h) from Todo;
if [/, h) is not empty —
probe := |51 ;
if p appears at Syrobe —
[otherwise — M := M U {probe}
fi;
push [m + window shift to right, h) onto Todo;
push [/, m — window shift to left) onto Todo
| otherwise — skip
fi
od
{ post M = {x: p appears at 5} } fastar

Redundant push/pop can be removed

Conclusions & ongoing work

» Simple/interwoven logic + language are sufficient

» CbC is relatively idiot-proof

» Notation is important

» Creativity is not hampered: new algorithms can be invented
» Useful methodology for bringing coherence to a field

...and detecting unexplored parts

» Parallel programming is exponentially more difficult than
sequential
» Testing exhaustively is difficult due to all possible interleavings
» A postiori proof is similarly difficult
» Automated proofs are possible

fastar

References

A

Dijkstra. A Discipline of Programming, P-H, 1976
Gries. The Science of Computer Programming, Springer, 1980
Cohen. Programming in the 1990's, Springer, 1990

Kaldewaij. Programming: The Derivation of Algorithms, P-H,
1990

Morgan. Programming from Specifications, P-H, 1998,
available as PDF

Feijen & van Gasteren. On a Method of Multiprogramming,
Springer, 1999

7. Misra. A Discipline of Multiprogramming, Springer, 2001

8. Kourie & Watson. The Correctness-by-Construction Approach

to Programming, Springer, 2012
fastar

	Introduction
	Introduction to CbC
	Example: Boyer-Moore
	Example: Deadzone
	Closing

