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Motivations for Proof Compression

Sat/SMT-solvers, ATPs, proof assistants. . .
best techniques to find proofs do not necessarily find the best proofs
proofs can be redundant

Proof compression techniques may lead to:
smaller proof libraries
faster proof checking
smaller unsat cores
better interpolants
easier exchange of knowledge
discovery of interesting mathematical definitions and lemmas
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Techniques for Proof Compression

Sequent Calculus
Cut-elimination
Cut-introduction

Natural Deduction
Allowing contextual inferences

Propositional Resolution
Recycle Pivots (with Intersection)
Lower Units
Reduce&Reconstruct
Split
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Natural Deduction

axiom
Γ,A ` A

Γ,A ` B
→I

Γ ` A → B

Γ ` A → B Γ ` A
→E

Γ ` B

Figure: The natural deduction calculus ND
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Natural Deduction
An example: double negation elimination

Double negation elimination axiom schema:

dne : ¬¬F → F

Deriving (A → B)→ C from (¬¬A → B)→ C in ND:

(¬¬A → B)→ C ` (¬¬A → B)→ C

A → B ` A → B
` ¬¬A → A ¬¬A ` ¬¬A

→E
¬¬A ` A

→E
A → B ,¬¬A ` B

→I
A → B ` ¬¬A → B

→E
(¬¬A → B)→ C ,A → B ` C

→I
(¬¬A → B)→ C ` (A → B)→ C
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Contextual Natural Deduction

axiom
Γ,A ` A

Γ,A ` Cπ[B]
→I (π)

Γ ` Cπ[A → B]

Γ ` C1
π1

[A → B] Γ ` C2
π2

[A ]
→

⇀
E (π1;π2)

Γ ` C1
π1

[C2
π2

[B]]

Γ ` C1
π1

[A → B] Γ ` C2
π2

[A ]
→

↼
E (π1;π2)

Γ ` C2
π2

[C1
π1

[B]]

Note: π, π1 and π2 must be positive positions.

Figure: The contextual natural deduction calculus NDc
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Comparing ND and NDc
Double Negation Elimination

Double negation elimination axiom schema:

dne : ¬¬F → F

Deriving (A → B)→ C from (¬¬A → B)→ C in NDc:

` ¬¬A → A (¬¬A → B)→ C ` (¬¬A → B)→ C
→

↼
E (ε;11)

(¬¬A → B)→ C ` (A → B)→ C

And in ND:

(¬¬A → B)→ C ` (¬¬A → B)→ C

A → B ` A → B
` ¬¬A → A ¬¬A ` ¬¬A

→E
¬¬A ` A

→E
A → B ,¬¬A ` B

→I
A → B ` ¬¬A → B

→E
(¬¬A → B)→ C ,A → B ` C

→I
(¬¬A → B)→ C ` (A → B)→ C
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Comparing ND and NDc
Skolemization

Skolemization axiom schema:

sk : ∃x .F [x]→ F [fsk (x1, . . . , xn)]

where x1, . . . , xn free-variables of F and fsk new skolem symbol.

Deriving skolemization (A → B)→ P(c) from (A → B)→ ∃x .P(x) in NDc:

` ∃x .P(x)→ P(c) (A → B)→ ∃x .P(x) ` (A → B)→ ∃x .P(x)
→

↼
E (ε;0)

(A → B)→ ∃x .P(x) ` (A → B)→ P(c)

And in ND:

` ∃x .P(x)→ P(c)

. . . ` A → B . . . ` (A → B)→ ∃x .P(x)
→E

(A → B)→ ∃x .P(x),A → B ` ∃x .P(x)
→E

A → B , (A → B)→ ∃x .P(x) ` P(c)
→I

(A → B)→ ∃x .P(x) ` λcA→B .(A → B)→ P(c)
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Curry-Howard Isomorphism
Natural Deduction

axiom
Γ,a : A ` a : A

Γ,a : A ` b : B
→I

Γ ` λaA .b : A → B

Γ ` f : A → B Γ ` a : A
→E

Γ ` (f a) : B

Figure: The natural deduction calculus ND
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Curry-Howard Isomorphism
Contextual Natural Deduction NDc

axiom
Γ,a : A ` a : A

Γ,a : A ` b : Cπ[B]
→I (π)

Γ ` λπaA .b : Cπ[A → B]

Γ ` f : C1
π1

[A → B] Γ ` a : C2
π2

[A ]
→

⇀
E (π1;π2)

Γ ` (f a)⇀
(π1;π2)

: C1
π1

[C2
π2

[B]]

Γ ` f : C1
π1

[A → B] Γ ` a : C2
π2

[A ]
→

↼
E (π1;π2)

Γ ` (f a)↼
(π1;π2)

: C2
π2

[C1
π1

[B]]

Note: π, π1 and π2 must be positive positions.

Figure: The contextual natural deduction calculus NDc
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Example
Double Negation Elimination

Deriving (A → B)→ C from (¬¬A → B)→ C in NDc:

` dne : ¬¬A → A a : . . . ` a : (¬¬A → B)→ C
→

↼
E (ε;11)

a : (¬¬A → B)→ C ` (dne a)↼
(ε;11) : (A → B)→ C

And in ND:

a : . . . ` a : (¬¬A → B)→ C

c : . . . ` c : A → B
` dne : ¬¬A → A d : . . . ` d : ¬¬A

→E
d : . . . ` (dne d) : A

→E
d : . . . , c : . . . ` (c (dne d)) : B

→I
c : . . . ` λd¬¬A .(c (dne d)) : ¬¬A → B

→E
a : . . . , c : . . . ` (a λd.(c (dne d))) : C

→I
a : (¬¬A → B)→ C ` λcA→B .(a λd¬¬A .(c (dne d))) : (A → B)→ C
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Example
Skolemization

Deriving skolemization (A → B)→ P(c) from (A → B)→ ∃x .P(x) in NDc:

` sk : ∃x .P(x)→ P(c) a : . . . ` a : (A → B)→ ∃x .P(x)
→

↼
E (ε;0)

a : (A → B)→ ∃x .P(x) ` (sk a)↼
(ε;0) : (A → B)→ P(c)

And in ND:

` sk : ∃x .P(x)→ P(c)

c : . . . ` c : A → B a : . . . ` a : (A → B)→ ∃x .P(x)
→E

a : (A → B)→ ∃x .P(x), c : A → B ` (a c) : ∃x .P(x)
→E

c : A → B ,a : (A → B)→ ∃x .P(x) ` (sk (a c)) : P(c)
→I

a : (A → B)→ ∃x .P(x) ` λcA→B .(sk (a c)) : (A → B)→ P(c)
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Completeness

Theorem (Completeness)

If T is provable in ND, then T is provable in NDc.

Definition (Translation of λ-terms into λd-terms)

ζ[v] � v (for a variable v).

ζ[λvT .t ] � λεvT .ζ[t ]

ζ[(m n)] � (ζ[m] ζ[n])(ε;ε)
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Soundness

Theorem (Soundness)

If T is provable in NDc, then T is provable in ND.
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(Un)Soundness
Translating λd -terms into λ-terms

If t is an (⇀)-application of the form (f a)⇀
(π1;π2)

, the translation is defined
by two successive inductions, firstly on the position π1 and then (when
π1 = ε) on π2, according to the cases below:

If π1 = 0π, it is the case that t matches (fC→D a)⇀
(0π;π2)

, and then

ξ[t] � λcC .ξ[((f c) a))⇀
(π;π2)

]

If π1 = 1π′, then there is at least one occurrence of the digit 1 in π′, since
π1 is positive and π′ is negative. Therefore, π1 is necessarily of the form
10 . . . 01π and t matches (f (C1→...Cn→(Tπ[A→B]→D1))→D2 a)⇀

(10...01π;π2)
. Then

ξ[t] � λkC1→...Cn→(Tπ [B]→D1) .(f λc
C1
1 . . . cCn

n .λhTπ [A→B] .(k c1 . . . cn ξ[(h a)⇀
(π;π2)

])

If π1 = ε and π2 = 0π, it is the case that t matches (f aC→D)⇀
(ε;0π), and then

ξ[t] � λcC .ξ[(f (a c))⇀
(ε;π)]

If π1 = ε and π2 = 1π′, then there is at least one occurrence of the digit 1 in
π′, since π2 is positive and π′ is negative. Therefore, π2 is of the form
10 . . . 01π and t matches (fA→B a(C1→...Cn→(Tπ[A ]→D1))→D2 )⇀

(ε;10...01π). Then

ξ[t] � λkC1→...Cn→(Tπ [B]→D1) .(a λc
C1
1 . . . cCn

n .λhTπ [A ] .(k c1 . . . cn ξ[(f h)⇀
(ε;π)]))

If π1 = π2 = ε, it is the case that t matches (f a)⇀
(ε;ε)

, and then

ξ[t] � (ξ[f ] ξ[a])
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(Un)Soundness
Translating λd -terms into λ-terms

If t is an (↼)-application of the form (f a)↼
(π1;π2)

, the translation is
analogous to the previous case for (f a)⇀

(π1;π2)
, but the induction is made

firstly on the position π2 and only then (when π2 = ε) on π1. For the sake
of clarity, all cases are shown below:

If π2 = 0π, it is the case that t matches (f aC→D)↼
(π1;0π)

, and then

ξ[t] � λcC .ξ[(f (a c))↼
(π1;π)

]

If π2 = 1π′, then there is at least one occurrence of the digit 1 in π′, since
π2 is positive and π′ is negative. Therefore, π2 is necessarily of the form
10 . . . 01π and t matches (f a(C1→...Cn→(Tπ[A ]→D1))→D2 )↼

(π1;10...01π). Then

ξ[t] � λkC1→...Cn→(Tπ [B]→D1) .(a λc
C1
1 . . . cCn

n .λhTπ [A ] .(k c1 . . . cn ξ[(f h)↼
(π1 ;π)

]))

If π2 = ε and π1 = 0π, it is the case that t matches (fC→D a)↼
(0π;ε), and then

ξ[t] � λcC .ξ[((f c) a)↼
(π;ε)]

If π2 = ε and π1 = 1π′, then there is at least one occurrence of the digit 1 in
π′, since π1 is positive and π′ is negative. Consequently, π1 is of the form
10 . . . 01π and t matches (f (C1→...Cn→(Tπ[A→B]→D1))→D2 a)↼

(10...01π;ε). Then

ξ[t] � λkC1→...Cn→(Tπ [B]→D1) .(f λc
C1
1 . . . cCn

n .λhTπ [A→B] .(k c1 . . . cn ξ[(h a)↼
(π;ε)])

If π2 = π1 = ε, it is the case that t matches (f a)↼
(ε;ε)

, and then

ξ[t] � (ξ[f ] ξ[a])
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(Un)Soundness
Translating λd -terms into λ-terms

If t is a variable, then ξ[t ] � t
If t is an abstraction of the form λπaA .b, the translation is defined by
induction on the position π, according to the cases below:

If π = 0π′, it is the case that t matches λ0π′aA .bC→D , and then

ξ[t] � λcC .ξ[λπ′aA .(bc)]

If π = 1π′, then there is at least one occurrence of the digit 1 in π′, since π
is positive and π′ is negative. Therefore, π is necessarily of the form
10 . . . 01π′′ and t matches λ10...01π′′aA .f (C1→...Cn→(Tπ′′ [B]→D1))→D2 . Then

ξ[t] � λkC1→...Cn→(Tπ′′ [A→B]→D1) .(f λc
C1
1 . . . cCn

n .λhTπ′′ [B] .(k c1 . . . cn ξ[λπ′′a
A .h])

If π = ε, it is the case that t matches λεa.f , and then

ξ[t] � λa.ξ[f ]
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(Un)Soundness
Translating λd -terms into λ-terms

If t is a variable, then ξ[t ] � t
If t is an abstraction of the form λπaA .b, the translation is defined by
induction on the position π, according to the cases below:

If π = 0π′, it is the case that t matches λ0π′aA .bC→D , and then

ξ[t] � λcC .ξ[λπ′aA .(bc)]

If π = 1π′, then there is at least one occurrence of the digit 1 in π′, since π
is positive and π′ is negative. Therefore, π is necessarily of the form
10 . . . 01π′′ and t matches λ10...01π′′aA .f (C1→...Cn→(Tπ′′ [B]→D1))→D2 . Then

ξ[t] � λkC1→...Cn→(Tπ′′ [A→B]→D1) .(f λc
C1
1 . . . cCn

n .λhTπ′′ [B] .(k c1 . . . cn ξ[λπ′′a
A .h])

If π = ε, it is the case that t matches λεa.f , and then

ξ[t] � λa.ξ[f ]

Intuitionistic Contextual Soundness Condition:
If π contains the digit 1, then a is not allowed to occur in f .
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From Intuitionistic to Classical Logic
Proving Peirce’s Law and the Double Negation Elimination Principle

axiom
p : P,a : (Q → P) ` p : P

→I
p : P ` λa(Q→P).p : (Q → P)→ P

→I (11)
` λ11pP .λa(Q→P).p : ((P → Q)→ P)→ P

axiom
p : P,a : (⊥ → ⊥) ` p : P

→I
p : P ` λa(⊥→⊥).p : (⊥ → ⊥)→ P

→I (11)
` λ11pP .λa(⊥→⊥).p : ((P → ⊥)→ ⊥)→ P
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From Intuitionistic to Classical Logic
Three Ways

Add classical principles as axioms to shallow natural deduction

Use a multi-conclusion natural deduction calculus

Allow unrestricted contextual natural deduction inference rules
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Normalization

(λaA .f t ′) β f [a\t ′]

(λ0aA .f t ′)(0;ε) ? f [a\t ′]

(λbB .λaA .(f b) t ′)(0;ε) ? λbB .(f [a\t ′] b)
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Unfolding

λ0πaA .bC→D

λcC .λπaA .(bc)

λ10...01πaA .f (C1→...Cn→(Tπ[B]→D1))→D2

λk C1→...Cn→(Tπ[A→B]→D1).(f λcC1
1 . . . cCn

n .λhTπ[B].(k c1 . . . cn λπaA .h)

Figure: Unfolding Contextual Abstractions

(fC→D a)⇀
(0π;π2)

λcC .((f c) a))⇀
(π;π2)

(f aC→D)↼
(π1;0π)

λcC .(f (a c))↼
(π1;π)

(f aC→D)⇀
(ε;0π)

λcC .(f (a c))⇀
(ε;π)

(fC→D a)↼
(0π;ε)

λcC .((f c) a)↼
(π;ε)

Figure: Unfolding Contextual Applications with Position Starting with 0
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Unfolding

(f (C1→...Cn→(Tπ[A→B]→D1))→D2 a)⇀
(10...01π;π2)

λk C1→...Cn→(Tπ[B]→D1).(f λcC1
1 . . . cCn

n .λhTπ[A→B].(k c1 . . . cn (h a)⇀
(π;π2)

)

(f a(C1→...Cn→(Tπ[A ]→D1))→D2 )↼
(π1;10...01π)

λk C1→...Cn→(Tπ[B]→D1).(a λcC1
1 . . . cCn

n .λhTπ[A ].(k c1 . . . cn (f h)↼
(π1;π)

))

(fA→B a(C1→...Cn→(Tπ[A ]→D1))→D2 )⇀
(ε;10...01π)

λk C1→...Cn→(Tπ[B]→D1).(a λcC1
1 . . . cCn

n .λhTπ[A ].(k c1 . . . cn (f h)⇀
(ε;π)

))

(f (C1→...Cn→(Tπ[A→B]→D1))→D2 a)↼
(10...01π;ε)

λk C1→...Cn→(Tπ[B]→D1).(f λcC1
1 . . . cCn

n .λhTπ[A→B].(k c1 . . . cn (h a)↼
(π;ε)

)

Figure: Unfolding Contextual Applications with Position Starting with 1
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Unfolding and Beta-Reduction
Example

(λ0aA .(λ0bB .h a) t ′)(0;ε) δ (λbB
1 .λaA .((λ0bB .h a) b1) t ′)(0;ε)

 δ λbB
2 .((λbB

1 .λaA .((λ0bB .h a) b1) b2) t ′)

 β λbB
2 .(λaA .((λ0bB .h a) b2) t ′)

 β λbB
2 .((λ0bB .h t ′) b2)

=η (λ0bB .h t ′)
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Unfolding
Some Theorems

 δ is terminating.
For all unfolding rules, the sum of the sizes of all positions decreases.

 δ is locally confluent.
There are no critical pairs.

 δ is confluent.
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Beta-Unfolding

 βδ is weakly normalizing.
Just unfold first and beta-reduce later.

 βδ is terminating.

 βδ is confluent.
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Quadratic Compressibility

In the best cases,
NDc-proofs can be quadratically smaller than smallest ND-proofs.

There is a sequence of theorems Fn whose
smallest ND-proofs ψn grow at least quadratically (i.e. s(ψn) ∈ Ω(n2)),

while there are
NDc-proofs ψd

n of Fn growing at most linearly (i.e. s(ψd
n) ∈ O(n)).
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Quadratic Compressibility
Measuring the Size of Types, Terms and Proofs

Definition (Size of a Type)

s(A) � 1 (if A is an atomic type)

s(T1 → T2) � 1 + s(T1) + s(T2)

Definition (Size of a λ-term)

s(v) � 1 (if v is a variable)

s(λvT .t ′) � 2 + s(T) + s(t ′)

s((m n)) � 1 + s(m) + s(n)

Definition (Size of a λd-term)

s(v) � 1 (if v is a variable)

s(λπvT .t ′) � 2 + s(T) + s(t ′) + s(π)

s((m n)⇀π1;π2
) � 1 + s(m) + s(n) + s(π1) + s(π2)

s((m n)↼π1;π2
) � 1 + s(m) + s(n) + s(π1) + s(π2)
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Quadratic Compressibility
Proof

Let Fn � Tn(A → B)→ (A → Tn(B)) where:

T0(F) � F

Tn(F) � (Tn−1(F)→ D2n−1)→ D2n

Let ψd
n � I

−1
d (td

n ) where:

td
n � λfTn(A→B).λaA .(f a)

(11 . . . 1︸  ︷︷  ︸
2n

;ε)

Let ψn � I−1(tn) where:
tn � ξ(td

n )

Note that ψk is a smallest ND-proof of Fk . Any ND-proof of Fk must (at least)
decompose Fk until the subformulas A → B and A are obtained and then
apply A → B to A . ψk does exactly this and nothing more.
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Proof

Let Fn � Tn(A → B)→ (A → Tn(B)) where:

T0(F) � F

Tn(F) � (Tn−1(F)→ D2n−1)→ D2n

Let ψd
n � I

−1
d (td

n ) where:

td
n � λfTn(A→B).λaA .(f a)

(11 . . . 1︸  ︷︷  ︸
2n

;ε)

Let ψn � I−1(tn) where:
tn � ξ(td

n )

Note that ψk is a smallest ND-proof of Fk . Any ND-proof of Fk must (at least)
decompose Fk until the subformulas A → B and A are obtained and then
apply A → B to A . ψk does exactly this and nothing more.
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Quadratic Compressibility
Proof

By definition, s(ψd
n) = s(td

n ), and s(td
n ) is computed below:

s(td
n ) = s(λfTn(A→B).λaA .(f a)(11 . . . 1︸  ︷︷  ︸

2n

;ε))

= 2 + s(Tn(A → B)) + s(λaA .(f a)(11...1;ε))

= 2 + (3 + 4n) + s(λaA .(f a)(11...1;ε))

= 5 + 4n + (2 + s(A) + s((f a)(11...1;ε)))

= 8 + 4n + s((f a)(11...1;ε))

= 8 + 4n + (1 + s(f) + s(a) + s(11 . . . 1︸  ︷︷  ︸
2n

) + s(ε))

= 8 + 4n + (3 + 2n + 0)
= 11 + 6n

Therefore, s(td
n ) ∈ O(n).
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Quadratic Compressibility
Proof

By definition, s(ψn) = s(tn), and s(tn) is computed below:

s(tn) = s(ξ(λfTn(A→B).λaA .(f a)(11 . . . 1︸  ︷︷  ︸
2n

;ε)))

= s(λfTn(A→B).λaA .ξ((f a)(11...1;ε)))

= 2 + s(Tn(A → B)) + 2 + s(A) + s(ξ((f a)(11...1;ε)))

= 8 + 4n + s(ξ((f a)(11 . . . 1︸  ︷︷  ︸
2n

;ε)))
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Quadratic Compressibility
Proof

s(tn) = 8 + 4n + s(ξ((f a)
(11 . . . 1︸  ︷︷  ︸

2n

;ε))). Let q(n) � s(ξ((f a)
(11 . . . 1︸  ︷︷  ︸

2n

;ε))).

Then:
q(0) = s(ξ((f a)(ε;ε))) = 3

q(n) = s(ξ((f a)(1111 . . . 1︸     ︷︷     ︸
2n

;ε)))

= s(λTn−1(B)→D2n−1
k .(f λhTn−1(A→B).ξ((h a)(11 . . . 1︸  ︷︷  ︸

2n−2

;ε))))

= 2 + s(Tn−1(B)→ D2n−1) + s((f λhTn−1(A→B).ξ((h a)(11...1;ε))))

= 2 + 4(n − 1) + 3 + s((f λhTn−1(A→B).ξ((h a)(11...1;ε))))

= 1 + 4n + s((f λhTn−1(A→B).ξ((h a)(11...1;ε))))

= 1 + 4n + 2 + s(λhTn−1(A→B).ξ((h a)(11...1;ε)))

= 3 + 4n + s(λhTn−1(A→B).ξ((h a)(11...1;ε)))

= 5 + 4n + s(Tn−1(A → B)) + s(ξ((h a)(11 . . . 1︸  ︷︷  ︸
2n−2

;ε))) = 4 + 8n + q(n − 1)
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Quadratic Compressibility
Proof

s(tn) = 8 + 4n + q(n)

q(0) = 3

q(n) = 4 + 8n + q(n − 1)

Solving the recurrence relation above gives the following closed-form for q:

q(n) = 4n2 + 8n + 3

Therefore, s(ψn) ∈ Ω(n2).
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Proof Compression by Folding

 −1
δ is terminating

The term size decreases with every inverse rewriting step.

 −1
δ is not confluent

Let f : A → B and a : (A → D)→ E. Then:
λk B→D .(a λhA .(k (f h)))  −1

δ (f a)(ε;11)

λk B→D .(a λhA .(k (f h)))  −1
δ λk B→D .(a (k f)(ε;0))
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Just Folding is not Enough!

hab : A → B hbc : B → C hade : (A → D)→ E

λhC→D
cd .(hade λhA

a .(hcd (hbc (hab ha)))) : (C → D)→ E

Normal form w.r.t. −1
δ .

Yet, there are smaller λd-terms:

(hbc (hab hade)(ε;11))(ε;11)

((hbc hab )(ε;0) hade)(ε;11)

To obtain them, we need folding + beta expansion
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Proof Compression by Folding and Beta Expansion

hab : A → B hbc : B → C hade : (A → D)→ E

t � λhC→D
cd .(hade λhA

a .(hcd (hbc (hab ha))))

 −1
β λhC→D

cd .(hade λhA
a .(λk B

b .(hcd (hbc kb )) (hab ha)))

 −1
β λhC→D

cd .(λk B→D
bd .(hade λhA

a .(kbd (hab ha))) λk B
b .(hcd (hbc kb )))

 −1
δ (hbc λk B→D

bd .(hade λhA
a .(kbd (hab ha))))(ε;11)

 −1
δ (hbc (hab hade)(ε;11))(ε;11)

t � λhC→D
cd .(hade λhA

a .(hcd (hbc (hab ha))))

 −1
β λhC→D

cd .(hade λhA
a .(hcd (λk A

a .(hbc (hab ka)) ha)))

 −1
δ (λk A

a .(hbc (hab ka)) hade)(ε;11)

 −1
δ ((hbc hab )(ε;0) hade)(ε;11)
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Proof Compression by Folding and Beta Expansion
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Proof Compression by Folding and Beta Expansion

 −1
βδ is not terminating

Because beta expansion is not terminating

 −1
βδ is not confluent

By the examples in the previous slide
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Propositional Resolution
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Current Work

Contextual Natural Deduction:
go beyond the implicational fragment
investigate beta-expansion / cut-introduction
implement and evaluate compressibility in practice
obtain a syntactic proof of soundness for the classical case
investigate algorithmic interpretations for the classical case

Propositional Resolution:
develop efficient subsumption algorithms
improve lowering of subproofs
improve split
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The End

Thanks!
Some announcements:

LowerUnivalents: SMT2013, Helsinki, 8th of July 15:30
Proof Compression Workshop:
16th of September, affiliated with Tableaux, Nancy, France

Questions? Comments? Suggestions?

www.logic.at/people/bruno/
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