Unified Static and Runtime Verification of
Object-Oriented Software

Wolfgang Ahrendt!,
Mauricio Chimento!, Gerardo Schneider?, Gordon J. Pace?

LChalmers University of Technology, Gothenburg, Sweden
2University of Gothenburg, Sweden
3University of Malta

Tallinn, August 2014



Static Verification vs. Runtime Verification

» Static verification
» High precision
» Use abstractions for increased automation
but
» Powerful judgements hard to achieve automatically
» Often losing aspects of concrete system
» Runtime verification
» Full precision (including real deployment)
» Full automation
but
» Cannot judge future runs
» Computational overhead of monitoring the running system



Project on Unified Static and Runtime Verification

Unified Static and Runtime Verification of Object-Oriented SW

Members:
» Wolfgang Ahrendt,
Chalmers University of Technology
» Mauricio Chimento,
Chalmers University of Technology

» Gerardo Schneider,
University of Gothenburg

External collaborator:

» Gordon J. Pace, \/

. . =D
University of Malta
Vetenskapsradet



Project on Unified Static and Runtime Verification

Unified Static and Runtime Verification of Object-Oriented SW

STAIRVOOIRSS

Members:
» Wolfgang Ahrendt,
Chalmers University of Technology
» Mauricio Chimento,
Chalmers University of Technology

» Gerardo Schneider,
University of Gothenburg

External collaborator:

» Gordon J. Pace, \/

. . ]
University of Malta
Vetenskapsradet



Framework for Unified Static and Runtime Verification

v

Combine static and runtime verification

» Combine data centric and control centric properties
» Unified specification for both

v

Use (partial) static verification results for
partial evaluation of properties

» Runtime verification of resulting properties

v

Increase safety and efficiency



LARVA: A Runtime Verification Tool for Java

LARvA= Logical Automata for Runtime Verification and Analysis

> targets Java applications

» checks control oriented properties (untimed and real-time),
specified in
» DATE (Dynamic Automata with Timers and Events)
» Lustre
» duration calculus



DATE Automaton Example

connDrop*\ ¢ == 5\unreliable!

start >

connDrop*\c < 5\c ++



DATE Automaton Example

connDrop*\ ¢ == 5\unreliable!

start >

connDrop*\c < 5\c ++

foreach transfer :

unreliable?\\ receivet\\

O ®

start*(transfer)\\

end*(transfer)\\

receive*\ \



DATE Automaton Example

connDrop*\ ¢ == 5\unreliable!

start >

connDrop*\c < 5\c ++

foreach transfer :

unreliable?\\ receivet\\

O ®

start*(transfer)\\

end*(transfer)\\
receive*\ \
In general:

» communicating automata, event-triggered transitions, timers
» events: method entry/exit, timer events, synchronising events



LARVA Functionality

» LARVA input

» DATE automaton (or alternative format)
» application code



LARVA Functionality

» LARVA input
» DATE automaton (or alternative format)
» application code

» LARVA output

» monitor
» instrumented application code,
with triggers for monotor



KeY

KeY is an approach and tool for the
» Formal specification of foremost functional properties
» Deductive verification, i.e., using theorem proving

of
» OO software, foremost JAVA and ABS



KeY

v

Dynamic logic (generalisation of Hoare logic) as program logic

v

Verification = symbolic execution + induction/invariants

» Sequent calculus

v

Prover is automated + interactive
most elaborate KeY instance KeY-Java

v

» Java as target language
» Supports specification language JML



Specification Language for Data and Control

ppDATE:

» Extending DATE with
pre/post-conditions, associated to the automata’s states:

event|cond—act
%

7(q) ={ ..., {pre} method {post}, ... }
» Transition enabled if cond holds



Violating Traces

ppDATE trace w € (Zi X ©)* is violating prefix if either



Violating Traces

ppDATE trace w € (Zi X ©)* is violating prefix if either
> (g0, v0) = (g, v) and g € BadStates



Violating Traces

ppDATE trace w € (Zi X ©)* is violating prefix if either
> (g0, v0) = (g, v) and g € BadStates
> w = wy (g, 1) 4 wa 4 ((miy, 02))
such that:
(g0, v0) = (g, v)
7(q) > {pre} m{post}
. by E pre
. Oy £ post



Violating Traces

ppDATE trace w € (Zi X ©)* is violating prefix if either
> (g0, v0) = (g, v) and g € BadStates
> w = wy (g, 1) 4 wa 4 ((miy, 02))
such that:
(g0, v0) = (g, v)
7(q) > {pre} m{post}
. by E pre
. Oy £ post

BwN e

A violating trace has a violating prefix



High-level description of the framework

..V) Monitor

Prog. P’

(weaved,
|




Case study: Login Example

Scenario:
> At login, new users are added to set users

» Assume users is implemented using hashing with open
addressing

» Adding implemented by users.add(u,key)



Case study: Login Example

add(o,key)' | users.contains(o,key) = true > e

7(q) = { {users.size < users.capacity} add {post} }

post

(Fint /; i >0 && i < users.capacity;users.h[i/] =o0;)



Case study: Login Example - Static Analysis

» Translation of Hoare triple to JML

class HashTable {

/*@ public normal_behavior
0@ requires size < capacity;
@ ensures (\exists int i;
C] i>= 0 && i < capacity;
© h[i] == o);
@ assignable size, h[*];
Qx*/
public void add (Object o, int key) {}
}



Case study: Login Example - Static Analysis

public void add (Object o, int key) {

int i = hash(key);
if (h[i] == null) {
h(i] = o; size++;
}
else {
while ... \\ store at next free slot

.



Case study: Login Example - Static Analysis

» KeY tries to prove:
size < capacity — (add(o, key)) 3i. h[i] = o
» KeY will produce branches:
..., h[keylcapacity] = null F
and
.., hlkeylcapacity] = null F
» first branch closes automatically, the second doesn’t



Case study: Login Example - Partial Specification
Evaluation

» First, for 7(q) replace {pre} add { post} by



Case study: Login Example - Partial Specification
Evaluation

» First, for 7(q) replace {pre} add { post} by

{pre N —users.hlkeyl)capacity] = null}add {post}
and
{pre N users.h[keyY%capacity] = null}add {true}



Case study: Login Example - Partial Specification
Evaluation

» Second, new argument is added to distinguish different calls



Case study: Login Example - Partial Specification
Evaluation

» Second, new argument is added to distinguish different calls

public void add (Object o, int key) {
addAux (fid.getNewId() ,0,key);

}

public void addAux (Integer id, Object o, int key) {
//same code as add had before.

3
{pre N —users.h[keyY%capacity] = null}addAux {post}
and

{pre N users.h[keyY%capacity] = null}addAux {true}



Case study: Login Example - Model Transformation

addAux%d |pre—siq

q

/

Sid? addAux], | users.opPost

addAux,.Td | —users.opPost ()



Case study: Login Example - Model Transformation

addAuxl.b\users.contains(o, key) =true—if pre then s,

q q

/

Sig? addAux,Td | users.opPost

start .Q/_\

addAux], | ~users.opPost ()

addAuxI.ld|ﬂ(users .contains (o, key) = true)A(preA—users.hlkeylcapacity] = null)+s;q




Case study: Login Example - Monitor Generation

> Finally, LARVA generates the monitors which will control the
partially verified property.



Reference

» Wolfgang Ahrendt, Gordon J. Pace, Gerardo Schneider
A Unified Approach for Static and Runtime Verification:
— Framework and Applications
ISoLA 2012
Springer, LNCS 7609



	Introduction
	A Specification Language for Data and Control
	The StaRVOOrS Framework
	Model Transformation
	Example

