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Static Verification vs. Runtime Verification

» Static verification
» High precision
» Use abstractions for increased automation
but
» Powerful judgements hard to achieve automatically
» Often losing aspects of concrete system
» Runtime verification
» Full precision (including real deployment)
» Full automation
but
» Cannot judge future runs
» Computational overhead of monitoring the running system
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Framework for Unified Static and Runtime Verification

v

Combine static and runtime verification

» Combine data centric and control centric properties
» Unified specification for both

v

Use (partial) static verification results for
partial evaluation of properties

» Runtime verification of resulting properties

v

Increase safety and efficiency



LARVA: A Runtime Verification Tool for Java

LARvA= Logical Automata for Runtime Verification and Analysis

> targets Java applications

» checks control oriented properties (untimed and real-time),
specified in
» DATE (Dynamic Automata with Timers and Events)
» Lustre
» duration calculus



DATE Automaton Example

connDrop*\ ¢ == 5\unreliable!

start >

connDrop*\c < 5\c ++



DATE Automaton Example

connDrop*\ ¢ == 5\unreliable!

start >

connDrop*\c < 5\c ++

foreach transfer :

unreliable?\\ receivet\\

O ®

start*(transfer)\\

end*(transfer)\\

receive*\ \



DATE Automaton Example
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In general:

» communicating automata, event-triggered transitions, timers
» events: method entry/exit, timer events, synchronising events



LARVA Functionality

» LARVA input

» DATE automaton (or alternative format)
» application code



LARVA Functionality

» LARVA input
» DATE automaton (or alternative format)
» application code

» LARVA output

» monitor
» instrumented application code,
with triggers for monotor



KeY

KeY is an approach and tool for the
» Formal specification of foremost functional properties
» Deductive verification, i.e., using theorem proving

of
» OO software, foremost JAVA and ABS



KeY

v

Dynamic logic (generalisation of Hoare logic) as program logic

v

Verification = symbolic execution + induction/invariants

» Sequent calculus

v

Prover is automated + interactive
most elaborate KeY instance KeY-Java

v

» Java as target language
» Supports specification language JML



Specification Language for Data and Control

ppDATE:

» Extending DATE with
pre/post-conditions, associated to the automata’s states:

event|cond—act
%

7(q) ={ ..., {pre} method {post}, ... }
» Transition enabled if cond holds
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Violating Traces

ppDATE trace w € (Zi X ©)* is violating prefix if either
> (g0, v0) = (g, v) and g € BadStates
> w = wy (g, 1) 4 wa 4 ((miy, 02))
such that:
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. by E pre
. Oy £ post

BwN e

A violating trace has a violating prefix



High-level description of the framework
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Case study: Login Example

Scenario:
> At login, new users are added to set users

» Assume users is implemented using hashing with open
addressing

» Adding implemented by users.add(u,key)



Case study: Login Example

add(o,key)' | users.contains(o,key) = true > e

7(q) = { {users.size < users.capacity} add {post} }

post

(Fint /; i >0 && i < users.capacity;users.h[i/] =o0;)



Case study: Login Example - Static Analysis

» Translation of Hoare triple to JML

class HashTable {

/*@ public normal_behavior
0@ requires size < capacity;
@ ensures (\exists int i;
C] i>= 0 && i < capacity;
© h[i] == o);
@ assignable size, h[*];
Qx*/
public void add (Object o, int key) {}
}



Case study: Login Example - Static Analysis

public void add (Object o, int key) {

int i = hash(key);
if (h[i] == null) {
h(i] = o; size++;
}
else {
while ... \\ store at next free slot

.



Case study: Login Example - Static Analysis

» KeY tries to prove:
size < capacity — (add(o, key)) 3i. h[i] = o
» KeY will produce branches:
..., h[keylcapacity] = null F
and
.., hlkeylcapacity] = null F
» first branch closes automatically, the second doesn’t



Case study: Login Example - Partial Specification
Evaluation

» First, for 7(q) replace {pre} add { post} by



Case study: Login Example - Partial Specification
Evaluation

» First, for 7(q) replace {pre} add { post} by

{pre N —users.hlkeyl)capacity] = null}add {post}
and
{pre N users.h[keyY%capacity] = null}add {true}



Case study: Login Example - Partial Specification
Evaluation

» Second, new argument is added to distinguish different calls



Case study: Login Example - Partial Specification
Evaluation

» Second, new argument is added to distinguish different calls

public void add (Object o, int key) {
addAux (fid.getNewId() ,0,key);

}

public void addAux (Integer id, Object o, int key) {
//same code as add had before.

3
{pre N —users.h[keyY%capacity] = null}addAux {post}
and

{pre N users.h[keyY%capacity] = null}addAux {true}



Case study: Login Example - Model Transformation

addAux%d |pre—siq

q

/

Sid? addAux], | users.opPost

addAux,.Td | —users.opPost ()



Case study: Login Example - Model Transformation

addAuxl.b\users.contains(o, key) =true—if pre then s,

q q

/

Sig? addAux,Td | users.opPost

start .Q/_\

addAux], | ~users.opPost ()

addAuxI.ld|ﬂ(users .contains (o, key) = true)A(preA—users.hlkeylcapacity] = null)+s;q




Case study: Login Example - Monitor Generation

> Finally, LARVA generates the monitors which will control the
partially verified property.
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