Bi-Intuitionism as dialogue chirality

Gianluigi Bellin & Alessandro Menti University of Verona

March 25, 2014

0. Plan of the talk.

- 1. C. Rauszer's Bi-Intuitionism.
- 2. No categorical semantics for Rauszer's logic.
- 3. No model of Co-Intuitionism in Set.
- 4. Dialogue chirality.
- 5. Polarized Bi-Intuitionism BI_p .
- 6. Gödel-McKinseyTarski's S4 Translation.
- 7. A 'bipolar' Sequent Calculus for BI_p .
- 8. Categorical model for BI_p .
- 9. A classical inductive type and $\lambda\mu$.
- 10. Natural Deduction for Co-Intuitionism.
- 11. References.

1. C. Rauszer's Bi-intuitionism.

- **Heyting algebra**: a bounded lattice $\mathcal{A} = (A, \vee, \wedge, 0, 1)$ with *Heyting implication* (\rightarrow) , defined as the right adjoint to meet. Thus
- co-Heyting algebra is a lattice C such that C^{op} is a Heyting algebra.

 $\mathcal{C} = (C, \vee, \wedge, 1, 0)$ with *subtraction* (\setminus) defined as the left adjoint of join.

• **Bi-Heyting** algebra: a lattice with the structure of Heyting and of co-Heyting algebra.

1.1. Rauszer's Bi-Intuitionistic logic.

Bi-intuitionistic language:

$$A,B := a \mid \top \mid \bot \mid A \land B \mid A \rightarrow B \mid A \lor B \mid A \lor B$$

Read $A \lor B$ as "A excludes B ".

• Kripke models [Rauszer 1977]:

$$(W, \leq, \Vdash)$$
, with (W, \leq) a preorder;

-
$$w \Vdash A \to B$$
 iff $\forall w' \geq w.w' \Vdash A$ implies $w' \Vdash B$;

-
$$w \Vdash A \setminus B$$
 iff $\exists w' \leq w.w' \Vdash A$ and not $w' \Vdash B$.

Gödel, McKinsey and Tarsky translation in tensed S4:

- implication must hold in all future world;
- subtraction must hold in some past world.
- monotonicity holds for all formulas.

$$(A \to B)^M = \Box (A^M \to B^M)$$
 (necessity in the future)
 $(A \setminus B)^M = \Leftrightarrow (A^M \land \neg B^M)$ (possibility in the past)

- Strong negation: $\sim A =_{df} A \to \bot \quad (\sim A)^M = \Box \neg A$.
- Weak negation: $\land A =_{df} \top \setminus A \quad (\land A)^M = \Leftrightarrow \neg A$.

Notation: We reserve ' $\neg A$ ' for classical negation. Write $(\sim \land)^{n+1}A = \sim \land (\sim \land)^n A$, $(\sim \land)^0 A = A$ and similarly $(\sim \land)^n A$.

Fact:

 $(\sim \cap)^{n+1}A \Rightarrow (\sim \cap)^nA$ but not conversely, for all $n \geq 0$. $(\sim \cap)^nA \Rightarrow (\sim \cap)^{n+1}A$ but not conversely, for all $n \geq 0$.

How to formalize Bi-intuitionism in a Gentzen system?

$$\rightarrow -\mathsf{R} \frac{\Gamma, A \Rightarrow B}{\Gamma \Rightarrow A \to B, \Delta} (*) \qquad \rightarrow -\mathsf{L} \frac{\Gamma_1 \Rightarrow \Delta_1 A \quad B, \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, A \to B, \Gamma_2 \Rightarrow \Delta_1, \Delta_2}$$

$$\sim -\mathsf{R} \frac{\Gamma_1 \Rightarrow \Delta_1, C \quad D, \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, C \smallsetminus D, \Delta_2} \qquad \sim -\mathsf{L} \frac{C \vdash D, \Delta}{\Gamma, C \smallsetminus D \Rightarrow \Delta} (**)$$

Cut-elimination fails: (T. Uustalu)

 $(q \lor p) \setminus q \Rightarrow r \to (p \land r)$ is provable with cut from $(q \lor p) \setminus q \Rightarrow p$ and $p \Rightarrow r \to (p \land r)$, but there is no cut-free proofs satisfying conditions (*) and (**). Intuitionistic formalization is non trivial (see [Crolard 2001, 2004] [Pinto & Uustalu 2010]).

2. No categorical model for Rauszer's logic.

Joyal's Theorem. Let C be a CCC with an initial object \bot . Then for any object A in C, if $C(A, \bot)$ is nonempty, then A is initial.

Proof: $\bot \times A$ is initial, as $\mathcal{C}((\bot \times A), B) \approx \mathcal{C}(\bot, B^A)$. Given $f: A \to \bot$, show that $A \approx \bot \times A$, using the fact that $\langle f, id_A \rangle \circ \pi'_{\bot,A} = id_{\bot,A}$, since $\bot \times A$ is initial.

Crolard's Theorem. If both C and C^{op} are CCCs, then C is a preorder.

Proof: Let $A \oplus B$ be the *coproduct* and A_B the *coexponent* of A and B.

Then $\mathcal{C}(A,B) \approx \mathcal{C}(A,\perp \oplus B) \approx \mathcal{C}(A_B,\perp)$. By Joyal's Theorem $\mathcal{C}(A_B,\perp)$ contains at most one arrow.

2.1. No problem in the linear case:

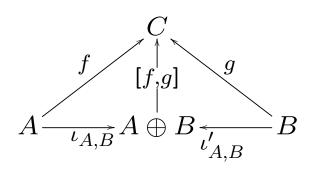
Multiplicative linear Intuitionistic: $\mathcal{A} = (A, 1, \otimes, \multimap)$ [with natural iso's], symmetric monoidal closed (with \multimap the right adjoint of \otimes).

Multiplicative linear co-Intuitionistic: $C = (C, \bot, \wp, \smallsetminus)$ [with natural iso's], symmetric monoidal left-closed (with \smallsetminus the left adjoint of \wp).

No problem in combining two structures, one monoidal closed, the other monoidal left-closed.

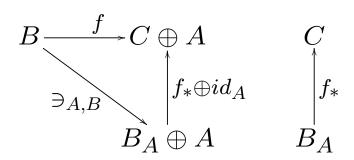
• No modelling of **co-Intuitionism** in **Set** since *disjunction* (**coproduct**) is *disjoint union*.

Recall: The coproduct of A and B is an object $A \oplus B$ together with arrows $\iota_{A,B}$ and $\iota'_{A,B}$ such that for every C and every pair of arrows $f:A \to C$ and $g:B \to C$ there is a unique $[f,g]:A \oplus B \to C$ making the following diagram commute:



3. No model of Co-Intuitionism in Set.

Recall: The *co-exponent* of A and B is an object B_A together with an arrow $\ni_{A,B}: B \to B_A \oplus A$ such that for any arrow $f: B \to C \oplus B$ there exists a unique $f_*: B_A \to C$ making the following diagram commute:



Crolard's Lemma: The co-exponent B_A of two sets A and B is defined iff $A = \emptyset$ or $B = \emptyset$.

Proof: In **Set** the *coproduct* is the disjoint union and the initial object is \emptyset .

(if) For any B, let $B_{\perp} =_{df} B$ with $\ni_{\perp,B} =_{df} \iota_{B,\perp}$. For any A, let $\bot_A =_{df} \bot$ with $\ni_{A,\perp} =_{df} \Box : \bot \to \bot \oplus A$. (only if) If $A \neq \emptyset \neq B$ then the functions f and $\ni_{A,B}$ for every $b \in B$ must choose a side, left or right, of the coproduct in their target and moreover $f_{\star} \oplus id_A$ leaves the side unchanged. Hence, if we take a nonempty set C and f with the property that for some b different sides are chosen by f and $\ni_{A,B}$, then the diagram does not commute.

4. Dialogue chirality.

A dialogue chirality on the left is a pair of monoidal categories (A, \land, true) and (B, \lor, false) equipped with an adjunction

$$\mathcal{A}$$
 $\stackrel{L}{\underset{R}{\bigsqcup}}\mathcal{B}$

whose unit and counit are denoted as

$$\eta: Id \longrightarrow R \circ L \qquad \epsilon: L \circ R \to Id$$

together with a monoidal functor

$$(-)^*$$
 ; $\mathcal{A} \rightarrow \mathcal{B}^{op}$

and a family of bijections

$$\chi_{m,a,b}$$
 : $\langle m \wedge a | b \rangle$ \rightarrow $\langle a | m^* \vee b \rangle$

natural in m, a, b (curryfication). Here the bracket $\langle a|b\rangle$ denotes the set of morphisms from a to R(b) in the category \mathcal{A} :

$$\langle a|b\rangle = \mathcal{A}(a,R(b)).$$

The family χ is moreover required to make the diagram

4.1. Modelling Bi-intuitionism.

- Let A be a model of **Int conjunctive logic** on the language \cap , \top . (A may be Cartesian).
- \mathcal{B} a model of **co-Int disjunctive logic** on the language Υ , \bot .

Give a suitable sequent-calculus formalization of **Int** and **co-Int** and work with the free categories built from the syntax.

4.1. Modelling Bi-intuitionism (cont).

- The contravariant monoidal functor ()* : $\mathcal{A} \to \mathcal{B}^{op}$ models "De Morgan duality":

$$(A_1 \cap A_2)^* = A_1^* \vee A_2^*$$

- There is a dual contravariant functor $^*(\)$: $\mathcal{B} \to \mathcal{A}^{op}.$

$$^*(C_1 \vee C_2) = ^*C_1 \cap ^*C_2$$

- What are the covariant functors $L \dashv R$?
- Main Idea:

introduce negations \sim : $\mathcal{A} \to \mathcal{A}$ and \sim : $\mathcal{B} \to \mathcal{B}$. [In the chirality model $\sim A$ and $\sim C$ may be primitive.]

- ullet Let ${f u}$ be a specified object of ${\cal A}$
- Think of $\sim A =_{df} A \supset \mathbf{u}$ (notation: $\sim_{\mathbf{u}} A$).
- ullet Let $oldsymbol{j}$ be a specified object of $\mathcal B$
- Think of $\neg C =_{df} \mathbf{j} \setminus C$ (notation: $\mathbf{j} \cap C$).
- Let $L =_{df} \land (^*(_{-}))$ and $R =_{df} \land ((_{-})^*)$.

5. Polarized Bi-Intuitionism.

Language of polarized bi-intuitionism \mathbf{BI}_p :
- sets of elementary formulas $\{a_1,\ldots\}$ and $\{c_1,\ldots\}$;

$$A, B := a \mid \top \mid \mathbf{u} \mid A \cap B \mid \sim A \mid A \supset B \mid C^{\perp}$$

$$C, D := c \mid \bot \mid \mathbf{j} \mid C \land D \mid \sim C \mid C \setminus D \mid A^{\perp}$$

5.1. Informal intended interpretation. Logic for pragmatics: an intensional 'justification logic' of **assertions** and **hypotheses**.

- **Propositional letters** p_1, \ldots (countably many);
- \vdash and \mathcal{H}_- are illocutionary force operators for assertion and hypothesis (Austin).

Elementary formulas: $a_i = \vdash p_i$, $c_i = \mathcal{H}p_i$.

What justifies an assertion / a hypothesis?

- Only "conclusive evidence" justifies assertions,
- a "scintilla of evidence" justifies hypotheses.

5.2. A BHK interpretation of the logic of assertions and hypotheses.

- $a_i = \vdash p_i$ the type of evidence for assertions of p_i ;
- $c_j = \mu p_j$ the type of evidence for hypotheses that p_j ;
- $A \supset B$ = the type of methods transforming assertive evidence for A into assertive evidence for B;
- $C \setminus D$ ("C excludes D") = the type of hypothetical evidence that C is justified and D cannot be justified;
- u = an assertion always unjustified;
- $-\mathbf{j} = \mathbf{a}$ hypothesis always justified;
- $\sim A, C^{\perp} = denial of A, C;$
- $\sim C, A^{\perp} = doubt \text{ about } C, A.$

Questions: (i) What is a *scintilla of evidence*? a doubt about an assertion or a hypothesis?

Comment: Scintilla of evidence is legal terminology [Gordon & Walton 2009]. It evokes probabilistic methods, perhaps infinitely-valued logics.

An alternative: define evidence for and evidence against assertion and hypotheses. Obtain a "Dialecticalike" dialogue semantics [Bellin et al 2014].

6. McKinsey-Tarski-Gödel's S4 translation

- Translation in *non-tensed* **S4**.
- Monotonicity holds for assertive formulas.
- Anti-monotonicity holds for hypothetical formulas.

$$(\vdash p)^{M} = \Box p \qquad (\not p)^{M} = \Diamond p,$$

$$(A \supset B)^{M} = \Box (A^{M} \to B^{M}) \qquad (C \setminus D)^{M} = \Diamond (C^{M} \land \neg D^{M}),$$

$$(\top)^{M} = \mathbf{t}, \qquad (\bot)^{M} = \mathbf{f}$$

$$(A \cap B)^{M} = A^{M} \land B^{M} \qquad (C \curlyvee D)^{M} = C^{M} \lor D^{M},$$

$$(\sim A)^{M} = \Box \neg A^{M} \qquad (\sim X)^{M} = \Diamond \neg X^{M}$$

$$(C^{\bot})^{M} = \neg C^{M} \qquad (A^{\bot})^{M} = \neg A^{M}$$

Lemma: $A^M \equiv \Box A^M$, $C^M \equiv \Diamond C$.

Note: $(\sim A)^M = \Box \neg \Box A^M = \Box \diamondsuit \neg A^M$, $(C^{\perp})^M = \neg \diamondsuit C^M = \Box \neg C^M$; symmetrically for $(\smallfrown C)^M$ and $(A^{\perp})^M$.

Negations and dualities are translated differently.

Note: $(C \setminus D)^M = \Diamond(C^M \wedge \Box \neg D^M)$.

Some Facts.

•
$$(A^{\perp \perp})^M = \neg \neg A^M = A^M$$
; $(C^{\perp \perp})^M = \neg \neg C^M = C^M$.

$$\bullet \ (\sim A)^M = \Box \neg \Box \neg A^M = \Box \Diamond A^M;$$

$$\bullet \ (\frown \frown C)^M = \Diamond \lnot \Diamond \lnot C^M = \Diamond \Box C^M.$$

$$\bullet$$
 $(\sim \cap A)^M = \Box \neg \Diamond \neg A^M = \Box \Box A^M = A^M$

$$\bullet \ (\sim C)^M = \diamond \neg \Box \neg C^M = \diamond \diamond C^M = C^M$$

Thus $(\sim \sim)^n A \Leftrightarrow A$, $(\sim \sim)^n C \Leftrightarrow C$, for all n.

$$\bullet \ (\sim \cap C)^M = \Box \neg \Diamond \neg C^M = \Box C^M = (\sim (C^{\perp}))^M$$

$$\bullet \ (\sim A)^M = \lozenge \neg \Box \neg A^M = \lozenge A^M = (\sim (A)^{\perp})^M.$$

Thus $(\sim \cap)^n C \Leftrightarrow \sim \cap C$, $(\sim \sim)^n A \Leftrightarrow \sim \sim A$, for all $n \geq 1$.

Expectation $(\mathcal{E}p)$ and Conjecture $(\mathcal{C}p)$.

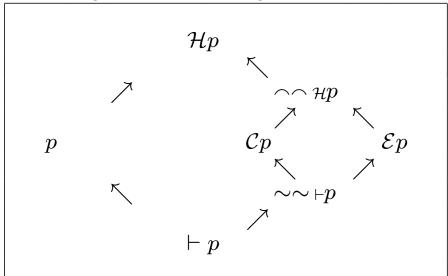
Idea: $\mathcal{E}p = \sim ((\mathcal{H}p)^{\perp})$. Expecting that p is denying the denial of the hypothesis p, i.e., asserting that in all situations the hypothesis p would be justified.

 $Cp = ((p)^{\perp})$. Conjecturing that p is doubting that there may be doubts about the assertion of p, i.e., making the hypothesis that in some situation p may be assertable.

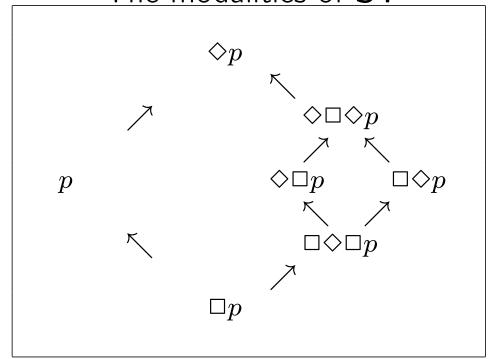
Notice that $\mathcal{E}p = R \mathcal{H}p$ and $\mathcal{C}p = L \vdash p$.

6.1. Expectations $(\mathcal{E}p)$, conjectures $(\mathcal{C}p)$.

Assertions, hypotheses, conjectures, expectations



The modalities of **S4**



7. Bi-polar sequent calculus BI_p .

$$\Gamma$$
; \Rightarrow A ; Δ or Γ ; $C \Rightarrow$; Δ

int:
$$\Delta^{\perp}, \Gamma ; \Rightarrow A;$$
 co-int: ; $C \Rightarrow ; \Delta, \Gamma^{\perp}$

Write Γ ; $\epsilon \Rightarrow \epsilon'$; Δ , with exactly one of ϵ, ϵ' non-null.

Identity Rules:

$$\begin{array}{ll} \textit{logical axiom:} & \textit{logical axiom:} \\ A \; ; \; \Rightarrow \; A \; ; & ; \; C \; \Rightarrow \; ; \; C \end{array}$$

$$\frac{\Theta ; \Rightarrow A ; \Upsilon \qquad \stackrel{\textit{cut}_{1}:}{A, \Theta' ; \epsilon \Rightarrow \epsilon' ; \Upsilon'}}{\Theta, \Theta' ; \epsilon \Rightarrow \epsilon' ; \Upsilon, \Upsilon'}$$

$$\frac{\Theta \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon, C \qquad \Theta' \; ; \; C \; \Rightarrow \; \Upsilon'}{\Theta, \Theta' \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon, \Upsilon'}$$

Proper axioms of the pragmatic interpretation

$$\vdash p \; ; \; \mathbf{j} \; \Rightarrow \; ; \; \mathcal{H}p \qquad \qquad \vdash p \; ; \; \Rightarrow \; \mathbf{u} \; ; \; \mathcal{H}p$$

Duality Rules:

Structural Rules:

Conjunction and Disjunction

assertive validity axiom:

$$\Theta$$
; \Rightarrow \top ; Υ

 \cap right:

$$\frac{\Theta ; \Rightarrow A_1 ; \Upsilon \Theta ; \Rightarrow A_2 ; \Upsilon}{\Theta ; \Rightarrow A_1 \cap A_2 ; \Upsilon}$$

∩ *left:*

$$\frac{A_i, \Theta ; \epsilon \Rightarrow \epsilon' ; \Upsilon}{A_0 \cap A_1, \Theta ; \epsilon \Rightarrow \epsilon' ; \Upsilon}$$
for $i = 0, 1$.

hypothetical absurdity axiom:

$$\Theta$$
; \bot \Rightarrow ; Υ

$$\frac{\Theta ; \epsilon \Rightarrow \epsilon' ; \Upsilon, C_0, C_1}{\Theta ; \epsilon \Rightarrow \epsilon' ; \Upsilon, C_0 \Upsilon C_1}$$

Implication and Subtraction

$$\begin{array}{c} \supset \textit{right:} \\ \Theta, A_1 \; ; \; \Rightarrow \; A_2 \; ; \; \Upsilon \\ \hline \Theta \; ; \; \Rightarrow \; A_1 \supset A_2 \; ; \; \Upsilon \\ \hline \\ \mathcal{O}; \; \Rightarrow \; A_1 \supset A_2 \; ; \; \Upsilon \\ \hline A_1 \supset A_2, \Theta_1, \Theta_2 \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon_2 \\ \hline \\ A_1 \supset A_2, \Theta_1, \Theta_2 \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon_1, \Upsilon_2 \\ \hline \\ \nabla \; \textit{right:} \\ \Theta_1 \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon_1, C_1 \qquad \Theta_2 \; ; \; C_2 \; \Rightarrow \; ; \; \Upsilon_2 \\ \hline \\ \Theta_1, \Theta_2 \; ; \; \epsilon \; \Rightarrow \; \epsilon' \; ; \; \Upsilon_1, \Upsilon_2, C_1 \smallsetminus C_2 \\ \hline \\ \nabla \; \textit{left:} \\ \hline \\ \Theta; \; C_1 \; \Rightarrow \; ; \; \Upsilon, C_2 \\ \hline \\ \Theta \; ; \; C_1 \smallsetminus C_2 \; \Rightarrow \; ; \; \Upsilon \\ \hline \end{array}$$

8. Categorical model of BI_p

We show that categorical models of \mathbf{BI}_p have the form of dialogue chirality.

We sketch the construction of the syntactic category:

- objects are formulas;
- **morphisms** are equivalence classes of sequent derivations;
- subject to naturality conditions [omitted].
- Let $A = (Int, \cap, \top)$ the cartesian category of intuitionistic fomulas and derivations in BI_p .
- Let $\mathcal{B} = (\mathbf{co} \mathbf{Int}, \Upsilon, \bot)$ the monoidal category of co-intuitionistic formulas and derivations in \mathbf{BI}_p .
- We have operations \sim : $\mathcal{A} \to \mathcal{A}$ (written \sim_u) and \sim : $\mathcal{B} \to \mathcal{B}$ (written $_j \sim$). Let $\diamondsuit(A) =_j \smallfrown (A^{\perp})$ and $\boxdot(C) = \sim_u (C^{\perp})$.
- Define a functor $L = \diamondsuit : \mathcal{A} \to \mathcal{B}$ sending a derivation $d : A_1; \Rightarrow A_2;$ to the derivation $\diamondsuit d : ; \diamondsuit A_1 \Rightarrow ; \diamondsuit A_2$ defined in the obvious way. Similarly define a functor $R = \square : \mathcal{B} \to \mathcal{A}$.
- $L \dashv R$: the unit and co-unit of the adjunction are given by the derivations of Proposition (ii).
- The duality $(_{-})^{\perp}$ is a contravariant monoidal functor $\mathcal{A} \to \mathcal{B}^{op}$, sending $d: A_1 \cap A_2$; $\Rightarrow A_3 \cap A_4$; to $d^{\perp}: A_3^{\perp} \cap A_4^{\perp} \Rightarrow A_1^{\perp} \cap A_2^{\perp}$;
- Let $\langle A|C\rangle$ be the set of (equivalence classes of) sequent derivations of A; $\Rightarrow \Box C$;.

- $\mathcal{A} = (\mathcal{A}, \cap, \supset, \top)$ is in fact cartesian closed, so there is a natural bijection between $\mathcal{A}'(M \cap A, \square C)$ and $\mathcal{A}'(A, M \supset \square C)$.
- The provable equivalences of Proposition (iii) provide a natural bijection between $\mathcal{A}'(A, M \supset \square C)$ and $\mathcal{A}'(A, \square (M^{\perp} \curlyvee C))$ ("De Morgan definition" of \supset).
- By composing, we obtain the family of natural bijections

$$\chi_{M,A,C}: \langle M \cap A | C \rangle \to \langle A | M^{\perp} \Upsilon C \rangle.$$

Proposition: The following are provable in BI_p .

$$(i) \sim (A^{\perp}) \iff A \text{ and dually, } C \iff \neg (C^{\perp}).$$

(ii)
$$A ; \Rightarrow \Box \Diamond A ; \text{ and } ; \Diamond \Box C \Rightarrow ; C.$$

(iii)
$$M \supset \Box C \iff \Box ((M^{\perp}) \curlyvee C)$$
.

Proof. (ii) and (iii)

$$\begin{array}{c}
R : \Rightarrow \mathbf{u} ; \mathbf{j} \xrightarrow{\perp_{ci} L} \frac{A ; \Rightarrow A ;}{A ; A^{\perp} \Rightarrow ;} \\
A : \Rightarrow \mathbf{u} ; \underbrace{j \cap (A^{\perp})}_{\diamondsuit A} \\
\xrightarrow{\perp_{ci} L} \frac{A ; \Rightarrow \mathbf{u} ;}{A ; (\diamondsuit A)^{\perp} ; \Rightarrow \mathbf{u} ;} \\
\xrightarrow{A : \Rightarrow \nabla_{u} ((\diamondsuit A)^{\perp});} \\
\xrightarrow{\Box C} & \underbrace{\downarrow \circ C} \\
\xrightarrow{\Box C} & \underbrace{\downarrow \circ C} \\
\vdots \mathbf{j} \Rightarrow ; (\Box C)^{\perp}, C \\
\xrightarrow{J \cap ((\Box C)^{\perp} ; \Rightarrow ; C} \\
\xrightarrow{J \cap ((\Box C)^{\perp} ; \Rightarrow ; C}
\end{array}$$

$$\begin{array}{c} M;\Rightarrow M; \\ \hline M; M^{\perp} \Rightarrow ; \quad ; C \Rightarrow ; C \\ \hline \bot_{ciR} \frac{M; M^{\perp} \curlyvee C \Rightarrow ; C}{M; \Rightarrow M^{\perp} \curlyvee C; C} \\ \hline \bot_{ciL} \frac{(M^{\perp} \curlyvee C)^{\perp}, M; \Rightarrow \mathbf{u}; }{} \hline \\ \bot_{ciL} \frac{\sim_{u} (M^{\perp} \curlyvee C)^{\perp}, M; \Rightarrow \mathbf{u}; C}{} \hline \Box (M^{\perp} \curlyvee C), M, C^{\perp}; \Rightarrow \mathbf{u}; } \\ \hline \supset_{R} \frac{\Box (M^{\perp} \curlyvee C), M; \Rightarrow \Box C; }{} \hline \Box ((\frown M) \curlyvee C); \Rightarrow M \supset \Box C; \end{array}$$

9. An inductive classical type and $\lambda\mu$.

- Type of 'expectations': the collection of formulas $\mathcal{E}p_i$ (also written $\Box c_i$, for $c_i = \mathcal{H}p_i$).
- **Constructor** of the type of expectations: the operation $\Box() = \sim_u (()^{\perp}) : \mathbf{co-Int} \to \mathbf{Int}$, corresponding to the covariant functor $R : \mathcal{B} \to \mathcal{A}$ of the chirality. This has a familiar name:

$$\mu \frac{\overline{x} : \Gamma ; \vdash t : \mathbf{u} ; \alpha : \mathcal{H}p_i, \overline{\alpha} : \Delta}{\overline{x} : \Gamma ; \vdash \mu \alpha . t : \underbrace{\cup}_{\mathcal{E}p_i} ; \overline{\alpha} : \Delta} \mathcal{E} \text{ intro}$$

$$[\alpha] \frac{\overline{x} : \Gamma \vdash t : \underbrace{\square}_{\mathcal{H}p_i} ; \overline{\alpha} : \Delta}{\overline{x} : \Gamma ; \vdash [\alpha]t : \mathbf{u} ; \alpha : \mathcal{H}p_i, \overline{\alpha} : \Delta} \mathcal{E} \text{ elim}$$

$$\alpha : c_i \text{ possibly occurring in } \overline{\alpha} : \Delta.$$

Clearly $\sim_u \sim_u \Box c \vdash \Box c$, since $\Box c = \sim_u (c^{\perp})$.

Since $\Box \mathcal{H}p \neq \vdash p$ the classical expectation type lives within intuitionistic logic.

The same holds for the type of conjectures, defined as $Cp =_{df} \diamondsuit (\vdash p) =_{j} \smallfrown ((\vdash p)^{\perp})$. Here we have $\diamondsuit a \vdash_{j} \smallfrown_{j} \smallfrown \diamondsuit a$, for $a = \vdash p$.

9.1. The $\lambda\mu$ calculus.

The untyped case: we are given

- a countable sequence of variables x_1, x_2, \ldots ;
- a countable sequence of *names* $\alpha_1, \alpha_2, \ldots$

Terms:
$$t := x \mid \alpha \mid \lambda x.t \mid (t_1t_2) \mid \mu \alpha.t \mid [\alpha]t$$

Reductions:

$$(\beta) \qquad (\lambda x.u)v \quad \triangleright u[v/x]$$
 (renaming)
$$[\alpha]\mu\beta.u \quad \triangleright u[\alpha/\beta]$$

$$(\eta) \qquad \mu\alpha.[\alpha]u \quad \triangleright u \qquad \alpha \notin u$$
 (structural)
$$(\mu\beta.u)v \quad \triangleright u \ \mu\beta.u[[\beta](wv)/[\beta]w]$$

The typed case:

hypothetical types: $\mu p_1, \mu p_2, ...$; (a countable sequence) **expectation types:** $E := \mathcal{E}p \mid E_1 \supset E_2$

$$x:\mathcal{E}p \; ; \; \vdash x:\mathcal{E}p \; ; \; \overline{\alpha}:\Delta \qquad ; \; \alpha:\mathcal{H}p \; ; \; \alpha:\mathcal{H}p \; ; \; \overline{\alpha}:\Delta$$

$$\lambda \frac{\overline{x}:\Gamma,x:E_1;\vdash t:E_2;\overline{\alpha}:\Delta}{\overline{x}:\Gamma;\vdash \lambda x.t:E_1\supset E_2;\overline{\alpha}:\Delta}\supset -\mathrm{I}$$

$$\operatorname{app} \frac{\overline{x} : \Gamma; \vdash t : E_1 \supset E_2; \overline{\alpha} : \Delta \quad \overline{x} : \Gamma; \vdash; u : E_1; \overline{\alpha} : \Delta}{\overline{x} : \Gamma; \vdash (tu) : E_2; \alpha : \mu p_i, \overline{\alpha} : \Delta} \supset -\mathsf{E}$$

 μ -rule and $[\alpha]$ -rule are as above, section (9)

9.2. No typing of structural reduction here.

- We can assume that all μ -terms are typed as

$$\mu\alpha.t:\mathcal{E}p$$
 for $t:\mu p.$

- such terms are normal w.r.t. structural reduction.

Typed structural reduction in NK

Prawitz 1965, Parigot 1990 reduces the type complexity of μ -terms.

$$\begin{array}{c}
(1) & \vdots \\
\underline{\beta: \neg(A \supset B)} \quad w: A \supset B \\
\hline
[\beta]w: \bot \\
\vdots \\
\underline{u = [\alpha]t: \bot} \\
\underline{\mu\beta.u: A \supset B} \\
(\mu\beta.u)v: B
\end{array}$$

reduces to

$$(1) \quad w: A \supset B \quad v: A \\ \underline{\beta: \neg B} \quad (wv): B \\ \hline [\beta](wv): \bot \\ \vdots \\ \underline{u[\ [\beta](wv)/[\beta]w\]: \bot} \\ \underline{\mu\beta.u[\ [\beta](wv)/[\beta]w\]: B}$$

Question: what about a *linear* $\lambda \mu$?

10. Natural Deduction for Co-Intuitionism.

Multiple-conclusion single-premise ND:

sequent-style $H \vdash C_1, \ldots, C_n$

with implicit substitution, exchange, weakening and contraction right.

Assumptions

$$H \vdash H$$
.

Subtraction

$$\begin{tabular}{l} $ \sim -intro $\frac{H \vdash \Gamma, C \quad D \vdash \Delta}{H \vdash \Gamma, C \smallsetminus D, \Delta} $ \\ $ \sim -elim $\frac{H \vdash \Delta, C \smallsetminus D \quad C \vdash D, \Upsilon}{H \vdash \Delta, \Upsilon} $ \\ \end{tabular}$$

Normalization step for subtraction:

reduces to

$$subst \frac{d_1}{H \vdash \Gamma, C} \frac{d_2}{C \vdash D, \Upsilon} \frac{d_3}{D \vdash \Delta}$$
$$subst \frac{H \vdash \Gamma, D, \Upsilon}{H \vdash \Gamma, \Delta, \Upsilon}$$

Disjunction

Normalization step for disjunction:

$$\begin{array}{c|c}
 & d_1 \\
H \vdash \Upsilon, C, D & d_2 & d_3 \\
\hline
H \vdash \Upsilon, C \Upsilon D & C \vdash \Gamma & D \vdash \Delta \\
\hline
H \vdash \Upsilon, \Gamma, \Delta
\end{array}$$

reduces to

$$subst \frac{d_1}{Subst} \frac{d_2}{H \vdash \Upsilon, C, D} \frac{d_3}{C \vdash \Gamma} \frac{d_3}{D \vdash \Delta}$$

10.1. Computational interpretation.

$$egthinspace{-intro} \frac{x: H \vdash \overline{t}: \Gamma, t: C \quad y: D \vdash \overline{u}: \Delta}{x: H \vdash \overline{t}: \Gamma, \mathtt{mkc}(t, \mathtt{y}): C \smallsetminus D, \overline{u}': \Delta}$$

if t:C and y:D, then ${\tt make-coroutine}(t,{\tt y}):C\smallsetminus D$ but there are side effects: $\overline{u}'=u\{y:={\tt y}(t)\}$

$$\sim -elim \frac{z: H \vdash \overline{w}: \Delta, w: C \smallsetminus D \quad v: C \vdash s: D, \overline{s}: \Upsilon}{z: H \vdash \mathsf{postp}(v \mapsto s, w): \bullet \mid \overline{w}: \Delta, \overline{s}': \Upsilon}$$

if $w: C \setminus D$, v: C and s: D, then the term postpone $(v \mapsto s, w)$ is stored away, but there are side effects: $\overline{s}' = \overline{s}\{v:=v(w)\}$.

Normalization step for subtraction:

$$\begin{array}{c} d_1 & d_3 \\ -\mathrm{I} \frac{x: H \vdash \overline{t} : \Gamma, t: C \quad y: D \vdash \overline{u} : \Delta}{x: H \vdash \overline{t} : \Gamma, \overline{u}' : \Delta,} \\ \\ -\mathrm{E} \frac{\mathrm{mkc}(t, \mathtt{y}) : C \smallsetminus D \quad v: C \vdash s: D, \overline{s} : \Upsilon}{x: H \vdash \mathrm{postp}(v \mapsto s, \mathrm{mkc}(t, \mathtt{y})) : \bullet|} \\ |\overline{t} : \Gamma, \overline{u}' : \Delta, \overline{s}' : \Upsilon \end{array}$$

reduces to

$$sub\frac{d_1}{x:H\vdash \overline{t}:\Gamma,t:C\quad v:C\vdash s:D,\overline{s}:\Upsilon}{x:H\vdash \overline{t}:\Gamma,s'':D,\overline{s}'':\Upsilon}$$

$$sub\frac{[\text{with }s''=s\{v:=t\},\overline{s}''=\overline{s}\{v:=t\}]\quad y:D\vdash \overline{u}:\Delta}{x:H\vdash \overline{t}:\Gamma,\overline{u}'':\Delta,\overline{s}'':\Upsilon}$$

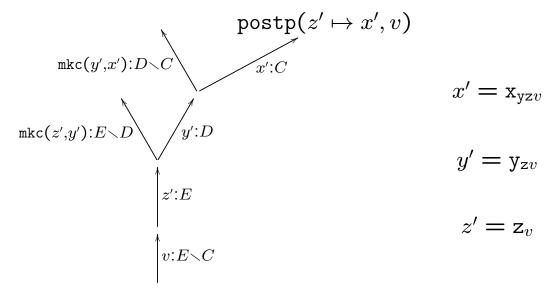
$$[\text{with }\overline{u}''=\overline{u}\{y:=s''\}]$$

Example 1.

The dual of $f:C\to D,g:D\to E\vdash \lambda x.gfx:C\to E$:

$$\frac{y:D\vdash y:D\quad x:C\vdash x:C}{y:D\vdash \mathsf{mkc}(y,\mathsf{x}):D\smallsetminus C,\mathsf{x}_y:C}\\ z:E\vdash \mathsf{mkc}(z,\mathsf{y}):E\smallsetminus D,\\ v:E\smallsetminus C\vdash v:E\smallsetminus C\quad \mathsf{mkc}(\mathsf{y}_z,\mathsf{x}):D\smallsetminus C,\mathsf{x}_{\mathsf{y}z}:C\\ v:E\smallsetminus C\vdash \mathsf{postp}(z\mapsto \mathsf{x}_{\mathsf{y}z},v)|\\ |\mathsf{mkc}(\mathsf{z}_v,\mathsf{y}):E\smallsetminus D,\mathsf{mkc}(\mathsf{y}_{\mathsf{z}v},\mathsf{x}):D\smallsetminus C\\ \end{cases}$$

A graphical notation:



- Here $x_{yzv} = x(y(z(v)))$, $y_{zv} = y(z(v))$, $z_v = z(v)$ are "Herbrand terms" expressing "remote binding", that is induced by terms of the forms make—coroutine and postpone.
- A concurrent calculus, "distributed" over multiple conclusions. It has been translated into λP membrane computing [Bellin & Menti 2014].

10.2. Co-intuitionistic Term assignment. (*Linear case*)

Fvars: a countable set of *free variables* x, y, z, ...; **Funct:** a countable set of *unary functions* x, y, z, **Terms:**

$$t, u := x \mid \mathbf{x}(t) \mid t \wp u \mid \mathsf{casel}(t) \mid \mathsf{caser}(t) \mid \mathsf{mkc}(t, \mathbf{x})$$

Trm: an enumeration of the terms t_1, t_2, \ldots freely generated from a variable a, with a fixed bijection $f: \mathbf{Trm} \to \mathbf{Vars} \ t_i \mapsto x_i$ [needed to restore free variables for the bound ones].

Pterms: postp($y \mapsto u\{y := y(t)\}, t$), with t is a term and u is a term [such that y occurs in u (linearity)]. **Computational context** S_x : set of terms containing

exactly one free variable x.

Reductions: transformations $S_x \rightsquigarrow S_x'$ of the computational context.

Reductions: Let S_x have one of the forms 1-3:

- 1. $S_x[casel(t\wp u)]$ locally reduces to $S_x[t]$.
- 2. $S_x[caser(t\wp u)]$ locally reduces to $S_x[u]$.
- 3. $S_x[postp(z \mapsto u, mkc(t, y))]$: given a partition

$$S_x[] = \kappa, \ \overline{\zeta}_y \ \overline{\xi}_z$$

where

- $\overline{\xi}_z = \overline{\xi}_z \{z := z(mkc(t, y))\};$
- $\overline{\zeta}_{y} = \overline{\zeta}_{y} \{ y := y(t) \};$
- $\overline{\kappa}$ contains neither z nor y,

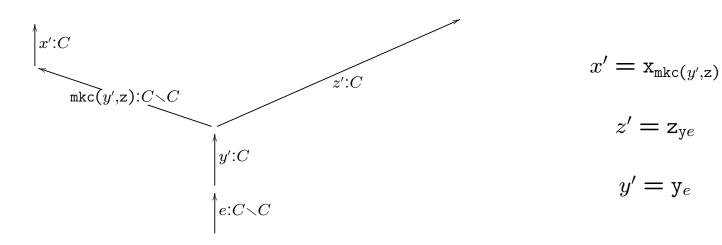
 S_x globally reduces to

$$\overline{\kappa}$$
, $\overline{\zeta}_y\{y:=u\{z:=t\}\}$, $\overline{\xi}_z\{z:=t\}$.

Example 2.

The dual of $\vdash \lambda y.(\lambda x.x)y : C \to C \iff \lambda y.y : C \to C$:

$$\mathcal{S}'$$
: postp $(x' \mapsto x', \mathtt{mkc}(y, \mathtt{z})$ postp $(y' \mapsto z', e)$



reduces to

$$\mathcal{S}'$$
: postp $(y\mapsto y,e)$

 $\begin{cases} y:C \\ e:C \setminus C \end{cases}$

Non linear case: Use lists of terms to handle weakening and contraction right. We need

$$\ell =: [] \mid [t] \mid \ell * \ell$$
 where $*$ is append.

in terms postpone $(x \mapsto \ell, t)$.

10.3. Work in progress. A probabilistic model? To formulas H, C_1, \ldots, C_n we assign events H, C_1, \ldots, C_n $H \neq \emptyset$ in a probability space. We would like to read

$$H \vdash C_1, \ldots, C_n$$

as $Pr(C_1 \cup ... \cup C_n | H) = 1$.

Decomposition Lemma. Let d be a Natural Deduction derivation of $H \vdash C_1, \ldots, C_n$. There are pairwise independent events $\mathbf{C}_1' \subseteq \mathbf{C}_1, \ldots, \mathbf{C}_n' \subseteq \mathbf{C}_n$ such that

$$(C_1' \cup \ldots \cup C_n') \cap H = H.$$

This allows us to consider also H = 0.

Proof. By induction on d.

- assumption $H \vdash H$: obvious.
- substitution: immediate from the ind. hyp.

subtraction-intro
$$\frac{H \vdash \Gamma, C \quad D \vdash \Delta}{H \vdash \Gamma, C \setminus D, \Delta}$$

- suppose $((\bigcup \Gamma) \cup C) \cap H = H$ and $(\bigcup \Delta) \cap D = D \neq \emptyset$, where events in Γ are pairwise independent. Then $C = (C \cap \overline{D}) \cup (C \cap D) = (C \cap \overline{D}) \cup (C \cap D \cap (\bigcup \Delta))$, hence $C \cap H = [(C \cap \overline{D}) \cap H] \cup [C \cap D \cap (\bigcup \Delta) \cap H]$. Let $D' = (D_j \cap C \cap D) \subseteq D_j \in \Delta$. Then

$$H = ((\cup_i C_i) \cup (C \cup \overline{D} \cup (\cup_j D_j')) \cap H = H.$$

- subtraction elim: supposing D and $Y_i \in \Upsilon$ pairwise independent, and $(D \cup (\bigcup \Upsilon)) \cap C = C$, then $(\bigcup \Upsilon) \cap C \cap \overline{D} = C \cap \overline{D}.$

- disjunction elim: Suppose $(\Upsilon \cap H) \cup ((C \cup D) \cap H) = H$. We cannot suppose C and D to be independent events; if $C \cap D \neq \emptyset$, then let $\Gamma = \Gamma_0 \cup \Gamma_1$ where

-
$$\Gamma_0 = \{C_i \cap \overline{D} : C_i \in \Gamma\}$$
 and $\Gamma_1 = \{C_i \cap D : C_i \in \Gamma\};$

-
$$C_0 = C \cap \overline{D}$$
.

Then $C_0 = (\cup \Gamma_0) \cap C_0$ and $D = (\cup \Delta) \cap D$. Hence

$$C \cup D = C_0 \cup D = [(\cup \Gamma_0) \cap C_0] \cup [(\cup \Delta) \cap D].$$

Set $\Gamma'=\{C_i\cap C_0:C_i\in\Gamma_0\}$ and $\Delta'=\{D_j\cap D:D_j\in\Delta\}$. Notice that $C_i\in\Gamma'$ and $D_j\in\Delta'$ are pairwise disjoint. Hence

$$(\Upsilon \cap \mathbf{H}) \cup ([(\cup \Gamma') \cup (\cup \Delta')] \cap \mathbf{H}) = \mathbf{H}$$

[We could have split $D \vdash \Delta$ instead of $C \vdash \Gamma$].

The case of disjunction right is immediate from the inductive hypothesis. **Qed.**

Possible connection: Lukasiewicz' many valued logic, MV-algebras, (Chang, D.Mundici).

Our Decomposition Lemma may correspond to Riesz Decomposition Theorem for Effect Algebras. [Bennett and Foulis 1995]

Let us assign probabilities to decorated sequents x: $C \vdash \overline{u} : \Delta$.

We claim that for any $D_j \in \Delta$ the explicit dependencies in the term $\mathbf{u}_{t_1...t_nx}:D_j$ indicate how to assign a probability to D so that all conclusions have independent assignments.

Indeed $u_{\bar{t}tx}$: D_j arises from $u_{\bar{t}y}$: D_j by a substitution $u_{\bar{t}y}\{y:=t_x\}$ where

- either t_x : C and y: D are premises of a \smallsetminus -intro with conclusion mkc(t,y): $C \smallsetminus D$,
- or $t_x: C \setminus D$ is a major premise of a \setminus -elim, and y: C is the only free variable in the computational environment of the minor premise, which D_j belongs to.

In both cases the new term t_x signals that we need to decompose the event D_j by taking the intersection $C \cap D_j$ or $(C \cap \overline{D}) \cap D_j$, as in the proof above.

11. References:

[Bellin & Menti 2014] G. Bellin and A. Menti. On the π -calculus and Co-intuitionistic Logic. Notes on Logic for Conurrency and λP Systems, *Fundamenta Informaticae* 130 pp.1-24, 2014.

[Bellin et al 2014] G.Bellin, M.Carrara, D.Chiffi and A.Menti. A Pragmatic dialogic interpretation of bintuitionism, submitted to *Logic and Logical Philosophy*, 2013.

[Bennett and Foulis 1995] M. K. Bennett and D. J. Foulis. Phi-symmetric effect algebras, *Foundations of Physics* 25 (12): 1995, pp.1699-1722.

[Crolard 2001] Tristan Crolard. Subtractive Logic, *Theoretical Computer Science* 254, 1-2, 2001, pp.151-185.

[Crolard 2004] Tristan Crolard. A Formulae-as-Types Interpretation of Subtractive Logic, *Journal of Logic and Computation* 14, 4, 2004, pp.85-109.

[Gordon & Walton 2009] T. Gordon and D. Walton. Proof burdens and standards. In I. Rahwan and G. Simari eds, *Argumentation in Artificial Intelligence*, pp.239-258.

[Melliès 2014] Paul-André Melliès. A micrological study of negation. Manuscript, available at the author's web page.

[Pinto & Uustalu 2010] L. Pinto, T. Uustalu. Relating sequent calculi for bi-intuitionistic propositional logic. In S. van Bakel, S. Berardi, U. Berger, eds., Proc. of 3rd Wksh. on Classical Logic and Computation CL&C 2010 (Brno, Aug. 2010), v. 47 of Electron. Proc. in Theor. Comput. Sci., pp. 57-72.

[Rauszer 1974] Cecylia Rauszer. Semi-Boolean algebras and theor applications to intuitionistic logic with dual operations, *Fundamenta Matematicae* 83, 1974, pp.219-249.

[Rauszer 1977] Cecylia Rauszer. Applications of Kripke Models to Heyting-Brouwer Logic, *Studia Logica* 36, 1977, pp.61-71.

[Reyes & Zolfaghari 1996] Reyes G. E. and H. Zolfaghari. Bi-Heyting Algebras, Toposes and Modalities. Journal of Philosophical Logic 25. No.1, 1996, pp.25-43.