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1. C. Rauszer’s Bi-intuitionism.

e Heyting algebra: a bounded lattice A =
(A,V,A,0,1) with Heyting implication (—),
defined as the right adjoint to meet. Thus
e CO-Heyting algebra is a lattice C such that
C° is a Heyting algebra.

C = (C,Vv,A,1,0) with subtraction (~\) de-
fined as the left adjoint of join.

Heyting algebra co-Heyting algebra
cANb < a a < bVe
c < b—a a~b < c

e Bi-Heyting algebra: a lattice with the struc-
ture of Heyting and of co-Heyting algebra.



1.1. Rauszer’s Bi-Intuitionistic logic.
e Bi-intuitionistic language:

AB ' =a|T|L|AANB|A— B|AVB | A\B
Read A~ B as “A excludes B".

o Kripke models [Rauszer 1977]:

(W, <,IF), with (W, <) a preorder;

-wlF A— Biff Vo' > waw' IF Aimplies v’ IF B;
-wlF AN B iff 3w’ < w.aw' IF A and not v’ IF B.

Godel, McKinsey and Tarsky translation
in tensed S4.:

- implication must hold in all future world;

- subtraction must hold in some past world.
- monotonicity holds for all formulas.

(A - B)M =0(AM — BM) (necessity in the future)
(A~ BYM =6 (AM A -BM) (possibility in the past)



e Strong negation: ~A=4A4— 1 (~A)M=0-A.
e Weak negation: ~A=4T\ A (~AM =0-A.
Notation: We reserve ‘= A’ for classical negation.
and similarly (~~)"A.

Fact:

(~~)"T1A = (~~)"A but not conversely, for all n > 0.
(~~)"A = (~~)"TLA but not conversely, for all n >0
e How to formalize Bi-intuitionism in a
Gentzen system?

MA=B * M =2401A B,[>= A5
—R r:>A—>B,A( ) L F AS B T= AL A
rI1=A1,C D2 = Ao L CFDDA

M1,T2=A1,C\D,A> I'cC~D=A

Cut-elimination fails: (T. Uustalu)
(gVp)~qg=7r— (pAr)is provable with cut from
(¢gVp)~qg=pand p=1r — (pAr), but there is no
cut-free proofs satisfying conditions (x) and (xx).
Intuitionistic formalization is non trivial (see [Crolard
2001, 2004] [Pinto & Uustalu 2010]).



2. No categorical model for Rauszer’s
logic.

Joyal’s Theorem. Let C be a CCC with
an initial object 1. Then for any object A in
C, if C(A, L) is nonempty, then A is initial.

Proof: L x A is initial, as C((L x A),B) ~ C(L, BAY).
Given f: A— 1, show that A=~ 1 x A, using the fact

that (f,ida) on’, , =1id| 4, since L x A is initial.

Crolard’s Theorem. If both C and C°P are
CCCs, then C is a preorder.

Proof: Let A® B be the coproduct and Ap the co-
exponent of A and B.

Then C(A,B) ~ C(A,L ® B) ~ C(Agp,L). By Joyal's
Theorem C(Apg, L) contains at most one arrow.



2.1. No problem in the linear case:

Multiplicative linear Intuitionistic: A= (A4,1,®, —)
[with natural iso’'s], symmetric monoidal closed (with
—o the right adjoint of ®).

Multiplicative linear co-Intuitionistic: C = (C, L, p,\)
[with natural iso’'s], symmetric monoidal left-closed
(with ~ the left adjoint of p).

No problem in combining two structures, one monoidal
closed, the other monoidal left-closed.

e No modelling of co-Intuitionism in Set
since disjunction (coproduct) is disjoint union.

Recall: The coproduct of A and B is an object A B
together with arrows 14 5 and J; 5 such that for every
C' and every pair of arrows f: A —-C and g: B — C
there is a unique [f,g] : A® B — C making the follow-
ing diagram commute:

C

|
J i g

A AP B B

/

LA,B Ua g



3. No model of Co-Intuitionism in Set.

Recall: The co-exponent of A and B is an object
B4 together with an arrow 345 B — B4 @& A such
that for any arrow f : B — C @ B there exists a unique
f« : B4 — C making the following diagram commute:

B—J . cgpa C
BA@A BA

Crolard’s Lemma: The co-exponent B4 of
two sets A and B is defined iff A = (0 or
B = 0.

Proof: In Set the coproduct is the disjoint union and
the initial object is (.

(if) For any B, let B| =4 B with 3] =4 tp .

For any A, let L4 =4 L with 54 1=¢0: 1L — L3O A.
(only if) If A # () # B then the functions f and >4 p
for every b € B must choose a side, left or right, of the
coproduct in their target and moreover f.®ids leaves
the side unchanged. Hence, if we take a nonempty set
C' and f with the property that for some b different
sides are chosen by f and 34 g, then the diagram does
not commute.



4. Dialogue chirality.

A dialogue chirality on the left is a pair of
monoidal categories (A, A, true) and (B, V, false)
equipped with an adjunction

.
AL B

\_/

R
whose unit and counit are denoted as

n:ld — RolL e: LoR— Id

together with a monoidal functor
(=) ;, A — B%?
and a family of bijections
Xmab - {(mAalb) —  (alm™Vb)

natural in m, a, b (curryfication). Here the
bracket (a|b) denotes the set of morphisms
from a to R(b) in the category A:

(alb) = Ala, R(b)).



The family x is moreover required to make the dia-
gram

((mAn)ANal|b) (a | (mAN)*Vb)

Xm/\n

assoc. = assoc. monoid. of (—)*
(mAmAa) | X (nAa | m* Vb X(a| n*V(m* Vb))
commute for all objects a, m, n, and all morphisms

f :m — n of the category A and all objects b of the
category B.

4.1. Modelling Bi-intuitionism.

- Let A be a model of Int conjunctive logic
on the language N, T. (A may be Cartesian).

- B a model of co-Int disjunctive logic

on the language Y, L.

Give a suitable sequent-calculus formalization of Int
and co-Int and work with the free categories built

from the syntax.



4.1. Modelling Bi-intuitionism (cont).

- The contravariant monoidal functor ( )* :
A — B models “De Morgan duality” :

(A1NA)* = A] Y A3

- There is a dual contravariant functor *( ) :
B — A°P.

(C1Y(Cy) = *C1N*Ch

- What are the covariant functors L 41 R?
- Main Idea:

introduce negations ~: A — A and ~: B — B.
[In the chirality model ~ A and ~ C may be primitive.]
e Let u be a specified object of A

- Think of ~ A =4 A D u (notation: ~y A).
e Let j be a specified object of B

- Think of ~ C =4 j~ C (notation: ; ~ C).

J

e Let L=g ~ (*()) and R=g ~ (()*).



5. Polarized Bi-Intuitionism.
Language of polarized bi-intuitionism Bly:
- sets of elementary formulas {ai,...} and

{Cl, .. .};

AB =a|T|u|AnNB|~A|AD>B| ct
C,D :=c|L|j|CYD| ~C|C~D]| A+

5.1. Informal intended interpretation.
Logic for pragmatics: an intensional ‘jus-
tification logic’ of assertions and hypothe-
ses.

e Propositional letters pq,... (countably many);
e _and g are illocutionary force operators
for assertion and hypothesis (Austin).
Elementary formulas: a; =rp;, c¢; = Hp;.

What justifies an assertion / a hypothesis?
e Only *conclusive evidence’” justifies as-
sertions,

e a2 ‘‘scintilla of evidence” justifies hypothe-
ses.



5.2. A BHK interpretation of the logic
of assertions and hypotheses.

- a; =+p; the type of evidence for assertions of p;;

- ¢j =#p; the type of evidence for hypotheses that p;;
- A D B = the type of methods transforming assertive
evidence for A into assertive evidence for B;

- C~D (“C excludes D) = the type of hypothetical
evidence that C' is justified and D cannot be justified;

- u = an assertion always unjustified;

j = a hypothesis always justified;
~ A,C+ = denial of A,C;
- ~ C, A+ = doubt about C, A.

Questions: (i) What is a scintilla of evidence? a
doubt about an assertion or a hypothesis?

Comment: Scintilla of evidence is legal terminol-
ogy [Gordon & Walton 2009]. It evokes probabilistic
methods, perhaps infinitely-valued logics.

An alternative: define evidence for and evidence
against assertion and hypotheses. Obtain a “Dialectica-

like” dialogue semantics [Bellin et al 2014].



6. McKinsey-Tarski-Godel’s S4 transla-
tion

- Translation in non-tensed S4.

- Monotonicity holds for assertive formulas.
- Anti-monotonicity holds for hypothetical
formulas.

(rp)™ = Op (#p)™M = Op,
(AD>DBM = oA4aM - BM) (C~ DM = o(CM A-DM),
(M = ¢, (DM = ¢
(ANBM = AM A BM (CyD)M = CcMvy DM,
(~ AM = O-AM (~X)M = o-XxM
(CJ_)M = M (AJ_)M — S AM

Lemma: AM =poaAM oM = o,

Note: (~ A)M = 0-0AM = 0o-AM, (CHM = -oCM =
O0-CM; symmetrically for (~ C)™ and (A+)M,

Negations and dualities are translated differently.

Note: (C ~ D)M = o(CM A O-DM).



Some Facts.
o (ALLVM = AM = pAM: (CLYM = oM = oM

o (~v AM = 0-0-AM = 00 AM;
o (~~ O =0-0-CM =ooCcM,

° (N/\A)M — O0-C0-AM = onAM = AM
o (~~OYM =0-0-CM =00CM =M
Thus (~~)"A < A, (~~)"C < C, for all n.

o (~~ A)M = O-0-AM = oAM = (~ (A)J‘)M.
Thus (~~)"C & ~~C, (~~)"A & ~~ A, foralln > 1.

Expectation (Ep) and Conjecture (Cp).

Idea: &p =~ ((Hp)'). Expecting that p is denying
the denial of the hypothesis p, i.e., asserting that in
all situations the hypothesis p would be justified.

Cp =~ ((rp)t). Conjecturing that p is doubting that
there may be doubts about the assertion of p, i.e.,
making the hypothesis that in some situation p may
be assertable.

Notice that &p = R #p and Cp = L +p.



6.1. Expectations (£p), conjectures (Cp).

Assertions, hypotheses, conjectures, expectations

Hp
N
a N
D Cp Ep
N a
N ~A D
/(
Fp

The modalities of S4

Op
AN
s SOOp
7N
P <SOp OCp
NS
N OSOp
/!
Up




7. Bi-polar sequent calculus Bl,.

M. = A: A or M C=.; A
int: AL T ;= A; co-int: ; C=; AT+

Write T ; e = € ; A, with exactly one of ¢, ¢ non-null.

Identity Rules:

logical axiom: logical axiom:
A, = A, , C =, C
cut;:
@ => AT AOQ e = € ;T
©,0 ;e = €, 1T,

cut,:
©;e¢ = ¢;T,C e C = Y

©,0 ;e = €,; 1T,

Proper axioms of the pragmatic interpretation

Fp ] =, HP kP, = U, Hp




Duality Rules:

1 right:
©@:C = 7T
©: = Cct: T

1. right:
©,A; ¢ = ;7T

1o left:
O, e = €; T7T,C

©;: ¢ = ¢; T, AL

u/j left
u,; j =,

Ct,O:;e = €; 7T

Licleft:
Q = A;: 7T
©: At =: 7T
u/j right
;= u; ]

Structural Rules:

contraction left
AAO ;e = € ;T

AO e = ;T

weakening left
Qe = ;7
AO e = ¢; T

contraction right
© ;e = ;T CC

©;;e = €; T7T,C
weakening right
©;e = ;7T
©;e = €; T7T,C




Conjunction and Disjunction

assertive validity axiom:
@, = T,;7T

N right:
@;#Al;'r @;#AQ;T
©: = Ai1NA,: T

N left:
A;,©O e = ;T
AogNAL,©O ; € = S
for:=20,1.

hypothetical absurdity axiom:
©;, 1l =, 7T
Y right:
@; € = E/; T,Co,cl
© ;e = €; T,CoYCl

Y left:
©;;, C;y =,; T, Oy, Cr = ; To

©1,02; Ci1Y(Cr = ; T1,7>




Implication and Subtraction

D right:
@,Al , = AQ , T
© , = Al D) AQ ; T

D left :
©1;, = A1 ; T3 A2,©2 ; € = € ; Yo

A1 D A2,01,02; € = € ; T,

~ right:
©1;, ¢ = €; T1,Cq ©y; Co = ; T

©1,02 ; € = € ; T1,72,C1 N Ch

~. left:
o Ci = T,CQ
©, Ci~nCy = ;7T




8. Categorical model of BI,

We show that categorical models of BI, have the form
of dialogue chirality.

We sketch the construction of the syntactic category:
- objects are formulas;

- morphisms are equivalence classes of sequent deriva-
tions;

- subject to naturality conditions [omitted].

e Let A = (Int,Nn, T) the cartesian category of in-
tuitionistic fomulas and derivations in BI,.

e Let B = (co—1Int, Y, L) the monoidal category of
co-intuitionistic formulas and derivations in BI,.

e We have operations ~: A — A (written ~,) and
~: B — B (written ; ~).
Let ©(A) =;~ (A1) and B(C) =~y (C1).

e Define a functor L =& : A — B sending a derivation
d : A1, = As; to the derivation &d : ;A1 =, A
defined in the obvious way.

Similarly define a functor R =0: B — A.

e L 4 R: the unit and co-unit of the adjunction are
given by the derivations of Proposition (ii).

e The duality (U)* is a contravariant monoidal func-
tor A — B, sending d : A1 N Az = Az N Az, to
dt ;A3 Y Ap = AT Y A

e Let (A|C) be the set of (equivalence classes of) se-
quent derivations of A: =0C';.



e A= (A,N,D,T) is in fact cartesian closed, so there
is a natural bijection between A'(M N A,B C) and
A'(A, M DBC).

e The provable equivalences of Proposition (iii) pro-
vide a natural bijection between A'(A,M DB C) and
A (A, 0 (M+ Y C)) (“De Morgan definition” of D).

e By composing, we obtain the family of natural bi-
jections

XMAC (M NA|CY = (AIM* Y C).

Proposition: The following are provable in
BI,,.

(i) ~ (A1) <= A and dually, C < ~ (C}).
(i1) A ; = BOA; and ; ©EC = ; C.

(#i1) M D OC «— (ML) ¥ 0).



Proof. (i:) and (%)

= A , C =, C
pi U] b - At= . = Ct;C u,j=;
A u!JA(AL) ~, (CH) 1§ = C
. SA nC N
A (AL = u; j = (@o)+C .
A = o~y ((OA)D); i~((EC)t ;= C
S A =
. O = . C
DL,:>Cl;C u; =>u,;
DLM':>M; boC ;, = u,; C
M,MDOBC ; = u,; C
M>EaC ; = u; M+t C
M>EC : = u: Mty C
MDIZIC(AMLYC)L;#u;
M>oOBC ; =MLty QO);
M:= M:; I
LM M+ = - C = :C
LRM Mty C = : C
LM = M-tyC:C u,; = u,

u(MLYC)iM =u,; C
B(M+ Y C),M,C+ ; = u;
(Mt Yy C),M ; =8C;

B((~M)YC),; :>MDIZIC';

DR



9. An inductive classical type and \pu.

- Type of ‘expectations’: the collection of formulas
Ep; (also written B¢;, for ¢; = Hp;).

- Constructor of the type of expectations: the oper-
ation B () =~, (()1) : co—Int — Int, corresponding
to the covariant functor R : B — A of the chirality.
This has a familiar name:

z: [, Ftiu,;, aHup;, a: A
“i:r;kuat:mﬂpz;aiAgmtro
gpi
gpi
A B t:m;a:A Co L HDp; ol Hp; _
[a] E elim

T:0; Fla]t:u; aup,a: A
o . ¢; possibly occurring in o @ A.

Clearly ~y~y,Bc FHe, since He =~y (ct).

Since B Hp #+p the classical expectation type lives
within intuitionistic logic.

The same holds for the type of conjectures, defined as
Cp =g (+p) =;j~ ((+p)*). Here we have ¢ak;j~;~®a,

for a =+p.



9.1. The A\u calculus.

The untyped case: we are given
- a countable sequence of variables x1,xo,...;
- a countable sequence of names a1, an,.. ..

Terms : t = x| a| .t | (tit2) | pat | [a]t

Reductions:

(B) Az.u)v > ufv/x]
(renaming) [a]uB.u > ula/S]
(n) po.faju > ou adu

(structural) (pB.uw)v > u pB.ul[B](wv)/[B]w]
The typed case:

hypothetical types: #p1, #po,...; (a countable sequence)
expectation types: FE = Ep | E1 D E»

x.Ep, Fx.:€p;, a: A S QLHDp , alHDp ol A

z.l,x. E1,Ft: Esy;a: A

)\E:F;I—Ax.t:Eleg;a:AD_

I

z:IHFt:E1DFExa: A zT:I:'Hu:Fiia: A
T:0F (tu) : By, i Hp, a2 A

app O-E

p-rule and [a]-rule are as above, section (9)




9.2. No typing of structural reduction here.

- We can assume that all u-terms are typed as
pa.t  Ep for t:up.
- such terms are normal w.r.t. structural reduction.

Typed structural reduction in NK
Prawitz 1965, Parigot 1990
reduces the type complexity of u-terms.

(1) :
B:-(ADB) w:ADB

[Blw : L

u = Foz]t DL (1) .E
uB.u:ADB v:A
(uB.u)v : B

reduces to

(1) w:A:DB v A
B:-B (wv) : B

[B](wv) = L

ul [8)Cwo)/[Blw] L))
pBul 18 (wv)/[8w] : B

Question: what about a linear A\u?



10. Natural Deduction for Co-Intuitionism.

Multiple-conclusion single-premise ND:

sequent-style H+ C1,...,C,

with implicit substitution, exchange, weakening and
contraction right.

Assumptions
H&+ H.

Subtraction

o HET,C DEA
NI r r oD, A

o HED,OND  CED,T
N-elim HFA T

Normalization step for subtraction:

d1 d3
H-I,C DFA ds
HFT,A,C~D CFD,T
HFT. AT

N |
~-E

reduces to

di1 do
H-F,C CEFDTYT  ds
subst——p D DFA
subst HFF.AT




Disjunction

. HFT.CD
Y=INtro " r c Yy D

HFEFY,CYyD CFHI' DEFEA

Y-elim HFT.IA

Normalization step for disjunction:

d1
H+-7T,C,D d»> ds
(HFT,.CYD Cr[ DFA
N HFT,T,A
reduces to
d1 d»>
pep I T.C.D  CET ds
Subst——Hp v T D DFA

subst HFT.IA



10.1. Computational interpretation.

x:HFt:,t:C wy:DFu: A
r:HEFT:T mke(t,y) :C~D,u : A

~-intro
if t: C and y : D, then make—coroutine(t,y) : C' ~ D

but there are side effects: ' = u{y :=y(t)}

z . Hrw: Abw:C~D v:CkFs:D,s: 7T
z: HFpostp(lv—s,w):e| w: A,:T

~-elim

ifw:C~D,v:C and s: D, then the term
postpone(v — s,w) is stored away,
but there are side effects: s = s{v := v(w)}.

Normalization step for subtraction:

dl d3
\_Iw:HI—t:I‘,t:_C y:DFu: A
x:HEt:Md: A, do
mkc(t,y) : C~ D v:Cks:D,5:7T
~-E
x . H - postp(v — s,mkc(t,y)) : |
it:ru AT
reduces to
dl d2
Sub:r;:Hl—t:I’,t_:C v.:CkFs:D,s:T
r:HkFt:T,s":D,3:7T ds

b [with 8" =s{v :=t},3"=3s{v:=t}] y:DFu:A
Y x HFt: ,a": AT
[with @’ = u{y := §"}]

S



Example 1.
Thedualof f:C —D,g: D — EFAx.gfe:C — E:

y.DFy: D «x:CkFax:C
z:EFz:FE y:DFnke(y,x): DNC)xy: C

z . EFmkc(z,y): B D,
v:E~CkFov:E~C mkc(y.,x) 1 DN C,xy, : C

v: E~NCFpostp(z — Xy, v)]
imkc(zy,y) @ BN D,mkc(yz,x) : DN C

A graphical notation:

postp(2’ — 2/, v)

mkc(y’,w’):D\&%
/

T’ = Xyz
mkc(z’,y’):E\X%:D
y' = Yzu
Z'E
Zl =z,

v:E~NC

e Here xy,, = x(y(2(v))), y2o = y(2(v))), zv = 2(v)
are “Herbrand terms” expressing ‘“remote binding”,
that is induced by terms of the forms make—coroutine

and postpone.

e A concurrent calculus, ‘“distributed” over multiple
conclusions. It has been translated into AP membrane
computing [Bellin & Menti 2014].



10.2. Co-intuitionistic Term assignment.
(Linear case)

Fvars: a countable set of free variables z, vy, z, ...,
Funct: a countable set of unary functions x, y, z, ....
Terms:

t,u =z | x(t) | tpu | casel(t) | caser(t) | mke(t,x)

Trm: an enumeration of the terms t1, to, ... freely
generated from a variable a, with a fixed Dbijection
f : Trm — Vars t; — xz; [needed to restore free vari-
ables for the bound ones].

Pterms: postp(y — uf{y := y(¢)},t), with ¢t is a term
and wu is a term [such that y occurs in u (linearity)].
Computational context S,: set of terms containing
exactly one free variable x.

Reductions: transformations S, ~» S, of the compu-
tational context.

Reductions: Let S, have one of the forms 1-3:

1. S;[casel(tpu)] locally reduces to S.[t].

2. S;lcaser(tpu)] locally reduces to S.[u].

3. Si[postp(z — u,mkc(t,y))]: given a partition

Sx[] — K, Cy £z
where
- & = &4z = z(uke(t,y)};
- G =Gy =y@B)};

- k contains neither z nor vy,
S, globally reduces to

R, Gy i=u{zi=1}}, &fz:=1t}.



Example 2.

The dual of F Ady.(Az.x)y: C - C ~FXyy:C — C:

S’ . postp(z' — 2/ ,mkc(y,z)  postp(y’ — 2/, e)

[w’:C’

/
r — X /
\ - mkc(y',z)
mkc(y',z):C~\C
\ Z/ — Zye
y':C
/]

Yy — Ve

e.:C~\C

reduces to

S’ postp(y — y, e)

Ty:C’
Te:C\C
Non linear case: Use lists of terms to handle
weakening and contraction right. We need

C =01 |1[t] | £x¥£ where * is append.

in terms postpone(x — 4,t) .



10.3. Work in progress. A probabilistic model?
To formulas H, C4,...,C, we assign events H,C4, ..., C,
H £ 0 in a probability space. We would like to read

HFCy,...,Ch

as Pr(CiU...UCyH) =1.

Decomposition Lemma. Let d be a Natural Deduc-
tion derivation of H + Cy,...,C,. There are pairwise
independent events C| C Cy,...,C;,, C C, such that

(Ciu...uC))nH=H.

This allows us to consider also H = 0.
Proof. By induction on d.

- assumption H + H: obvious.

- substitution: immediate from the ind. hyp.

btraction-int H-I,C DFA
subtraction-intro g & p. A

- suppose (JTH)uC)nH=H and (UA)NnD =D #

@, where events in I' are pairwise independent. Then
C=(CnD)uCnD)=CnD)u(CnDnNn({JA)), hence
CNnH=[(CnD)NnHJU[CNDnN(JA)NH].

Let D= (D;NnCND) CD;e A. Then

H = ((UC;)) U(CuDU (yDj)) NH =H.
- subtraction elim: supposing D and Y; € Y pairwise

independent, and (DU (|JY))NnC = C, then
(UY)NnCnD=CnD.



H-T.,CYD C+I DFA
HFT,I,A

Y-elim

- disjunction elim: Suppose (YNnH)uU ((CuD)nNH) = H.
We cannot suppose C and D to be independent events;
ifCND#0, then let ' = T'yuTI'y where

-T'g = {CiﬂD : CiEF} and I'y = {CiﬂD : CiGF};
-Cog=C ND.

Then Cyp = (UI'g) N Cy and D = (UA) N D. Hence

CuUuD =CouD = [(UI'y) N Cyp] U [(UA) N D].

SetI":{CiﬂCo X CiEF()} and A’ = {DjﬂD X Dj EA}
Notice that C; € I'' and D; € A’ are pairwise disjoint.
Hence

(YNnH)U(JWIMHuUA)Y]NH)=H
[We could have split D+ A instead of C+I.

The case of disjunction right is immediate from the
inductive hypothesis. Qed.

Possible connection: Lukasiewicz’ many valued logic,
MV-algebras, (Chang, D.Mundici).

OQur Decomposition Lemma may correspond to Riesz
Decomposition Theorem for Effect Algebras. [Ben-
nett and Foulis 1995]



Let us assign probabilities to decorated sequents x
CkFu: A.

We claim that for any D; € A the explicit depen-
dencies in the term uy, . : D; indicate how to assign
a probability to D so that all conclusions have inde-
pendent assignments.

Indeed ug, : Dj arises from vz, : D; by a substitution

uz, {y 1= tz} where

- either t, : C and y : D are premises of a ~-intro
with conclusion mkc(t,y) : C \ D,

- or t; : C~D is a major premise of a ~-elim, and
y . C is the only free variable in the computational
environment of the minor premise, which D; belongs
to.

In both cases the new term t, signals that we need
to decompose the event D; by taking the intersection

CnND;or (CND) N D;, as in the proof above.
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