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Introduction

Cellular automata (CA) are uniform, synchronous model of parallel
computation on uniform grids, where the next state of a point is a
function of the current state of a finite neighborhood of the point.

@ The Garden-of-Eden theorem provides a necessary condition for the
global function of a CA in dimension d to be surjective.

Also, surjective d-dimensional CA are balanced—every pattern of a
given shape has the same number of pre-images.

Notably, on more complex grids such implications are not respected.

Bartholdi's theorem characterizes amenable groups (a class introduced
by von Neumann) as those where all surjective CA are balanced.

@ We measure the amount by which a surjective CA on a non-amenable
group may fail to be balanced.

i
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The Banach-Tarski paradox (1924)

A closed ball U in the 3-dimensional Euclidean space
can be decomposed into two disjoint subsets X, Y,
both piecewise congruent to U.

This is due to a series of facts:

@ The axiom of choice.

@ The group of rotations of the 3-dimensional space has a free subgroup
on two generators.

@ The pieces of the decomposition are not Lebesgue measurable.

What is the role of the group?
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Amenable groups

A group G is amenable if there exists a finitely additive probability
measure |1 : P(G) — [0, 1] such that:

u(gA) = u(A) foreveryge G,AC G

@ Subgroups of amenable groups are amenable.
@ Quotients of amenable groups are amenable.
@ Abelian groups are amenable.

@ A group whose finitely generated subgroups are all amenable, is
amenable.
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A paradoxical decomposition of [,
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Paradoxical groups

A paradoxical decomposition of a group G is a partition G = |_|I_; A; such
that, for suitable «y,...,x, € G,

k n
G = |_| OciA,' = |_| OL,’A,’
i=1 i=k+1

A bounded propagation 2:1 compressing map on G is a function
¢ : G — G such that, for a finite propagation set S,

o ¢(g) g € S for every g € G (bounded propagation) and
o [dY(g)| =2 for every g € G (2:1 compression)

A group has a paradoxical decomposition if and only if it has a bounded
propagation 2:1 compression map.
Such groups are called paradoxical.

i
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Examples of paradoxical groups

The free group on two generators is paradoxical.

Every group with a paradoxical subgroup is paradoxical.

In particular, every group with a free subgroup on two generators is
paradoxical.

@ The converse of the previous point is false!
(von Neumann's conjecture; disproved by Ol'shanskii, 1980)

In fact, there exist paradoxical groups where every element has finite
order. (Adian, 1983)

i
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The Tarski alternative

Let G be a group. Exactly one of the following happens:
@ G is amenable.

@ G is paradoxical.

Are there other ways to express that?

i
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Cellular automata

A cellular automaton (CA) on a group G is a triple A = (Q, N, f) where:
@ Q@ is a finite set of states.

o N ={ny,...,nc} C G is a finite neighborhood.
e f:QFk -5 Qisa finitary local function

The local function induces a global function F: Q¢ — Q€ via

Falc)x) = flclcm),...,clx- )
= f(cMy)

where ¢*(g) = c(x - g) for all g € G.

The same rule induces a function over patterns with finite support:

flp):E—=Q , flp)(x)=F(p ) VP:EN = Q
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The Garden-of-Eden theorem

A cellular automaton is pre-injective if it satisfies the following condition:

if0<Hg e Glclg) #elg)ll <o
then F4(c) # F4le)

Theorem (Moore's Garden-of-Eden theorem, 1962)
A surjective cellular automaton on G = Z9 is pre-injective.

Theorem (Myhill, 1963)
A pre-injective cellular automaton on G = Z is surjective.
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A counterexample on the free group
Let G =TF,, Q ={0,1}, N ={l¢,a,b,a*, b7}, and f the majority rule.

A is not pre-injective.
@ The configuration which has value 1 only on 15 is updated into the
all-0 configuration.

However, A is surjective.
o Let E € PF(G) and let m =max{||g|| | g € E}.
e Each g € E with ||g|| = m has three neighbors outside E.

@ This allows an argument by induction.

i
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Prodiscrete topology and product measure

The prodiscrete topology of the space Q€ of configurations is generated
by the cylinders

CE,p)={c:G—= Q| clg =p}

The cylinders also generate a o-algebra X, on which the product measure
induced by

un(C(E, p)) = |QI7E
is well defined.

@ X is not the Borel o-algebra unless G is countable.

i
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Balancedness

Let E be a finite nonempty subset of G; let A = (Q,N,f) be a CAon G.
A is E-balanced if for every p: E — Q,

£ ()l = |QIENE
This is the same as saying that A preserves uy, i.e.,
un (FH(U)) = (U)
for every open U € X¢.

Theorem (Maruoka and Kimura, 1976)
A CA on Z9 is surjective if and only if it is balanced.

i

S. Capobianco (loC) Normality, randomness, GoE October 15, 2013 13 / 36



Martin-Lof randomness for infinite words

A sequential Martin-Lof test (briefly, M-L test) is a recursively enumerable
U C N x Q* such that the level sets U, = {x € Q* | (n,x) € U} satisfy the
following conditions:

Q Foreveryn>1, U1 C U,

@ Foreveryn>1and m>n, U, N Q™ < |Q|™"/(IQ| —1).

© Forevery n>1and x,y € QF, if x € U, and y € xQ* then y € U,.
w € QN fails a sequential M-L test U if w € Na>o0 U,QN.

w is Martin-Lof random if w does not fail any sequential M-L test.

o Ifn:N — N is a computable bijection, then w is M-L random if and
only if won is M-L random.

o It is well known (cf. [Martin-Lof, 1966]) that M-L random words are

normal.
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What is normality?

Consider the definition for real numbers:

a real number x € [0, 1) is normal in base b
if the sequence of its digits in base b is equidistributed

x is normal if it is normal in every base b

A similar definition holds for sequences w € QN:
o Let occ(u,w) ={i > 0| wjjjyjy—1) = u}.
@ w is m-normal if for every u € Q™,

im locc(u, w) N{0,...,n— 1}

n—oo n

= Q™™

Theorem (Niven and Zuckerman, 1951)
w is m-normal over Q iff it is 1-normal over Q™.
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Enumerating the cylinders

Suppose G is finitely generated and has decidable word problem.
@ Then there is a computable bijection ¢ : N — G.
@ Also, there is a computable function m: N x N — N such that, for all
i and j, if $(i) =g and d(j) = h, then ¢p(m(i,j)) =g - h.
Then we can enumerate the cylinders as follows:

o First, we enumerate the elementary cylinders:
Bqii+j = Clgiyqj) ={c: G = Qlc(d(i) = q;}

o Next, we define a bijection W : PF(G) - Nas W(X) =Y ;.42
(so that W(0) = 0)

o Finally, we enumerate the cylinders as:

Bi= () B
iev—1(n+1)
o
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Martin-Lof randomness for configurations

Let G be a f.g. group with decidable word problem.
o We say that U is V-computable if there exists a r.e. A C N such that

U= |J vvizo
n(ij)EA

where 7t(i,j) = (i+)(i+j+1)/2+].

o A B’-computable family & = {U,},>0 of open subsets of Q¢ is a
Martin-Lof pp-test if up(U,) < 27" for every n > 0.
ceQCfailsUU ifce nnzo U,.

@ c is M-L yp-random if it does not fail any M-L py-test.

i
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Two important facts about Martin-Lof randomness

Theorem (Hertling and Weihrauch)
Let ¢ : N — G an admissible indexing.
c € Q% is M-L pp-random if and only if co ¢ € QY is M-L random.

Theorem (Calude et al., 2001)
Let A= (Q,N,f) bea CAon Z9 The following are equivalent:
©Q A is surjective.

@ For every c: Z9 — Q, if c is M-L up random then so is F4(c).
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Bartholdi's theorem (2010)

Let G be a group. The following are equivalent:
©Q G is amenable.
@ Every surjective cellular automaton on G is pre-injective.

© Every surjective cellular automaton on G preserves the product
measure.

How much does preservation of product measure
fail on paradoxical groups?
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The amount of a failure

Theorem (Capobianco, Guillon and Kari)
Let G be a non-amenable group.

There exist an alphabet Q, a subset U of Q¢ such that
Hn(U) = 1)
and a surjective cellular automaton A over G with alphabet @ such that

un (FHU)) =0.

i
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A surjective, non-balanced CA

Guillon, 2011: improves Bartholdi's counterexample.

Let G be a non-amenable group, ¢ a bounded propagation 2:1
compressing map with propagation set S.

Define on S a total ordering <.

Definea cA Aon G by Q = (S x{0,1} x S)LU{qo}, N =S, and

90 if 3s € S| us = qo,
f(u) = (Pa X, CI) if 3(5) t) €eSxS | s < tus = (5) O‘)P)) ur = (t)]-)q)>
qo otherwise.

Then A, although clearly non-balanced, is surjective.
@ Forje Gitisj=d(js) = d(jt) for exactly two s,t € S with s < t.
e If c(j) = qo put e(js) = e(jt) = (s,0,5).
o If c(j) = (p, «, q) put e(js) = (s, x, p) and e(jt) = (t,1,q).
e Then F(e) =c. %
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End of the game?

At this point, one might be tempted to reason as such:

Let G be a non-amenable group with decidable word problem.
Let ¢ be a Martin-Lof random configuration for Guillon's CA.
There exist some points g € G where ¢(g) = qo.

As |S| > 2, F4(c) cannot have isolated qq's.

Therefore, F4(c) cannot be random.
This argument, albeit convincing, is wrong.
@ To say that F4(c) has no isolated occurrences of gg, means that
there are some patterns that do not occur in F4(c).
@ But ¢, being random, is also rich ...

@ ...and a rich configuration contains all the preimages of every
non-orphan pattern!

i
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Normality for d-dimensional configurations

It is still sensible to define normality for ¢ € Z9 as follows:
o Let E=E(ny,...,ng) = 1‘[,?’:1{0,...,11,-—1}.
e c:79 — Qis E-normal if for every p: E — Q,
1

| 1 y
||m ﬁHXEZ |||X”SH)CX|EZP}|:W

n—oo (2n+1)

But: why is this sensible?

e Every E such as above is a coset for some subgroup of Z9.

@ Also, a subgroup of finite index of Z9 is isomorphic to Z9.
This is not true for arbitrary groups!

o If G is free on two generators, and H < G has index 2,
then H is free on three generators!
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So, what is to be done?

The idea:
@ Patch the group with patches of a given shape.
@ See the state of patches as macrostates.

@ Show that p-almost every configuration is normal with respect to
the macrostates.

The problem:

o If we want to fill the group without having the patches overlap,
we may be forced to change the underlying group.

The solution: (Kari, 2012)

only patch a portion of the group!
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Normal configurations, modulo some conditions

Let G be an arbitrary infinite group.

o Let E € PF(G) be nonempty.

o Let h: N — G be injective.
We define the lower density, upper density, and density of U C G
according to h, as the lower limit densinfy, upper limit denssupy, and (if
exist) limit densy, of

[UN h{0,...,n—1})
n

We say ¢: G — Q is h-E-normal if for every pattern p: E — Q,

dens, occ(p, ¢) = QI

where occ(p,c) ={g € G| c&|g = p}.

i
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Sanity check

If EC F and c is h-F-normal, then it is also h-E-normal.

@ The vice versa is false: for h(n) = n, ...010101... is h-{0}-normal
and h-{1}-normal but not h-{0, 1}-normal.

Also, the following are equivalent:
O cis h-E-normal.
Q@ For every p: E — Q, densinf, occ(p, ¢) > |Q|E.
© For every p: E — @, denssup, occ(p, c) < |Q[El.

i
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A key lemma

Let A= (Q,N,f) be a nontrivial CA on G.
@ Suppose A has a spreading state qo.
o Let s,t be two distinct elements of .
o Let h: N — G be injective.
If c: G — Q is h-{s, t}-normal, then F4(c) is not h-1-normal.

o In particular, if ¢ is h-E-normal for some E € PF(G) containing NV,
then F4(c) is not h-1-normal.

S. Capobianco (loC) Normality, randomness, GoE October 15, 2013 27 / 36



The set of non-normal configurations
Forp: E — Q, k>1, and h: N — G injective, let

{i < n| h(i) € occ(p, c)}| 1 1
? ’ : = JqIE ~ F}

Lh,p,k,n = {CZ G —
densinf, occ(p, ¢) < |Q|7'E! if and only if there exists k > 1 such that

. def
celimsuplypun= ﬂ U Lhpkym = Lhpk
n n>1m>n

which is £ -measurable. Then

Lhe = U Lppk
pEQRE k>1

is the set of all the configurations ¢ € Q¢ that are not h-E-normal.

When is it the case that un(Lye) = 07 %
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The Chernoff bound

Let Yo,..., Ya—1 be independent nonnegative random variables.
Let S, = Yo+ ...+ Yo1, u=uln) =E(S,).
For every 6 € (0,1),

ps?

P(S,<u-(1-9%)<e 2.
In particular, if the Y;'s are Bernoulli trials with probability p, and
0 < e <min(p,1—p), then for 5 =¢/p
2

> <Z>pk(1—p)”k <e w .

0<k<n-(p—¢)
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A full set of normal configurations

Suppose that the sets h(/)E, i > 0, are pairwise disjoint.

@ The random variables

are i.i.d. Bernoulli of parameter t = |Q| €.
o Set Sy, = Yy+...+ Yo1. Then for 6§ =|Q|El/k,

Lhphn=1c:G = Q|S,<n-|QE. (1—1QIE/k)}

and .
_leirt
wir(Lapkn) =P{Sp <p-(1-08)}) <e 22"
o By the Borel-Cantelli lemma, all the Ly, are null sets.

In conclusion: pp-almost every ¢ : G — @ is h-E-normal
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If it fails, it fails catastrophically

Let G be a non-amenable group.
o Let A= (Q,N,f) be the Guillon CA.
o Let ED N U{1}L
@ Let h: N — G s.t. the h(/)E, i > 0, are pairwise disjoint.
@ Then pp-almost every ¢ € QC is h-E- and h-1-normal . ..
@ ...so none of their preimages can be h-E-normal!

Hence, the set U of h-E-normal configurations satisfies

un(U) =1 and pp (F;1(U)) =0.
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Back to randomness

Let G be an amenable group and let A = (Q, N, f) be a CA on G.
o If U is B’-measurable then so is F;l(l/{).

o If A is surjective and U is a M-L up-test, then so is FEI(Z/{).
@ In these hypotheses, if F4(c) fails U, then c fails FZI(U).

Summarizing:

if G is amenable, A is surjective, and ¢ is M-L up-random,
then F4(c) is M-L pup-random
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Fixing a flaw

a € QY is M-L random relatively to b € QY if it is M-L random when
computability is considered according to Turing machines with oracle b.

Theorem (van Lambalgen, 1987)
Let a,b € QY and

() = a(k) if n=2k,
=9 bk) ifn=2k+1.
The following are equivalent:

@ cis M-L random.

@ ais M-L random, and b is M-L random relatively to a.

© b is M-L random, and a is M-L random relatively to b.
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Another catastrophic failure!

Let G be an infinite f.g. group with decidable word problem.
For every nonempty E € PF(G) there exists a computable injective
function h: N — G such that:

@ h(N) is a recursive subset of G with infinite complement.
@ h(n)EN h(m)E = () for every n # m.

© For any alphabet Q, every M-L pp-random configuration ¢: G — Q
is h-E-normal. (This follows from van Lambalgen's theorem.)

Let then A be the Guillon CA.
e Construct h as above with E = A U {1}.
@ Let c: G — Q@ be a M-L yp-random configuration.
@ Because of the above lemma, F4(c) cannot be random.

@ For the same reason, none of the preimages of ¢ can be random.

i
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A diagram of implications

?
Hm— <
ergodic ——

|

transitive

injective

?

balan(ied<—> preserving ——> recurrent
random to non—
random wandering
{ /
E
pre— v no rich to
brem <> surjective <—— = i
injective orphans rich

i
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Conclusions and future work

@ The characterizations of surjective CA listed in [Calude et al., 2001]
actually hold on arbitrary amenable groups—and precisely on those.

@ Among those, preservation of the product measure is the one that
fails catastrophically on paradoxical groups.

@ Does Myhill's theorem fail for paradoxical groups?
(This problem seems very difficult!)

@ Are there injective CA which are not balanced?
(If no such CA exists, then Gottschalk’s conjecture is true.)

@ Does there exists a CA that sends a nonrich configuration into a rich
one?

Thank you for attention!

Any questions?

i
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