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WHAT LINEAR TIME?
WHY LINEAR TIME?



Why

• Big data.

• Remark. In many cases, big-data algorithms 
are approximate and randomized, necessarily 
so.



What linear time?

• A short answer: 
We use the standard computation model of 
the analysis of algorithms.

• A longer answer,  with examples and all, 
follows.



Example 1: Sorting.

• A well-known lower bond is this: 
Sorting 𝑛 items requires Ω(𝑛 ⋅ log 𝑛 )
comparisons and thus Ω(𝑛 ⋅ log 𝑛 ) time.

• There is no way around the lower bound.
Or maybe there is?



An array A if length n

• Indices: 0, 1, …, n-1

• Values A[0], A[1], …, A[n-1]



Distinct natural numbers < 𝑛
can be sorted in time 𝑂(𝑛).

We illustrate this with 
𝑛 = 7 and  𝐴 = 𝐴 0 , 𝐴 1 , 𝐴 2 = 3,6,0 . 

1. Create and auxiliary array 𝐵 and zero it: 
𝐵 = 〈0,0,0,0,0,0,0〉.

2. Traverse 𝐴; for each value 𝑘, set 𝐵[𝑘] = 1. 
𝐵 becomes 1,0,0,1,0,0,1 .

3. Traverse 𝐵 outputing indices with positive 
values: 〈0,3,6〉.

We forgo interesting generalizations.



The computation model

• Random Access Machine
with registers of length 𝑂(log 𝑛).
– Only the initial polynomial many registers are used, 

with address of length 𝑂(log 𝑛).

– Relations  =,≥,≤,  and operations +,−
are constant time.

• The model reflects the standard computer 
architecture and the regular intuition of 
programmers.



Example 2: Tries

One application:
lexical analyzers

to, tea, ted, ten, A, inn



Example 3: Suffix arrays.

• Let 𝑠 = 𝑐0…𝑐𝑛−1. Each 𝑖 < 𝑛 is the 𝑘𝑒𝑦 for  
the suffix 𝑐𝑖 …𝑐𝑛−1. 

• The  suffix array for 𝑠 is an array 𝐴 of length 𝑛
of 𝑠 where each 𝐴[𝑗] is (the key of) the 𝑗-th
suffix in the lexicographical order.

• An amazing algorithm constructs the suffix array 
in linear time. 



Parsing logic formulas

• Using the tools above + a deterministic 
pushdown automaton, produce – in linear time –
the parse tree of a given logic formula.

• The nodes and edges are decorated with useful 
labels and pointers.

• Two nodes may represent different occurrences 
of the same subformula; call them homonyms. All 
pointers 𝐻 𝑢 from any node 𝑢 to its homonymy 
original can be constructed in 𝑂(𝑛).



PROPOSITIONAL PRIMAL INFON 
LOGIC



Motivation for primal logic

• Access control. DKAL



Why propositional?

• DKAL rules have the form
𝑣1: 𝑇1, 𝑣2: 𝑇2, …

upon 𝜋(𝑤1, … )
if 𝛼(… )
actions

Meaning: If an arriving message fits the pattern 𝜋 and if the condition 
𝛼 follows from your knowledge assertions, perform the actions.

• Often, by the time you arrive to check 𝛼, it is ground. The assertion 
are typically not ground but only few particular ground instances are 
relevant.



Expository simplifications

• For expository reasons, we restrict attention 
to the “topless” (without ⊤) fragment that is 
quote-free.



The derivation rules

𝑥 ∧ 𝑦

𝑥

𝑥 ∧ 𝑦

𝑦

𝑥, 𝑦

𝑥 ∧ 𝑦

𝑥, 𝑥 → 𝑦

𝑦

𝑦

𝑥 → 𝑦



The subformula property

• Theorem. If
𝛼1, … , 𝛼ℓ

is a shortest derivation of 𝜑 from 𝐻
then every 𝛼𝑖 is a subformula of 𝐻,𝜑.

• In the “quoteful” case, instead of subformulas 
of a formula 𝛼, we have formulas local to 𝛼.
There are < |𝛼| such local formulas.



An interpolation lemma of sorts

• Lemma. If 𝐻 ⊢ 𝜑 then there is a set 𝐼 of 
subformulas of 𝐻 that are also subformulas of 
𝜑, such that 

1. Formulas 𝐼 are derivable from H, and

2. 𝜑 is derivable from 𝐼 using only introduction 
rules. 

• We will not use the interpolation lemma but it 
gives a useful optimization in the case where 
the hypotheses change rarely.



The multi-derivation problem

• Definition. Given sets 𝐻 (hypotheses) and 𝑄
(queries) of formulas, decide which queries 
follow from the hypotheses.

• Theorem. The multi-derivation problem for 
propositional infon logic is solvable in linear 
time. 

• We explain the main ideas.

• 𝑛 is always the input size, 
essentially  𝐻 + |𝑄|.



A LINEAR TIME DECISION ALGORITHM 
FOR THE MULTI-DERIVATION PROBLEM



Approach: derive them all

Compute all subformulas of 𝐻,𝑄 derivable from 
the hypotheses 𝐻. 



High-level algorithm

• Initially all subformulas of 𝐻,𝑄 are raw,
only hypotheses are pending and
there are no processed formulas.

• Pick the first pending formula 𝛼, 
apply all possible inference rules to 𝛼, 
then mark 𝛼 processed. 

– In the process some raw formulas may become 
pending.

• Repeat until no formula is pending.



One easy case

• Apply the ∧-elimination rule 
𝑥∧𝑦

𝑥
.

• In this case, 𝛼 is a conjunction. If the first 
conjunct of 𝛼 is raw, mark it pending.



One harder case

• Apply the ∧-introduction rule  
𝑥,𝑦

𝑥∧𝑦

with 𝛼 playing the role of 𝑥.

• All raw formulas of the form 𝛼 ∧ 𝑦 where y is 
pending or processed, should be marked 
pending.

• How do we find them? We don’t have the 
time to walk through the raw formulas.



Local search

• Every homonymy original node 𝑢 is endowed 
with four so-called use sets denoted

∧, 𝑙 , ∧, 𝑟 , →, 𝑙 , →, 𝑟

computed as follows.
• Traverse the parse tree, in the depth-first way.
• If a homonymy  original 𝑢 is the left child of a 

conjunction node 𝑤, put 𝐻(𝑤) into the use set 
(∧, 𝑙) of 𝑢. If u is the right child of 𝑤, put 𝐻(𝑤)
use ∧, 𝑟 instead. 

• Similarly for →.



Back to applying 
𝑥∧𝑦

𝑥

• Recall: we are looking for raw formulas of the 
form 𝛼 ∧ 𝑦 where 𝛼 is the first pending 
formula.

• Just walk through the use set (∧, 𝑙) of 𝛼.



EXTENTION 1: DISJUNCTIONS



Motivations

Recall the DKAL rule
𝑣1: 𝑇1, … , 𝑣𝑗: 𝑇𝑗

upon 𝜋 𝑤1, …
if 𝛼 …
actions

and suppose that 𝛼 = 𝛽 ∨ 𝛾, e.g.
passport(traveller,UK) ∨ passport(traveller,EU). 

There may be many such disjunctions. They may be 
eliminated but they make rule much more succinct.



Add only introduction rules 

𝑥

𝑥 ∨ 𝑦

𝑦

𝑥 ∨ 𝑦

The linear decision algorithm generalizes in a 
rather obvious way.



EXTENSION 2: CONJUNCTIONS 
(AND DISJUNCTIONS) AS SETS



Motivation

While 𝑥 ∧ 𝑦 entails 𝑦 ∧ 𝑥,

• 𝑥 ∧ 𝑦 → 𝑧 doesn’t entail 𝑦 ∧ 𝑥 → 𝑧,

• 𝑧 → (𝑥 ∧ 𝑦) doesn’t entail 𝑧 → 𝑦 ∧ 𝑥 ,

• 𝑥 ∧ 𝑦 ∧ 𝑧 → 𝑤 doesn’t entail

𝑥 ∧ 𝑦 ∧ 𝑧 → 𝑤, etc.



The idea, a problem, and a solution

• View conjunctions as sets of conjuncts.
This repairs the missing entailments.

• But sets are not constructive objects.

• Represent sets as sequences by ordering the 
conjuncts lexicographically.



The decision algorithm

• The resulting multi-derivability problem is 
solvable in expected linear time.

• It is the algorithm that introduces 
randomization. No probability distribution on 
inputs is assumed.



EXTENSION 3: TRANSITIVE PRIMAL 
INFON LOGIC



Motivation

• In primal infon logic,

𝑥 → 𝑦 , (𝑦 → 𝑧) don’t entail (𝑥 → 𝑧).



New axiom and rule

• In the quoteless case, transitive primal infon 
logic is the extension of primal infon logic with 
an axiom 𝑥 → 𝑥 and the rule

𝑥 → 𝑦, 𝑦 → 𝑧

𝑥 → 𝑧



An alternative presentation of 
transitivity

𝑥1 → 𝑥2, 𝑥2 → 𝑥3, … , 𝑥𝑘−1 → 𝑥𝑘
𝑥1 → 𝑥𝑘

Logically the alternative presentation is 
equivalent to the original one but 
algorithmically it makes a lot of difference.



Multi-derivability

• Multi-derivability problem for the transitive 
primal infon logic is solvable in quadratic time.



THANK YOU



VAULT



High-level algorithm

Initially all local formulas are raw,
except that hypotheses are pending.
No formulas are processed.

1. Pick the first pending formula 𝛼, 

2. apply all (applicable) inference rules 𝑅 to 𝛼;
if any of the conclusions are raw, make them pending.

3. mark 𝛼 processed. 

4. Repeat until no formula is pending.

• Pending and processed formulas have been derived.

• Formulas move only from raw to pending to processed.



One easy case

• 𝛼 = 𝛽 ∧ 𝛾,  𝑅 is  
𝑥 ∧ 𝑦

𝑥
⋅

• If 𝛽 is raw, mark it pending.



One harder case

• Apply  𝑅 =
𝑥, 𝑦

𝑥 ∧ 𝑦
to 𝛼, with 𝛼 being the left 

premise. 

– It will be convenient to abbreviate this sentence 
thus: apply 𝑅𝑙 to 𝛼.

• All raw formulas 𝛼 ∧ 𝑦, with 𝑦 pending or 
processed, should be marked pending.
But how do we find them? 



Succinct representation, 1

• Local formulas are too big objects to manipulate in 
linear time. So we work with the parse tree of 𝐻,𝑄. 
The subtree rooted at a node u of ParseTree(𝐻,𝑄) is 
the parse tree of some formula 𝜑, the formula of 𝑢.

• Draft definition. If 𝜑 = Formula(𝑢) then 𝑢 represents 
𝜑.

• But then 𝜑 may have many representations.

• Call nodes 𝑢, 𝑣 homonyms if their formulas are 
isomorphic.



Succinct representation, 2

• Lemma. There is a linear-time algorithm that

– chooses a homonymy leader  in every homonymy 
class, and

– sets pointers 𝐻𝑢 from any node 𝑢 to its 
homonymy leader.

• The algorithm uses suffix arrays.

• Def. If 𝜑 = Formula(𝑢) then 𝐻𝑢 represents 𝜑. 
Further, 𝐻𝑢 = N𝑜𝑑𝑒(𝜑).



The use sets US(𝑅𝑙 , 𝑢)

• Traverse the parse tree in the depth-first 
manner. For every homonymy leader 𝑤 with 
Formula(𝑤) = 𝑥 ∧ 𝑦, 

put 𝑤 into the use set US(𝑅𝑙 , 𝐻𝑤𝑙).

– Here 𝑤𝑙 is the left child of 𝑤.

– Notice that  𝐻𝑤𝑙 =Node(𝑥).

– Notice that every Node(𝛼 ∧ 𝑦) occurs in 
US(𝑅𝑙,Node(α)).



Applying 𝑅𝑙 to 𝛼

• Walk through US(𝑅𝑙 , Node(𝛼)) and mark 
every raw 𝑤 there pending.

• How do you find Node(𝛼)? 
That is how 𝛼 is given in the first place.


