What, if anything,
can be done in linear time?

Yuri Gurevich
Tallinn, April 29, 2014

Agenda

1. What linear time? Why linear time?
2. Propositional primal infon logic
3. Alinear time decision algorithm

4. Extensions with
1. Disjunction
2. Conjunctions as sets
3. Transitivity

WHAT LINEAR TIME?
WHY LINEAR TIME?

Why

* Big data.

 Remark. In many cases, big-data algorithms
are approximate and randomized, necessarily

SO.

What linear time?

* Ashort answer:
We use the standard computation model of
the analysis of algorithms.

* Alonger answer, with examples and all,
follows.

Example 1: Sorting.

* A well-known lower bond is this:
Sorting n items requires Q(n - log(n))
comparisons and thus Q(n - log(n)) time.

* There is no way around the lower bound.
Or maybe there is?

An array A if length n

* |Indices: 0, 1, ..., n-1
* Values A[0], A[1], ..., A[n-1]

Distinct natural numbers < n
can be sorted in time O(n).

We illustrate this with
n =7and A = (A[0], A[1], A4]|2]) = (3,6,0).

1. Create and auxiliary array B and zero it:
B = (0,0,0,0,0,0,0).

2. Traverse A4; for each value k, set B|k|] = 1.
B becomes (1,0,0,1,0,0,1).

3. Traverse B outputing indices with positive
values: (0,3,6).

We forgo interesting generalizations.

The computation model

e Random Access Machine
with registers of length O (logn).

— Only the initial polynomial many registers are used,
with address of length O (logn).

— Relations =, >, <, and operations +, —
are constant time.
* The model reflects the standard computer
architecture and the regular intuition of
programmers.

Example 2: Tries

One application:
lexical analyzers

SN
/@\@5 QED
Sobd

to, tea, ted, ten, A, inn

Example 3: Suffix arrays.

* Lets =c¢j...c,_1. Each i < nis the key for
the suffix ¢; ... ¢;;_1.

 The suffix array for s is an array A of length n
of s where each A]j] is (the key of) the j-th
suffix in the lexicographical order.

* An amazing algorithm constructs the suffix array
in linear time.

Parsing logic formulas

* Using the tools above + a deterministic
pushdown automaton, produce —in linear time —
the parse tree of a given logic formula.

* The nodes and edges are decorated with useful
labels and pointers.

 Two nodes may represent different occurrences
of the same subformula; call them homonyms. All
pointers H(u) from any node u to its homonymy
original can be constructed in O(n).

PROPOSITIONAL PRIMAL INFON
LOGIC

Motivation for primal logic

e Access control. DKAL

Why propositional?

e DKAL rules have the form
V1 Tl' (%X Tz,
upon w(wy, ...)

ifa(...)

actions

Meaning: If an arriving message fits the pattern m and if the condition
a follows from your knowledge assertions, perform the actions.

e Often, by the time you arrive to check «, it is ground. The assertion
are typically not ground but only few particular ground instances are
relevant.

Expository simplifications

* For expository reasons, we restrict attention
to the “topless” (without T) fragment that is
guote-free.

The derivation rules

XAy XAy X,y
X y XNy
X, X =Yy y

y X =Yy

The subformula property

* Theorem. If
dq1, ..., Ap
is a shortest derivation of ¢ from H
then every «; is a subformula of H, .

* |n the “quoteful” case, instead of subformulas
of a formula a, we have formulas local to «.
There are < |a| such local formulas.

An interpolation lemma of sorts

* Lemma. If H ¢ then thereis a set [of
subformulas of H that are also subformulas of
@, such that

1. Formulas I are derivable from H, and

Z. @ is derivable from I using only introduction
rules.

 We will not use the interpolation lemma but it
gives a useful optimization in the case where
the hypotheses change rarely.

The multi-derivation problem

e Definition. Given sets H (hypotheses) and Q
(queries) of formulas, decide which queries
follow from the hypotheses.

* Theorem. The multi-derivation problem for
propositional infon logic is solvable in linear
time.

 We explain the main ideas.

* nis always the input size,
essentially |H| + |Q].

A LINEAR TIME DECISION ALGORITHM
FOR THE MULTI-DERIVATION PROBLEM

Approach: derive them all

Compute all subformulas of H, Q derivable from
the hypotheses H.

High-level algorithm

* Initially all subformulas of H, Q are raw,
only hypotheses are pending and
there are no processed formulas.

* Pick the first pending formula «,
apply all possible inference rules to «,
then mark a processed.

— In the process some raw formulas may become
pending.
* Repeat until no formula is pending.

One easy case

* Apply the A-elimination rule %

* |n this case, a is a conjunction. If the first
conjunct of « is raw, mark it pending.

One harder case

° -1 I ﬂ
Apply the A-introduction rule oy

with a playing the role of x.
* All raw formulas of the form a A y wherey is
nending or processed, should be marked
nending.

e How do we find them? We don’t have the
time to walk through the raw formulas.

Local search

Every homonymy original node u is endowed
with four so-called use sets denoted

(/\’ l)’ (/\’ r)’ (_)’ l)’ (_)’ r)

computed as follows.
Traverse the parse tree, in the depth-first way.

If a homonymy original u is the left child of a
conjunction node w, put H(w) into the use set
(A, D) of u. If uis the right child of w, put H(w)
use (A, 1) instead.

Similarly for —.

Back to applylng XY

Recall: we are looking for raw formulas of the
form a Ay where «a is the first pending
formula.

Just walk through the use set (A, 1) of «.

EXTENTION 1: DISJUNCTIONS

Motivations

Recall the DKAL rule
V1. Tl' ey vj: 7}

upon m(wy, ...)
if a(...)
actions

and suppose thata = [Vv, e.g.
passport(traveller,UK) V passport(traveller,EU).

There may be many such disjunctions. They may be
eliminated but they make rule much more succinct.

Add only introduction rules

X y
xVy xVy

The linear decision algorithm generalizes in a
rather obvious way.

EXTENSION 2: CONJUNCTIONS
(AND DISJUNCTIONS) AS SETS

Motivation

While x A y entails y A x,

* (x Ay) — zdoesn’t entail (y Ax) — z,

* 7 > (x Ay) doesn’t entail z = (y A x),

* (x Ay) Az > w doesn’t entail
xN(yAz)— w,etc.

The idea, a problem, and a solution

* View conjunctions as sets of conjuncts.
This repairs the missing entailments.

e But sets are not constructive objects.

* Represent sets as sequences by ordering the
conjuncts lexicographically.

The decision algorithm

* The resulting multi-derivability problem is
solvable in expected linear time.

* |tis the algorithm that introduces

randomization. No probability distribution on
inputs is assumed.

EXTENSION 3: TRANSITIVE PRIMAL
INFON LOGIC

Motivation

* |n primal infon logic,
(x =» vy),(y = z) don't entail (x = 2).

New axiom and rule

* |n the quoteless case, transitive primal infon
logic is the extension of primal infon logic with
an axiom x = x and the rule

X =Y,V —2Z

X > Z

An alternative presentation of

Logical
equiva
algorit

transitivity

X1 ™ X2, X2 ™ X3, e, Xjp—1 ™ X

X1 =™ Xg

y the alternative presentation is
ent to the original one but

nmically it makes a lot of difference.

Multi-derivability

* Multi-derivability problem for the transitive
primal infon logic is solvable in quadratic time.

THANK YOU

VAULT

High-level algorithm

Initially all local formulas are raw,
except that hypotheses are pending.
No formulas are processed.

Pick the first pending formula «,

2. apply all (applicable) inference rules R to a;
if any of the conclusions are raw, make them pending.

3. mark a processed.
Repeat until no formula is pending.

* Pending and processed formulas have been derived.
* Formulas move only from raw to pending to processed.

One easy case

XAy

ca=LAYy, Ris

X
* If §is raw, mark it pending.

One harder case

X,y
XAy

 Apply R = to a, with a being the left

premise.

— It will be convenient to abbreviate this sentence
thus: apply R; to a.
* All raw formulas a A y, with y pending or

processed, should be marked pending.
But how do we find them?

Succinct representation, 1

Local formulas are too big objects to manipulate in

linear time. So we work with the parse tree of H, Q.
The subtree rooted at a node u of ParseTree(H, Q) is
the parse tree of some formula @, the formula of w.

Draft definition. If ¢ = Formula(u) then u represents
Q.
But then @ may have many representations.

Call nodes u, v homonyms if their formulas are
isomorphic.

Succinct representation, 2

* Llemma. There is a linear-time algorithm that

— chooses a homonymy leader in every homonymy
class, and

— sets pointers Hu from any node u to its
homonymy leader.

* The algorithm uses suffix arrays.

* Def. If @ = Formula(u) then Hu represents .
Further, Hu = Node(@p).

The use sets US(R;, u)

* Traverse the parse tree in the depth-first
manner. For every homonymy leader w with
Formula(w)=x Ay,
put w into the use set US(R;, Hw;).

— Here wy is the left child of w.
— Notice that Hw; =Node(x).

— Notice that every Node(a A y) occurs in
US(R;,Node(a)).

Applying R; to

* Walk through US(R;, Node(a)) and mark
every raw w there pending.

e How do you find Node(a)?
That is how «a is given in the first place.

