# On linear cellular automata (with special focus on rule 90)

Silvio Capobianco

Institute of Cybernetics at TUT

September 25, 2014

Revision: September 25, 2014

Э

#### Introduction

- Cellular automata (CA) are models of synchronous parallel computation, where the next state of a cell depends on the current state of finitely many neighbors.
- In a linear CA, the set of states is a commutative ring, and the local update rule is linear in its arguments.
   An example of such is rule 90 (exclusive OR of the two nearest neighbors).
- We will discuss the algebraic theory of linear cellular automata.
- We will then discuss the results by Martin, Odlyzko and Wolfram about the behavior of rule 90 on finitely many cells.



#### Cellular automata

A *d*-dimensional cellular automaton (CA) is a triple  $\mathcal{A} = \langle Q, \mathcal{N}, f \rangle$  where:

- Q is a finite set of states.
- $\mathcal{N} = \{n_1, \ldots, n_m\} \subseteq \mathbb{Z}^d$  is a finite neighborhood.
- $f: Q^m \to Q$  is a finitary local update rule.

 $\mathsf{Call}\ \mathcal{C} = \{ c: \mathbb{Z}^d \to Q \} = \mathcal{C}(d,Q).$ 

The local update rule induces a global transition function  $F : \mathcal{C} \to \mathcal{C}$  by

$$F_{\mathcal{A}}(c)(x) = f(c(x+n_1), \ldots, c(x+n_m))$$

# Linearity

Suppose Q = R is a commutative ring with identity.

It is then possible to have local update rules of the form

$$f(q_1,\ldots,q_m)=\sum_{i=1}^m a_i q_i$$

where  $a_1, \ldots, a_m \in R$ .

We then say that the CA is linear.

#### More algebra

If Q = R is a commutative ring with identity, then C is an R-module: •  $c_1 + c_2 = \lambda(x : \mathbb{Z}^d) \cdot c_1(x) + c_2(x)$  makes C an abelian group. •  $a \cdot c = \lambda(x : \mathbb{Z}^d) \cdot a \cdot c(x)$  satisfies:

$$a \cdot (c_1 + c_2) = a \cdot c_1 + a \cdot c_2$$
  

$$(a_1 + a_2) \cdot c = a_1 \cdot c + a_2 \cdot c$$
  

$$(a_1 \cdot a_2) \cdot c = a_1 \cdot (a_2 \cdot c)$$
  

$$1 \cdot c = c$$

3

# The superposition principle

A cellular automaton is linear if and only if

$$F_{\mathcal{A}}(r \cdot c + s \cdot e) = r \cdot F_{\mathcal{A}}(c) + s \cdot F_{\mathcal{A}}(e)$$

for every  $r, s \in R$  and  $c, e \in C$ .

In other words:

#### a cellular automaton is locally linear if and only if it is globally linear

As a consequence:

the behavior of a linear CA is completely determined by its behavior on a single 1 in a sea of zeros



#### Laurent series

A Laurent series in d variables is an expression of the form

$$\begin{aligned} \mathcal{L}(z_1,\ldots,z_d) &= \sum_{i_1,\ldots,i_d \in \mathbb{Z}} a_{i_1,\ldots,i_d} z_1^{i_1} \cdots z_d^{i_d} \\ &= \sum_{i \in \mathbb{Z}^d} a_i z^i \end{aligned}$$

where, in the last expression,  $i = (i_1, \dots, i_d)$  is used as a multiindex. We indicate as  $[z^i]\mathcal{L}(z)$  the coefficient  $a_i$ .

A Laurent polynomial is a Laurent series where the  $a_i$ 's are all zero except for finitely many  $i \in \mathbb{Z}^d$ .

#### Laurent series for linear CA

We may identify the d-dimensional configuration c with the Laurent series in d variables

$$\mathcal{L}_{c}(z) = \sum_{i \in \mathbb{Z}^{d}} c(i) z^{i}$$

In addition, if  ${\mathcal A}$  is a d-dimensional linear CA with

$$f(q_1,\ldots,q_m)=\sum_{i=1}^m a_i q_i$$

we may identify it with the Laurent polynomial in d variables

$$p_{\mathcal{A}}(z) = \sum_{i=1}^{m} a_i z^{-n_i}$$

Observe the use of the inverse neighborhood.

#### Algebraic operations with linear CA

If c is a d-dimensional configuration and  $\mathcal{A}$  is a d-dimensional linear CA, then

$$\mathcal{L}_{F_{\mathcal{A}}(c)}(z) = p_{\mathcal{A}}(z) \cdot \mathcal{L}_{c}(z)$$

where the product on the right-hand side is the convolution

$$[z^{i}](\mathcal{L}_{1} \cdot \mathcal{L}_{2})(z) = \sum_{j \in \mathbb{Z}^{d}} ([z^{i+j}]\mathcal{L}_{1}(z)) \cdot ([z^{-j}]\mathcal{L}_{2}(z)) \quad \forall i \in \mathbb{Z}^{d}$$

which is well defined if either  $\mathcal{L}_1$  or  $\mathcal{L}_2$  is a Laurent polynomial.

As a consequence,

any two d-dimensional linear CA commute

# Reversibility of linear CA

Let  $\mathcal{A} = \langle R, \mathcal{N}, f \rangle$  be a linear CA. The following are equivalent:

- $\mathcal{A}$  is injective—eqv., reversible.
- $p_{\mathcal{A}}(z)$  has a multiplicative inverse as a Laurent polynomial. In this case,  $\mathcal{A}^{-1}$  is linear and  $p_{\mathcal{A}^{-1}}(z) = (p_{\mathcal{A}})^{-1}(z)$ .
- Sato, 1993: Every maximal ideal of R contains all the coefficients of *p*<sub>A</sub>(z) except exactly one.
- For every a ∈ R \ {0} there exists b ∈ R such that a ⋅ b ⋅ p<sub>A</sub>(z) is a monomial.

As a consequence:

#### reversibility of linear CA is decidable

If  $R = \mathbb{Z}/n\mathbb{Z}$ , then the above are equivalent to:

• Ito, Osatu and Nasu, 1983: Every prime factor of *n* divides every coefficient of  $p_A(z)$  except exactly one.



(日) (同) (三) (三)

# Surjectivity of linear CA

Let  $\mathcal{A} = \langle R, \mathcal{N}, f \rangle$  be a linear CA. The following are equivalent:

- $\mathcal{A}$  is surjective.
- $p_{\mathcal{A}}(z)$  is not a zero divisor as a Laurent polynomial.
- Sato, 1993: No maximal ideal of R contains all the coefficients of  $p_A(z)$ .
- $a \cdot p_{\mathcal{A}}(z) \neq 0$  for every  $a \in R \setminus 0$ .

As a consequence:

#### surjectivity of linear CA is decidable

If  $R = \mathbb{Z}/n\mathbb{Z}$  and  $U = \{i \in \mathbb{Z}^d \mid [z^i]p_A(z) \neq 0\} = \{i_1, \ldots, i_r\}$ , then the above are equivalent to:

• Ito, Osatu and Nasu, 1983:  $gcd\left(n, [z^{i_1}]p_{\mathcal{A}}(z), \ldots, [z^{i_r}]p_{\mathcal{A}}(z)\right) = 1.$ 

- 3

# Linear CA on finite support

Suppose the cellular space has N cells, displaced on a circle.

- This is like saying that the cellular space is not  $\mathbb{Z}$ , but  $\mathbb{Z}/N\mathbb{Z}$ .
- Equivalently, the configurations we consider have period N.
- ullet This, in turn, means that our  $c\in\mathcal{C}$  satisfy

$$\mathcal{L}_{c}(z) = \sum_{i \in \mathbb{Z}} c(i) z^{i}$$
  
=  $\sum_{i \in \mathbb{Z}} c(i \mod N) z^{i}$   
=  $\left(\sum_{k=0}^{N-1} c(k) z^{k}\right) \cdot \left(\sum_{i \in \mathbb{Z}} z^{Ni}\right)$ 

We can still apply the theory seen before by working modulo

$$z^{N} - 1 = (z - 1)(1 + z + \ldots + z^{N-1})$$



# Wolfram's elementary CA

For d = 1 and  $\mathcal{N} = \{-1, 0, +1\}$  we can enumerate the local update rules as follows:

- Interpret each binary string *abc* as the corresponding number  $4 \cdot a + 2 \cdot b + c$ .
- Suppose  $f(i) = b_i$  for  $i = 0, \ldots, 7$
- Then the rule number of f is

$$n=\sum_{i=0}^{7}b_i\cdot 2^i$$

3



#### Rule 90

As 90 = 64 + 16 + 8 + 2, the look-up table of rule 90 is:

| а               | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
|-----------------|---|---|---|---|---|---|---|---|
| b               | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| С               | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| $f_{90}(a,b,c)$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |

We observe that this has the algebraic expression:

$$f_{90}(a,b,c) = a \operatorname{xor} c = a + c - 2ac$$

Rule 90 is thus a linear CA, whose Laurent polynomial is

$$p_{90}(z) = z + z^{-1}$$

#### Preimages

Suppose *c* has a preimage *e*:

- = 10100101000111 е
- = 10011000101100 С

We may always get a new preimage by flipping each bit of e:

- ē = 01011010111000
- 10011000101100 С =

- 3

#### More preimages

Suppose *c* has a preimage *e*:

- e = 10100101000111
- c = 10011000101100

If the number of sites is even, then we may get two more new preimages, by flipping either the even-indexed sites of *e*, or the odd-indexed ones:

- $e_E = 00001111101101$
- $e_O = 11110000010010$ 
  - c = 10011000101100

3

#### No more preimages!

#### Theorem (Martin, Odlyzko and Wolfram, 1984)

- Every configuration with an odd number of sites taking value 1 is a garden of Eden.
- If N is odd, then  $2^{N-1}$  configurations are not gardens of Eden.
- If N is even, then  $2^{N-2}$  configurations are not gardens of Eden.

Intuition: Each value is used twice when computing the image.

As a corollary:

- For *N* odd, each reachable configuration has exactly two preimages.
- For *N* even, each reachable configuration has exactly four preimages.

# Supporting intuition with theory

Suppose *c* has a predecessor *e*.

- Then  $\mathcal{L}_{c}(z) = (z^{2}+1)B(z) + (z^{N}-1)R(z).$
- Then  $\mathcal{L}_{c}(1) = 0$ , *i.e.*,  $\sum_{x=0}^{N-1} c(x) = 0 \mod 2$ .
- This is the same as saying that  $\mathcal{L}_c(z) = (z+1)D(z)$ . If N is odd:
  - $(z+z^{-1})(z^2+z^4+\ldots+z^{N-1})=z+1.$

• Then e with  $\mathcal{L}_e(z) = (z^2 + z^4 + \ldots + z^{N-1})D(z)$  is a preimage for c. If N is even:

• By applying the Frobenius automorphism in characteristic 2,  $z^N - 1 = (z^{N/2} - 1)^2$ , thus  $z^N - 1 = (z^2 + 1)E(z)$ .

• Consequently,  $\mathcal{L}_c = (z^2 + 1)S(z)$  for some S(z) of degree < N - 2.

• There are exactly  $2^{N-2}$  polynomials of degree < N-2 over  $\{0, 1\}$ .

イロト 不得 とうせい かほとう ほ

#### The shape of the orbits

For *N* odd:

- Orbits are cycles, with single edges reaching each point of the cycle.
- Each such edge can be the root of a binary tree.

For *N* even:

- Orbits are cycles, with three edges reaching each point of the cycle.
- Each such edge can be the root of a quaternary tree.

# The size of the trees

#### Theorem (Martin, Odlyzko and Wolfram, 1984)

- For given *N*, all such trees are **equal**.
- If N is odd, then the height of the trees is 1.
   That is: orbits are cycles, with single edges connected to each point.
- If N is even, then the height of the trees is D/2, where D is the highest power of 2 that divides N.

#### ۲

In particular, if N is even, then:

- Exactly  $2^{N-2t}$  configurations are reachable at time  $t = 1, \dots, D/2$ .
- Exactly  $2^{N-D}$  configurations are reachable at arbitrary time  $t \ge D/2$ .

- 3

#### The size of the cycles

#### Theorem (Martin, Odlyzko and Wolfram, 1984)

Let  $\Pi_N$  be the length of the orbit starting from the configuration

$$c_1 = \lambda(x : \mathbb{Z}/N\mathbb{Z}) \cdot [x = 0]$$

- Each length of a cycle is a factor of  $\Pi_N$ .
- If N is a power of 2 then  $\Pi_N = 1$ .
- If  $N = 2^k m$  is even, but not a power of 2, then  $\Pi_N = 2\Pi_{N/2}$ .
- If N is odd, then ∏<sub>N</sub> is a factor of 2<sup>j</sup> − 1, where j ≥ 1 is the smallest integer such that 2<sup>j</sup> is either +1 or −1 modulo N.

- 3

# Shape of the orbits for N = 17



Shape of the orbits for N = 12



#### Conclusions

- Linear cellular automata can be studied with the tools of algebra.
- Linearity makes easier some things that are, in general, very difficult.



# Thank you for attention!

Any questions?



S. Capobianco (IoC-TUT)

Linear CA (esp. rule 90)

- ₹ ₹ ► September 25, 2014 25 / 25