On linear cellular automata (with special focus on rule 90)

Silvio Capobianco
Institute of Cybernetics at TUT

September 25, 2014

Introduction

- Cellular automata (CA) are models of synchronous parallel computation, where the next state of a cell depends on the current state of finitely many neighbors.
- In a linear CA, the set of states is a commutative ring, and the local update rule is linear in its arguments.
An example of such is rule 90 (exclusive OR of the two nearest neighbors).
- We will discuss the algebraic theory of linear cellular automata.
- We will then discuss the results by Martin, Odlyzko and Wolfram about the behavior of rule 90 on finitely many cells.

Cellular automata

A d-dimensional cellular automaton (CA) is a triple $\mathcal{A}=\langle Q, \mathcal{N}, f\rangle$ where:

- Q is a finite set of states.
- $\mathcal{N}=\left\{n_{1}, \ldots, n_{m}\right\} \subseteq \mathbb{Z}^{d}$ is a finite neighborhood.
- $f: Q^{m} \rightarrow Q$ is a finitary local update rule.

Call $\mathcal{C}=\left\{c: \mathbb{Z}^{d} \rightarrow Q\right\}=\mathcal{C}(d, Q)$.
The local update rule induces a global transition function $F: \mathcal{C} \rightarrow \mathcal{C}$ by

$$
F_{\mathcal{A}}(c)(x)=f\left(c\left(x+n_{1}\right), \ldots, c\left(x+n_{m}\right)\right)
$$

Linearity

Suppose $Q=R$ is a commutative ring with identity.

It is then possible to have local update rules of the form

$$
f\left(q_{1}, \ldots, q_{m}\right)=\sum_{i=1}^{m} a_{i} q_{i}
$$

where $a_{1}, \ldots, a_{m} \in R$.

We then say that the CA is linear.

More algebra

If $Q=R$ is a commutative ring with identity, then \mathcal{C} is an R-module:

- $c_{1}+c_{2}=\lambda\left(x: \mathbb{Z}^{d}\right) \cdot c_{1}(x)+c_{2}(x)$ makes \mathcal{C} an abelian group.
- $a \cdot c=\lambda\left(x: \mathbb{Z}^{d}\right) \cdot a \cdot c(x)$ satisfies:

$$
\begin{aligned}
a \cdot\left(c_{1}+c_{2}\right) & =a \cdot c_{1}+a \cdot c_{2} \\
\left(a_{1}+a_{2}\right) \cdot c & =a_{1} \cdot c+a_{2} \cdot c \\
\left(a_{1} \cdot a_{2}\right) \cdot c & =a_{1} \cdot\left(a_{2} \cdot c\right) \\
1 \cdot c & =c
\end{aligned}
$$

The superposition principle

A cellular automaton is linear if and only if

$$
F_{\mathcal{A}}(r \cdot c+s \cdot e)=r \cdot F_{\mathcal{A}}(c)+s \cdot F_{\mathcal{A}}(e)
$$

for every $r, s \in R$ and $c, e \in \mathcal{C}$.
In other words:

> a cellular automaton is locally linear if and only if it is globally linear

As a consequence:
the behavior of a linear CA is completely determined by its behavior on a single 1 in a sea of zeros

Laurent series

A Laurent series in d variables is an expression of the form

$$
\begin{aligned}
\mathcal{L}\left(z_{1}, \ldots, z_{d}\right) & =\sum_{i_{1}, \ldots, i_{d} \in \mathbb{Z}} a_{i_{1}, \ldots, i_{d}} z_{1}^{i_{1}} \cdots z_{d}^{i_{d}} \\
& =\sum_{i \in \mathbb{Z}^{d}} a_{i} z^{i}
\end{aligned}
$$

where, in the last expression, $i=\left(i_{1}, \ldots, i_{d}\right)$ is used as a multiindex. We indicate as $\left[z^{i}\right] \mathcal{L}(z)$ the coefficient a_{i}.

A Laurent polynomial is a Laurent series where the a_{i} 's are all zero except for finitely many $i \in \mathbb{Z}^{d}$.

Laurent series for linear CA

We may identify the d-dimensional configuration c with the Laurent series in d variables

$$
\mathcal{L}_{c}(z)=\sum_{i \in \mathbb{Z}^{d}} c(i) z^{i}
$$

In addition, if \mathcal{A} is a d-dimensional linear CA with

$$
f\left(q_{1}, \ldots, q_{m}\right)=\sum_{i=1}^{m} a_{i} q_{i}
$$

we may identify it with the Laurent polynomial in d variables

$$
p_{\mathcal{A}}(z)=\sum_{i=1}^{m} a_{i} z^{-n_{i}}
$$

Observe the use of the inverse neighborhood.

Algebraic operations with linear CA

If c is a d-dimensional configuration and \mathcal{A} is a d-dimensional linear CA, then

$$
\mathcal{L}_{F_{\mathcal{A}}(c)}(z)=p_{\mathcal{A}}(z) \cdot \mathcal{L}_{c}(z)
$$

where the product on the right-hand side is the convolution

$$
\left[z^{i}\right]\left(\mathcal{L}_{1} \cdot \mathcal{L}_{2}\right)(z)=\sum_{j \in \mathbb{Z}^{d}}\left(\left[z^{i+j}\right] \mathcal{L}_{1}(z)\right) \cdot\left(\left[z^{-j}\right] \mathcal{L}_{2}(z)\right) \forall i \in \mathbb{Z}^{d}
$$

which is well defined if either \mathcal{L}_{1} or \mathcal{L}_{2} is a Laurent polynomial.

As a consequence,

$$
\text { any two } d \text {-dimensional linear CA commute }
$$

Reversibility of linear CA

Let $\mathcal{A}=\langle R, \mathcal{N}, f\rangle$ be a linear CA. The following are equivalent:

- \mathcal{A} is injective-eqv., reversible.
- $p_{\mathcal{A}}(z)$ has a multiplicative inverse as a Laurent polynomial. In this case, \mathcal{A}^{-1} is linear and $p_{\mathcal{A}^{-1}}(z)=\left(p_{\mathcal{A}}\right)^{-1}(z)$.
- Sato, 1993: Every maximal ideal of R contains all the coefficients of $p_{\mathcal{A}}(z)$ except exactly one.
- For every $a \in R \backslash\{0\}$ there exists $b \in R$ such that $a \cdot b \cdot p_{\mathcal{A}}(z)$ is a monomial.

As a consequence:

reversibility of linear CA is decidable

If $R=\mathbb{Z} / n \mathbb{Z}$, then the above are equivalent to:

- Ito, Osatu and Nasu, 1983: Every prime factor of n divides every coefficient of $p_{\mathcal{A}}(z)$ except exactly one.

Surjectivity of linear CA

Let $\mathcal{A}=\langle R, \mathcal{N}, f\rangle$ be a linear CA. The following are equivalent:

- \mathcal{A} is surjective.
- $p_{\mathcal{A}}(z)$ is not a zero divisor as a Laurent polynomial.
- Sato, 1993: No maximal ideal of R contains all the coefficients of $p_{\mathcal{A}}(z)$.
- $a \cdot p_{\mathcal{A}}(z) \neq 0$ for every $a \in R \backslash 0$.

As a consequence:

surjectivity of linear CA is decidable

If $R=\mathbb{Z} / n \mathbb{Z}$ and $U=\left\{i \in \mathbb{Z}^{d} \mid\left[z^{i}\right] p_{\mathcal{A}}(z) \neq 0\right\}=\left\{i_{1}, \ldots, i_{r}\right\}$, then the above are equivalent to:

- Ito, Osatu and Nasu, 1983: $\operatorname{gcd}\left(n,\left[z^{i_{1}}\right] p_{\mathcal{A}}(z), \ldots,\left[z^{i_{r}}\right] p_{\mathcal{A}}(z)\right)=1$.

Linear CA on finite support

Suppose the cellular space has N cells, displaced on a circle.

- This is like saying that the cellular space is not \mathbb{Z}, but $\mathbb{Z} / N \mathbb{Z}$.
- Equivalently, the configurations we consider have period N.
- This, in turn, means that our $c \in \mathcal{C}$ satisfy

$$
\begin{aligned}
\mathcal{L}_{c}(z) & =\sum_{i \in \mathbb{Z}} c(i) z^{i} \\
& =\sum_{i \in \mathbb{Z}} c(i \bmod N) z^{i} \\
& =\left(\sum_{k=0}^{N-1} c(k) z^{k}\right) \cdot\left(\sum_{i \in \mathbb{Z}} z^{N i}\right)
\end{aligned}
$$

We can still apply the theory seen before by working modulo

$$
z^{N}-1=(z-1)\left(1+z+\ldots+z^{N-1}\right)
$$

Wolfram's elementary CA

For $d=1$ and $\mathcal{N}=\{-1,0,+1\}$ we can enumerate the local update rules as follows:

- Interpret each binary string $a b c$ as the corresponding number $4 \cdot a+2 \cdot b+c$.
- Suppose $f(i)=b_{i}$ for $i=0, \ldots, 7$
- Then the rule number of f is

$$
n=\sum_{i=0}^{7} b_{i} \cdot 2^{i}
$$

Rule 90

As $90=64+16+8+2$, the look-up table of rule 90 is:

a	1	1	1	1	0	0	0	0
b	1	1	0	0	1	1	0	0
c	1	0	1	0	1	0	1	0
$f_{90}(a, b, c)$	0	1	0	1	1	0	1	0

We observe that this has the algebraic expression:

$$
f_{90}(a, b, c)=a \operatorname{xor} c=a+c-2 a c
$$

Rule 90 is thus a linear CA, whose Laurent polynomial is

$$
p_{90}(z)=z+z^{-1}
$$

Preimages

Suppose c has a preimage e :

$$
\begin{aligned}
& e=10100101000111 \\
& c=10011000101100
\end{aligned}
$$

We may always get a new preimage by flipping each bit of e :

$$
\begin{aligned}
& \bar{e}=01011010111000 \\
& c=10011000101100
\end{aligned}
$$

More preimages

Suppose c has a preimage e :

$$
\begin{aligned}
& e=10100101000111 \\
& c=10011000101100
\end{aligned}
$$

If the number of sites is even, then we may get two more new preimages, by flipping either the even-indexed sites of e, or the odd-indexed ones:

$$
\begin{aligned}
e_{E} & =00001111101101 \\
e_{O} & =11110000010010 \\
c & =10011000101100
\end{aligned}
$$

No more preimages!

Theorem (Martin, Odlyzko and Wolfram, 1984)

- Every configuration with an odd number of sites taking value 1 is a garden of Eden.
- If N is odd, then 2^{N-1} configurations are not gardens of Eden.
- If N is even, then 2^{N-2} configurations are not gardens of Eden.

Intuition: Each value is used twice when computing the image.

As a corollary:

- For N odd, each reachable configuration has exactly two preimages.
- For N even, each reachable configuration has exactly four preimages.

Supporting intuition with theory

Suppose c has a predecessor e.

- Then $\mathcal{L}_{c}(z)=\left(z^{2}+1\right) B(z)+\left(z^{N}-1\right) R(z)$.
- Then $\mathcal{L}_{c}(1)=0$, i.e., $\sum_{x=0}^{N-1} c(x)=0 \bmod 2$.
- This is the same as saying that $\mathcal{L}_{c}(z)=(z+1) D(z)$.

If N is odd:

- $\left(z+z^{-1}\right)\left(z^{2}+z^{4}+\ldots+z^{N-1}\right)=z+1$.
- Then e with $\mathcal{L}_{e}(z)=\left(z^{2}+z^{4}+\ldots+z^{N-1}\right) D(z)$ is a preimage for c. If N is even:
- By applying the Frobenius automorphism in characteristic 2, $z^{N}-1=\left(z^{N / 2}-1\right)^{2}$, thus $z^{N}-1=\left(z^{2}+1\right) E(z)$.
- Consequently, $\mathcal{L}_{c}=\left(z^{2}+1\right) S(z)$ for some $S(z)$ of degree $<N-2$.
- There are exactly 2^{N-2} polynomials of degree $<N-2$ over $\{0,1\}$.

The shape of the orbits

For N odd:

- Orbits are cycles, with single edges reaching each point of the cycle.
- Each such edge can be the root of a binary tree.

For N even:

- Orbits are cycles, with three edges reaching each point of the cycle.
- Each such edge can be the root of a quaternary tree.

The size of the trees

Theorem (Martin, Odlyzko and Wolfram, 1984)

- For given N, all such trees are equal.
- If N is odd, then the height of the trees is 1 .

That is: orbits are cycles, with single edges connected to each point.

- If N is even, then the height of the trees is $D / 2$, where D is the highest power of 2 that divides N.

In particular, if N is even, then:

- Exactly $2^{N-2 t}$ configurations are reachable at time $t=1, \ldots, D / 2$.
- Exactly 2^{N-D} configurations are reachable at arbitrary time $t \geq D / 2$.

The size of the cycles

Theorem (Martin, Odlyzko and Wolfram, 1984)
Let Π_{N} be the length of the orbit starting from the configuration

$$
c_{1}=\lambda(x: \mathbb{Z} / N \mathbb{Z}) \cdot[x=0]
$$

- Each length of a cycle is a factor of Π_{N}.
- If N is a power of 2 then $\Pi_{N}=1$.
- If $N=2^{k} m$ is even, but not a power of 2 , then $\Pi_{N}=2 \Pi_{N / 2}$.
- If N is odd, then Π_{N} is a factor of $2^{j}-1$, where $j \geq 1$ is the smallest integer such that 2^{j} is either +1 or -1 modulo N.

Shape of the orbits for $N=17$

π

Shape of the orbits for $N=12$

Conclusions

- Linear cellular automata can be studied with the tools of algebra.
- Linearity makes easier some things that are, in general, very difficult.

Thank you for attention!

Any questions?

