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Introduction

o Cellular automata (CA) are models of synchronous parallel
computation, where the next state of a cell depends on the current
state of finitely many neighbors.

@ In a linear CA, the set of states is a commutative ring, and the local
update rule is linear in its arguments.

An example of such is rule 90 (exclusive OR of the two nearest
neighbors).

@ We will discuss the algebraic theory of linear cellular automata.

@ We will then discuss the results by Martin, Odlyzko and Wolfram
about the behavior of rule 90 on finitely many cells.

i
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Cellular automata

A d-dimensional cellular automaton (CA) is a triple A = (Q, N, f) where:
@ @ is a finite set of states.
o N ={ny,...,nn} C Z% is a finite neighborhood.
o f: Q™ — Q@ is a finitary local update rule.

CalCc={c:79 — Q}=C(d, Q).

The local update rule induces a global transition function F :C — C by

Fale)(x)=Ff(cx+n1),...,c(x+nm))

i
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Linearity

Suppose @ = R is a commutative ring with identity.

It is then possible to have local update rules of the form

m
f(qlw")qm) = Zaiqi
i=1

where a1,...,am € R.

We then say that the CA is linear.
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More algebra

If @ = R is a commutative ring with identity, then C is an R-module:
o c1+ o =Ax:Z9.ci(x) + c(x) makes C an abelian group.

@ a-c=A(x:2Z%.a- c(x) satisfies:

a-(a+o) = acgt+a-o

(ai+a)-c = aj-c+ar-c

(a1-a2)-c = ar-(a2-c)
l-c = ¢
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The superposition principle

A cellular automaton is linear if and only if
Fa(r-c+s-e)=r-Falc)+s-Fale)

for every r,s € R and ¢c,e € C.

In other words:

a cellular automaton is locally linear
if and only if it is globally linear

As a consequence:

the behavior of a linear CA is completely determined
by its behavior on a single 1 in a sea of zeros
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Laurent series

A Laurent series in d variables is an expression of the form

_ | iq
L(z1y...y24) = E Ayia?l "

where, in the last expression, i = (i1,..., i) is used as a multiindex.
We indicate as [z']£(z) the coefficient a;.

A Laurent polynomial is a Laurent series where the a;'s are all zero except
for finitely many i € Z9.

i
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Laurent series for linear CA

We may identify the d-dimensional configuration ¢ with the Laurent series

in d variables '
Lo(z2)=) cli)?

iezd

In addition, if A is a d-dimensional linear CA with

m
f(ql) .. ->qm) = Z a;q;
i=1

we may identify it with the Laurent polynomial in d variables

m
palz) =) aiz ™
i=1
Observe the use of the inverse neighborhood.
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Algebraic operations with linear CA

If c is a d-dimensional configuration and A is a d-dimensional linear CA,
then

Lr,c)(2) =palz) - Lc(2)

where the product on the right-hand side is the convolution

(L1 - L2)(2) = ) _([Z"Y1L1(2)) - ((27]La(2)) Vi€ Zd

jEzd

which is well defined if either £1 or L5 is a Laurent polynomial.

As a consequence,

any two d-dimensional linear CA commute
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Reversibility of linear CA

Let A= (R, N, f) be a linear CA. The following are equivalent:
e A is injective—eqv., reversible.

@ p4(z) has a multiplicative inverse as a Laurent polynomial.
In this case, A1 is linear and p 4 1(z) = (pa)~1(2).

@ Sato, 1993: Every maximal ideal of R contains all the coefficients of
pa(z) except exactly one.

@ For every a € R\ {0} there exists b € R such that a- b- py(z) is a
monomial.

As a consequence:

reversibility of linear CA is decidable

If R =7/nZ, then the above are equivalent to:

@ lto, Osatu and Nasu, 1983: Every prime factor of n divides every
coefficient of p4(z) except exactly one. %
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Surjectivity of linear CA

Let A = (R, N, f) be a linear CA. The following are equivalent:
e A is surjective.
@ p4(z) is not a zero divisor as a Laurent polynomial.
@ Sato, 1993: No maximal ideal of R contains all the coefficients of
pa(z).
@ a-py(z) #0 for every a € R\ 0.
As a consequence:

surjectivity of linear CA is decidable

If R=7/nZ and U ={i € Z9 | [z'lpa(z) # 0} = {i1, ..., i}, then the
above are equivalent to:

@ Ito, Osatu and Nasu, 1983: gcd (n, [zil]pA(z),...,[zi’]pA(z)) =1.

i
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Linear CA on finite support

Suppose the cellular space has N cells, displaced on a circle.
@ This is like saying that the cellular space is not Z, but Z/NZ.
@ Equivalently, the configurations we consider have period N.

@ This, in turn, means that our ¢ € C satisfy

L(z) = ) cli)

IEZ

= Zc(i mod N) z'

i€Z

- (5] (27)

We can still apply the theory seen before by working modulo

N 1=z-D1+z+...+2" %
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Wolfram's elementary CA

For d =1 and N ={—1,0,+1} we can enumerate the local update rules
as follows:

@ Interpret each binary string abc as the corresponding number
4.a+2-b+c.

@ Suppose f(i) = b; for i =0,...,7
@ Then the rule number of f is

7
n:Zb,--z"
i=0
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Rule 90

As 90 = 64 + 16 + 8 + 2, the look-up table of rule 90 is:

a 1[1]1]1]ofo0f0]0O
1/1/ofo[1]1]0]0
c 1joj1]of1]of1]0

| foo(a,b,c) [O[1]0|1|1]0[1]0]

We observe that this has the algebraic expression:
foo(a, b,c) = axorc = a+ ¢ — 2ac
Rule 90 is thus a linear CA, whose Laurent polynomial is

poo(z) =z + 2"
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Preimages

Suppose ¢ has a preimage e:

e = 10100101000111
c = 10011000101100

We may always get a new preimage by flipping each bit of e:

01011010111000
c = 10011000101100

o
Il
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More preimages

Suppose ¢ has a preimage e:

e = 10100101000111
c = 10011000101100

If the number of sites is even, then we may get two more new preimages,
by flipping either the even-indexed sites of e, or the odd-indexed ones:

ee = 00001111101101
eo = 11110000010010
c = 10011000101100

i
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No more preimages!

Theorem (Martin, Odlyzko and Wolfram, 1984)

@ Every configuration with an odd number of sites taking value 1 is a
garden of Eden.

o If N is odd, then 2N~ configurations are not gardens of Eden.

o If N is even, then 2V=2 configurations are not gardens of Eden.

Intuition: Each value is used twice when computing the image.

As a corollary:
@ For N odd, each reachable configuration has exactly two preimages.

@ For N even, each reachable configuration has exactly four preimages.

i
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Supporting intuition with theory

Suppose ¢ has a predecessor e.

o Then L (z) = (22 +1)B(z) + (zV — 1)R(=2).

@ Then L.(1) =0, /e, Zxoc )=0 mod 2.

@ This is the same as saying that L.(z) = (z+ 1)D(z).
If N is odd:

o (z+z YA+ +. ...+ =z4+1.

@ Then e with Lo(z) = (22 +2* + ...+ zV"1)D(z) is a preimage for c.
If N is even:

o By applying the Frobenius automorphism in characteristic 2,
N_1=(zN2-1)2 thus zN —1 = (22 + 1)E(=2).

e Consequently, L. = (2% +1)S(z) for some S(z) of degree < N — 2.
@ There are exactly 2V=2 polynomials of degree < N — 2 over {0,1}.
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The shape of the orbits

For N odd:
@ Orbits are cycles, with single edges reaching each point of the cycle.
@ Each such edge can be the root of a binary tree.

For N even:
@ Orbits are cycles, with three edges reaching each point of the cycle.

@ Each such edge can be the root of a quaternary tree.

i
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The size of the trees

Theorem (Martin, Odlyzko and Wolfram, 1984)
@ For given N, all such trees are equal.
o If N is odd, then the height of the trees is 1.
That is: orbits are cycles, with single edges connected to each point.

o If N is even, then the height of the trees is D/2, where D is the
highest power of 2 that divides .

In particular, if N is even, then:

e Exactly 2V—2t configurations are reachable at time t =1,...,D/2.

e Exactly 2V~=P configurations are reachable at arbitrary time t > D/2.
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The size of the cycles

Theorem (Martin, Odlyzko and Wolfram, 1984)
Let TTyy be the length of the orbit starting from the configuration

c1 =Ax:Z/NZ).[x =0]

@ Each length of a cycle is a factor of TTy.
o If N is a power of 2 then TTy = 1.
o If N=2Kmis even, but not a power of 2, then TTy = 21y /2.

e If N is odd, then TTy is a factor of 2 — 1, where j > 1 is the smallest
integer such that 2/ is either +1 or —1 modulo N.

i

S. Capobianco (1oC-TUT) Linear CA (esp. rule 90) September 25, 2014 21 /25



Shape of the orbits for N = 17

N

e

i
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Shape of the orbits for N = 12

i
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Conclusions

@ Linear cellular automata can be studied with the tools of algebra.

@ Linearity makes easier some things that are, in general, very difficult.

i
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Thank you for attention!

Any questions?

S. Capobianco (1oC-TUT)



