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Motivation

• Partial knowledge specification

• Probability conditional on list of frequency castings

• Bayesian epistemology vs. classical, frequentist extensio of probability theory

P(A |B1 ≡ b1, . . . , Bn ≡ bn) (1)

P(A |B ≡ b) (2)
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Many-Valued Logics

Product logic
Π

max{A,B}min{1,A+B}max{A,B}≥ max {A,B}A ∨ B

min{1,1-A+B}

1-A

1-min{1,1-A-B}

Lukasiewicz
logics Lk

1, if A≤B
B, if A>B

≤ min {1-A,B}A → B

1, A=0
A-(1/(m-1)), A>0

1, if A=0
0, if A>0

1-A¬ A

min{A,B}≤ min {A,B}A ∧ B

Post logics
Pm

Gödel logics GkLδ
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Jeffrey Conditionalization

Conditional Proabability

P(A |B) =
P(AB)

P(B)
(3)

Jeffrey Conditionalization – Probability Kynematics

P(A |B ≡ b) = b · P(A |B) + (1− b) · P(A |B) (4)

Conditional Proabality as Jeffrey Conditionalization

P(A |B) = P(A |B ≡ 100%) (5)

P(A |B) = P(A |B ≡ 0%) (6)
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Frequentist Semantics of Jeffrey Conditionalization

We define:

Pn(A |B ≡ b) =DEF E(A n |B n = b) (7)

We have:

Pn(A |B ≡ b) = P(A |B n = b) (8)

Lemma 1 ( Bounded F.P. Conditionalization in the Basic Jeffrey Case)

Let b = x/y so that x/y is the irreducable fraction of b. For all n = m · y with m ∈ N we
have the following:

Pn(A |B ≡ b) = b · P(A |B) + (1− b) · P(A |B) (9)

In particular:

P1(A |B ≡ 100%) = P(A |B 1 = 1) = P(A |B) (10)
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Frequentist Semantics of F.P. Conditionalization

Given b = b1, . . . , bn so that y is the least common denominator of b. For all n = m · y
with m ∈ N we define bounded F.P. conditionalization:

Pn(A |B1 ≡ b1, . . . , Bn ≡ bn) =DEF E(A n |B1
n = b1 . . . , Bm n) (11)

We have:

Pn(A |B1 ≡ b1, . . . , Bn ≡ bn) =DEF P(A|B1
n = b1 . . . , Bm n) (12)

Pn(A |B ≡ b) =DEF P(A|B n = b) (13)

We define F.P. conditionalization:

P(A | B ≡ b) = lim
n′→∞

Pn(A | B ≡ b) where n = n′ · lcd(b) (14)
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Proof of Lemma 1

Pn(A |B ≡ b) (15)

P(A |B n = b) (16)

P(A,B n = b)

P(B n = b)
(17)

P(AB,B n = b)

P(B n = b)
+

P(AB,B n = b)

P(B n = b)
(18)

We consider the first summand only:

P(AB,B n = b)

P(B n = b)
(19)
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Proof of Lemma 1 – cont. (ii)

P(A1B1, B1 + · · ·+Bn = b)

P(B n=b)
(20)

P(A1B1, B2 + · · ·+Bn = bn−1
n−1 )

P(B n=b)
(21)

P(A1B1) · P(B2 + · · ·+Bn = bn−1
n−1 )

P(B n=b)
(22)

Now, due to the fact that (Bi)i∈N is a sequence of i.i.d random variables, we have the
following:

P(B2 + · · ·+Bn =
bn− 1

n− 1
) = P(B1 + · · ·+Bn−1) =

bn− 1

n− 1
(23)

Due to Eqn. (23) we can rewrite Eqn. (22), just for convenience and better readability,
as follows:

P(AB) · P(B n−1 = bn−1
n−1 )

P(B n = b)
(24)

7



Proof of Lemma 1 – cont. (iii)

Now, we have that P(AB) equals P(A|B) · P(B) and therefore that Eqn. (24) equals:

P(A |B) · P(B) · P(B n−1 = bn−1
n−1 )

P(B n = b)
(25)

As the next crucial step, we resolve P(B n−1 = bn−1
n−1 ) and P(B n = b) combinatorically.

We have that Eqn. (25) equals:

P(A |B) · P(B) ·
(
n−1
bn−1

)
· P(B)bn−1 · P(B)n−bn

(
n
bn

)
· P(B)bn · P(B)n−bn

(26)

As a next step, we can cancel all occurrences of P(B) and P(B) from Eqn. (26) which
yields the following:

P(A |B) · (n−1)!

(bn−1)!(n−1−(bn−1))!

/
n!

(bn)!(n−bn)!
(27)

After resolving (n−1)! as n!/n, resolving (bn−1)! to (bn)!/(bn) and some further trivial
transformations we have that Eqn. (27) equals:

P(A |B) · n! bn

n (bn)!(n−bn)!
· (bn)!(n−bn)!

n!
(28)
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Proof of Lemma 1 – cont. (iv)

Now, after a series of further cancelations we have that Eqn. (28) equals the following:

b · Pn(A |B) (29)

Similarly (omitted), it can be shown that the second summand in Eqn. (18) equals:

(1− b) · Pn(A |B) (30)

�
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Decomposition of F.P. Conditionalization

Lemma 2 (Decomposition of Bounded F.P. Conditionalization)

Given a bounded F.P. conditionalization Pn(A |B ≡ b) for some bound n and a vector
of events B = (Bi){1,...,m} for the index set I = {1, . . . ,m}, we have the following:

Pn(A |B ≡ b) =
∑

(
ζi ∈ {Bi,Bi}

)
i∈I

P( ∩
i∈Iζi) �= 0

(
P(A | ∩

i∈I ζi) · P
n( ∩

i∈Iζi |B ≡ b)
)

(31)

For example, in case of two conditions:

P(A |B ≡ b, C ≡ c) = P(A |BC) · P(BC |B ≡ b, C ≡ c)
+ P(A |BC) · P(BC |B ≡ b, C ≡ c)
+ P(A |BC) · P(BC |B ≡ b, C ≡ c)
+ P(A |BC) · P(BC |B ≡ b, C ≡ c)

(32)
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Computation of F.P. Conditionalization

Definition 3 (Frequency Adoption)

ξ
l,n
J (p) =

⎧⎨
⎩

np−1
n−1 , l ∈ J
np
n−1 , l �∈ J

(33)

Based on the notation for frequency adoption in Def. 3, we can define the computation
of F.P. conjunctions via the following recursive equation:

Pn(B1 ≡ b1 . . . Bm ≡ bm)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 , n = 0
∑

I ′ ⊆ I

�i∈I ′.bi=0

�i∈I ′.bi=1

P
(
∩

i∈I ′
Bi, ∩

i∈I ′
Bi

)
· Pn−1

(
B1≡ξ

1,n
I ′ (b1),..,Bm≡ξ

m,n
I ′ (bm)

)
, n � 1 (34)
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F.P. Conditionalization and Independency

Lemma 4 (Independence of F.P. Conditions)

Given a bounded F.P. conditionalization Pn(A |B ≡ b) for some bound n and a vector of
mutually independent events B = (Bi){1,...,m} for the index set I = {1, . . . ,m}, we have
the following:

Pn(A |B ≡ b) =
∑
I ′⊆I

(
P(A | ∩

i∈I ′
Bi, ∩

i∈I ′
Bi) ·

∏
i∈I ′

bi ·
∏
i∈I ′

(1− bi)
)

(35)

For example, in case of two conditions:

P(A|B ≡ b, C ≡ c) = P(A |BC) · bc
+ P(A |BC) · b(1− c)
+ P(A |BC) · (1− b)c
+ P(A |BC) · (1− b)(1− c)

(36)
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Outlook – Bayesianism and Frequentism

• Jakob Bernoulli

• Bruno de Finetti

• John Maynard Keynes

• Frank P. Ramsey

• Rudolf Carnap

• Dempster-Shafer
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Conclusion

• Partial knowledge specification

• Probability conditional on list of frequency castings

• Bayesian epistemology vs. classical, frequentist extensio of probability theory

• P(A |B1 ≡ b1, . . . , Bn ≡ bn)

• P(A |B ≡ b)

• In its basic case, F.P. conditionalization meets Jeffrey conditionalization

• Computation of F.P. conditionalization

• Independency and F.P. conditionalization

• F.P. conditionalization and Bayesianism vs. frequentism
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Thanks a lot!

dirk.draheim@ttu.ee
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Appendix
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Definition 5 (Independent Random Variables) Given to random variables X : Ω → I

and Y : Ω → I, we say that and X and Y are independent, if the following holds for all
v ∈ I and v′ ∈ I:

P(X = v, Y = v′) = P(X = v) · P(Y = v′) (37)

Definition 6 (Identically Distributed Random Variables) Given to random variables
X : Ω → I and Y : Ω → I, we say that and X and Y are identically distributed, if the
following holds for all v ∈ I:

P(X = v) = P(Y = v) (38)

Definition 7 (Independent, Identically Distributed) Given to random variables
X : Ω → I and Y : Ω → I, we say that and X and Y are independent identically
distributed, abbreviated as i.i.d, if they are both independent and identically distributed.

Definition 8 (Sequence of i.i.d Random Variables) Random variables (Xi)i∈N are
called independent identically distributed, again abbreviated as i.i.d, if they are pairwise
independent and furthermore identically distributed.
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Definition 9 (Matrix of i.i.d Random Variables) Given a list (Xk)k∈R with
R = {1, . . . ,m} of sequences of random variables Xk = (Xki)i∈N so that (Xki) : Ω −→ I,
i.e., random variables that are organized in an R× N-matrix. These random variables
are called independent identically distributed, again abbreviated as i.i.d, if each row Xk
for all k ∈ R is identically distributed and furthermore, they are column-wise mutually
completely independent as defined as follows. Given a designated column number c ∈ N,
numbers 1 � n � m, 1 � n′ � m, a sequence of row indices i1, . . . , in, a sequence of row
indices j1, . . . , jn′, and a sequence of column indices k1, . . . , kn′ so that kq �= c for all
1 � q � n′ we have that the following independency condition holds:

P(Xi1c
,...,Xinc,Xj1k1

,...,Xjn′kn′
) = P(Xi1c

,...,Xinc) · P(Xj1k1
,...,Xjn′kn′

) (39)

A characteristic random variable is a real-valued random variable A : Ω → R that assigns
only zero or one as values, i.e.:(A = 1) ∪ (A = 0) = Ω

A characteristic random variable stands for a Bernoulli experiment. It characterizes an
event. Given an event A ⊆ Ω we define its characteristic random variable A : Ω → [0,1]
as follows:

A(ω) =

⎧⎨
⎩
1 , ω ∈ A

0 , ω �∈ A
(40)



Note, that we overload the name of the event A with the name of its characteristic
random variable, which does not harm, because it is always clear form the context,
whether the event or the random variable is meant. We have that the value one
characterizes the event A, whereas the value zero characterizes its complement Ω\A = A

and, therefore, we have the following:

P(A = 1) = P(A)

P(A = 0) = P(A)

P(A = r) = 0 ,∀r �∈ {0,1}

Definition 10 (Model of the Repetition of an Event) Given a family (Ai)i∈N of
i.i.d characteristic random variables Ai : Ω −→ [0,1]. We say that (Ai)i∈N models the
repeated observation of the event A ⊂ Ω, or just the repetition of A for short, if we
have that A = (A1 = 1).



(X + Y )(ω) = X(ω) + Y (ω) (41)

((X + Y ) = r) = { ω |X(ω) + Y (ω) = r} (42)

P((X + Y ) = r) =
∑

rx+ry=r

(
P(X = rx) + P(Y = ry)

)
(43)

Xn =
n∑

i=1

Xi (44)

(r ·X)(ω) = r ·X(ω) (45)

X n = 1/n ·Xn (46)

X n =
1

n

n∑
i=1

Xi (47)

X∞ = lim
n→∞Xn

X ∞ = lim
n→∞X n (48)
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Lemma 11 (Independency of Sums of Random Variables) Given pairwise indepen-
dent, discrete real-valued random variables A : Ω −→ R, X : Ω −→ R, and Y : Ω −→ R,
we have that independency transports over to the sum X + Y , i.e., for all a ∈ A†(Ω),
and r ∈ (X + Y )†(Ω) we have the following:

P(A = a,X + Y = r) = P(A = a) · P(X + Y = r) (49)

Lemma 12 (Independency of Multiplies of Random Variables) Given independent,
discrete real-valued random variables A : Ω −→ R and X : Ω −→ R as well as a real-
number n ∈ R, we have that independency transports over to the multiply nX, i.e., for
all a ∈ A†(Ω), and r ∈ (nX)†(Ω) we have the following:

P(A = a, nX = r) = P(A = a) · P(nX = r) (50)

Corollary 13 (Independency of n-times Sums and Averages) Given a discrete real-
valued random variable A : Ω −→ R, and a list (Xi)i∈{1,...,n} of discrete real-valued ran-
dom variables Xi : Ω −→ R, so that A and all Xi are all pairwise disjoint. Then, we have
that independency transports over to the n-times sum Xn as well as over to the average
X n, i.e., for all a ∈ A†(Ω), r ∈ (Xn)†(Ω), and s ∈ (X n)†(Ω) we have the following:

P(A = a,Xn = r) = P(A = a) · P(Xn = r) (51)



P(A = a,X n = s) = P(A = a) · P(X n = s) (52)

An(ω) = |{i ∈ {1, . . . , n}|Ai(ω) = 1}| (53)

E(X + Y | C) = E(X|C) + E(X|C) (54)

E(a ·X + b · Y | C) = a · E(X|C) + b · E(X|C) (55)

E(Xn | C) = n · E(X | C) (56)

E(X n | C) = E(X | C) (57)

E(X n | C) = P(X | C) (58)

E(X + Y ) = E(X) + E(X) (59)

E(a ·X + b · Y ) = a · E(X) + b · E(X) (60)

E(Xn) = n · E(X) (61)

E(X n) = E(X) (62)

E(X n) = P(X) (63)



Theorem 14 (Weak Law of Large Numbers) Given a countable series X = (Xi)i∈Ω
of i.i.d real-valued random variables with expectation μ = E(X) = E(Xi), we have that
for all ε ∈ R:

lim
n→∞P(μ−ε < X n < μ+ε) = 1 (64)

Theorem 15 (Strong Law of Large Numbers) Given a countable series (Xi)i∈Ω of
i.i.d real-valued random variables with expectation μ, we have that for all ε ∈ R:

P( lim
n→∞X n = μ) = 1 (65)


