
Towards a linear algebra semantics for columnar
data storage

Institute of Cybernetics

Tallinn — April 12th, 2016

J.N. Oliveira

INESC TEC & University of Minho

Grant FP7-ICT 619606

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Abstract

There has been renewed interest on columnar database systems.

Row-storage abandoned in favor of the 1-attribute / 1-file
scheme.

Traditional vendors of row-store systems (e.g. Oracle, Microsoft)
have added column-oriented features to their product lineups.

Why?

This talk will address the advantage of columnar storage from a
formal semantics point of view.

A columnar semantics for SQL will be sketched based on (typed)
linear algebra.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Abstract

There has been renewed interest on columnar database systems.

Row-storage abandoned in favor of the 1-attribute / 1-file
scheme.

Traditional vendors of row-store systems (e.g. Oracle, Microsoft)
have added column-oriented features to their product lineups.

Why?

This talk will address the advantage of columnar storage from a
formal semantics point of view.

A columnar semantics for SQL will be sketched based on (typed)
linear algebra.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Context

FP7-ICT 619606

About project LeanBigData:

“ (...) queries [identifying]
facts of interest take hours,
days, or weeks, whereas
business processes demand
today shorter cycles.

Project motto: lean big data!

However — what are we actually
leaning?

What is, after all, a query?

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to basics (SQL)

There are jobs:

create table jobs (
j code char (15) not null,
j desc char (50),
j salary decimal (15, 2) not null);

j code j desc j salary

Pr Programmer 1000
SA System Analyst 1100
GL Group Leader 1333

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to basics (SQL)

There are jobs:

create table jobs (
j code char (15) not null,
j desc char (50),
j salary decimal (15, 2) not null);

j code j desc j salary

Pr Programmer 1000
SA System Analyst 1100
GL Group Leader 1333

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to basics

There are employees:

create table empl (
e id integer not null,
e job char (15) not null,
e name char (15),
e branch char (15) not null,
e country char (15) not null);

e id e job e name e branch e country

1 Pr Mary Mobile UK
2 Pr John Web UK
3 GL Charles Mobile UK
4 SA Ana Web PT
5 Pr Manuel Web PT

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to basics

There are employees:

create table empl (
e id integer not null,
e job char (15) not null,
e name char (15),
e branch char (15) not null,
e country char (15) not null);

e id e job e name e branch e country

1 Pr Mary Mobile UK
2 Pr John Web UK
3 GL Charles Mobile UK
4 SA Ana Web PT
5 Pr Manuel Web PT

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Query

Monthly salary total per country / branch:

select e country , e branch, sum (j salary)
from empl , jobs
where j code = e job
group by e country , e branch
order by e country ;

sqlite3:

PT|Web|2100

UK|Mobile|2333

UK|Web|1000

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Query

Impact of

insert into "jobs" values (’SA’, ’System Admin’, 1000);

that is, j code no longer a key.

sqlite3:

PT|Web|3100

UK|Mobile|2333

UK|Web|1000

Fine — so SA is taken as a kind of “multi-job”.

But — where are these quantitative semantics specified?

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Standard semantics

Given in English:

“The result of evaluating a query-specification can be
explained in terms of a multi-step algorithm. The order
of [the 7] steps in this algorithm follows the mandatory
order of the clauses (FROM, WHERE, and so on) of the
SELECT statement”

Cf. pages 71-73 of

X/Open CAE Specification Data Management:
Structured Query Language (SQL) Version 2 March
1996, X/Open Company Limited

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

7 steps

1. For each table-reference that is a joined-table, conceptually join the
tables (...) to form a single table

2. Form a Cartesian product of all the table-references (...)

3. Eliminate all rows that do not satisfy the search-condition in the
WHERE clause.

4. Arrange the resulting rows into groups (...)

• If there is a GROUP BY clause specifying grouping columns,
then form groups so that all rows within each group have equal
values for the grouping columns (...)

5. If there is a HAVING clause, eliminate all groups that do not satisfy
its search-condition (...)

6. Generate result rows based on the result columns specified by the
select-list (...)

7. In the case of SELECT DISTINCT, eliminate duplicate rows from
the result (...)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Background

Join operator — ok, well defined in Codd’s relation algebra.

However,

[...] relational DBMS were never intended to provide
the very powerful functions for data synthesis, analysis
and consolidation that is being defined as
multi-dimensional data analysis.

E.F.Codd 1

[...] expressing roll-up, and cross-tab queries with
conventional SQL is daunting. [...] GROUP BY is an
unusual relational operator [...]

J. Gray et al 2

1Providing OLAP to User-Analysts: An IT Mandate (1998)
2Data Cube: A Relational Aggregation Operator Generalizing Group-By,

Cross-Tab, and Sub-Totals (1997)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Background

[http://blog.jooq.org/2014/12/04/

do-you-really-understand-sqls-group-by-and-having-clauses/]

http://blog.jooq.org/2014/12/04/do-you-really-understand-sqls-group-by-and-having-clauses/
http://blog.jooq.org/2014/12/04/do-you-really-understand-sqls-group-by-and-having-clauses/

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Background

Why these shortcomings / questions ?

While relation algebra ”à la Codd” [works] well for
qualitative data science [it is] rather clumsy in handling
the quantitative side [...] we propose to solve this
problem by suggesting linear algebra (LA) as an
alternative suiting both sides [...]

H. Macedo, J. Oliveira 3

Linear algebra ...

3A linear algebra approach to OLAP (2015)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Formalizing SQL data aggregation

VLDB’87, among other research:

G. Bultzingsloewen 4

4Translating and optimizing SQL queries having aggregates (1987)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

“Star” diagrams

Entities (cf. tables) surrounded (placed at the center of) by their
attributes:

Salary jobs
j salary
oo

j code

��
Job empl

e branch//

e country

��

e joboo Branch

Country

Entities marked in bold.

Attribute types made explicit, linking entities to each other.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

“Star” diagrams

What is the (formal) meaning of the arrows in the diagram?

There is one arrow per attribute — column in the database table.

Assigning meanings to the arrows amounts to formalizing a
columnar approach to SQL.5

Let us do so using the linear algebra of programming (LAoP).6

5D. Abadi et al, The Design and Implementation of Modern
Column-Oriented Database Systems (2012).

6J. Oliveira, Towards a Linear Algebra of Programming (2012).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Formal star-diagram in (typed) LAoP

1 #j
j salary

oo

jcode

��
K #e

ebranch //

ecountry

��

ejoboo B

C

Legend:

• Types:
K — Job code
C — Country
B — Branch
#e — empl record nrs
#j — jobs record nrs

• Dimensions:

• branch
• code
• country
• job

• Measures:

• salary

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Dimensions

Dimension attribute columns are captured by bitmap matrices:

ebranch 1 2 3 4 5

Mobile 1 0 1 0 0
Web 0 1 0 1 1

ejob 1 2 3 4 5

GL 0 0 1 0 0
Pr 1 1 0 0 1
SA 0 0 0 1 0

ecountry 1 2 3 4 5

PT 0 0 0 1 1
UK 1 1 1 0 0

jdesc 1 2 3

Group Leader 0 0 1
Programmer 1 0 0
System Analyst 0 1 0

jcode 1 2 3

GL 0 0 1
Pr 1 0 0
SA 0 1 0

Meaning of bitmap matrix td , for d a dimension of table t:

v td i = 1 ⇔ t[i].d = v (1)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Measures

However — main difference wrt. relation algebra — we won’t
build

jsalary 1 2 3

1000 1 0 0
1100 0 1 0
1333 0 0 1

but rather the row vector j salary : #j → 1 which “internalizes” the
quantitative information:

j salary 1 2 3

1 1000 1100 1333

Summary:

Measures are vectors, dimensions are matrices.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Linear algebra

Matrices are arrows, e.g. B C
Moo — cf. categories of

matrices.

Matrix multiplication, given matrices B C
Moo A

Noo :

b (M · N) a = 〈
∑

c :: (b M c)× (c N a)〉 (2)

Matrix converse:

c M◦ b = b M c (3)

Functions are (special cases of Boolean) matrices:

y f x =

{

1 if y = f x
0 otherwise

(4)

The identity function id : A→ A is the unit of composition.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Examples

1 #j
j salaryoo K

j◦
codeoo Pr SA GL

1 1000 1100 1333

Calculation:

1 (j salary · j◦code) k

⇔ { multiplication (2) }

〈
∑

y :: (1 j salary y)× (y j◦code k)〉

⇔ { converse (3) ; vector j salary }

〈
∑

y :: (k jcode y)× (j[y].salary)〉

⇔ { functions (4) ; quantifier notation (details soon) }

〈
∑

y : k = j[y].code : j[y].salary〉

�

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Examples

In case of the addition of

insert into "jobs" values (’SA’, ’System Admin’, 1000);

we get non-injective bitmap

jcode 1 2 3 4
GL 0 0 1 0
Pr 1 0 0 0
SA 0 1 0 1

and
j salary 1 2 3 4

1 1000 1100 1333 1000
Therefore:

1 #j
j salaryoo K

j◦codeoo Pr SA GL

1 1000 2100 1333

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Pointwise LAoP calculus

Quantifier notation follows the Eindhoven style,

〈
∑

x : R : T 〉

where R is a predicate (range) and T is a numeric term.

In case T = B ×M where Boolean B = JPK encodes predicate P,
we have the trading rule:

〈
∑

x : R : JPK×M〉 = 〈
∑

x : R ∧ P : M〉 (5)

Thus

y(f · N)x = 〈
∑

z : y = f z : z N x〉 (6)

y(g◦ · N · f)x = (g y) N (f x) (7)

hold, where f and g are functions..

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Pointwise LAoP calculus

Given a binary predicate p : B × A→ Bool , we denote by
JpK : B ← A the Boolean matrix which encodes p, that is,

b JpK a = if p (b, a) then 1 else 0 (8)

In case of a unary predicate q : A→ Bool , JqK : 1← A is the
Boolean vector such that:

1 JqK a = JqK [a] = if q a then 1 else 0 (9)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Joins and tabulations

SQL querying amounts to following paths in star diagrams.

The meaning of a path is obtained by composing (multiplying)
the matrices involved.

Two particular such compositions deserve special reference, as they
correspond to well-known operations in data processing:

#p

N

 pA //

pB

��

X

}}||
||

||
||

A

Y~~~~
~~

~~
~~

#t
tB

// B

M

ll

• Join: X = t◦B ·M · pB

• Tabulation: Y = pB · N · p
◦

A

M and N are whatever matrices of
their type.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Simple Examples

Equi-join (M = id):

j◦code · ejob 1 2 3 4 5
1 1 1 0 0 1
2 0 0 0 1 0
3 0 0 1 0 0

Pointwise meaning: j[y].code = e[x].job recall (7).

Counting tabulation (N = id):

ecountry · e
◦

branch Mobile Web
PT 0 2
UK 2 1

Pointwise meaning: 〈
∑

k : y = e[k].country ∧ x = e[k].branch : 1〉

recall (6), for y a country, x a branch.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Columnar joins

Excerpt from Abadi et al7

shows columnar-join “isomorphic” to our matrix joins:

1 2 3 4 5
1 0 0 0 0 1
2 1 0 1 0 0
3 0 0 0 0 0
4 0 1 0 0 0

7The Design (..) of Modern Column-Oriented Database Systems (2012).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to the starting SQL query

select
e branch,

e country ,

sum (j salary)
from empl , jobs

where j code = e job
group by

e country ,

e branch
order by

e country ;

Minimal diagram accommodating
query:

1 #j
j salary

oo

jcode

��
K #e

J

``BBBBBBBB
ebranch //

ecountry

��

ejoboo B

Q~~}}
}}

}}
}}

C

Clearly,

group by ⇒ tabulation Q
where ⇒ join J

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Back to the starting SQL query

select
e branch,

e country ,

sum (j salary)
from empl , jobs

where j code = e job
group by

e country ,

e branch
order by

e country ;

How do salaries get involved? We
need a direct path from employees
to (their) salaries,

1 #j
j salary

oo

jcode

��
K #e

v

xx

ebranch //

ecountry

��

ejoboo B

Q~~}}
}}

}}
}}

C

involving the where-clause join:

v = j salary · j◦code · ejob (10)

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Query = Group by + Join

The group by clause calls for a tabulation — but, how does vector

v = j salary · j◦code · ejob 1 2 3 4 5
1 1000 1000 1333 1100 1000

get into the place of N in the generic scheme?

Easy: every vector v can be turned into a diagonal matrix, e.g.

v ▽ id 1 2 3 4 5
1 1000 0 0 0 0
2 0 1000 0 0 0
3 0 0 1333 0 0
4 0 0 0 1100 0
5 0 0 0 0 1000

and vice versa.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Khatri-Rao product

This diagonalization resorts to another LA operator, termed
Khatri-Rao product (M ▽ N) defined by

(b, c) (M ▽ N) a = (b M a)× (c N a) (11)

Then:

b (v ▽ id) c = v [c]× (b id c)

⇔ { Khatri-Rao (11) ; function id }

b (v ▽ id) c = v [c]× (b = c)

⇔ { pointwise LAoP (8) }

b (v ▽ id) c = if b = c then v [c] else 0

i.e. non-zeros can only be found in the diagonal.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Linear algebra
Property of diagonal matrices:

(v ▽ id) · (u ▽ id) = (v × u) ▽ id (12)

where M × N is the Hadamard product:

b (M × N) a = (b M a)× (b N a) (13)

Moreover, for f a function, rule

f ▽ v = f · (v ▽ id) (14)

is easy to derive: b (f · (v ▽ id)) a

⇔ { composition ; Khatri-Rao }

〈
∑

c :: (b f c)× (v [a]× (c id a))〉

⇔ { trading (5) ; cancel
∑

cf. c = a }

(b f a)× v [a]

⇔ { Khatri-Rao }

b (f ▽ v) a
�

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Query = Group by + Join
Query:

select
e branch,

e country ,

sum (j salary)
from empl , jobs

where j code = e job
group by

e country ,

e branch
order by

e country ;

Diagram:

1 #j
j salary

oo

jcode

��
K #e

v

xx

ebranch //

ecountry

��

ejoboo B

Q~~}}
}}

}}
}}

C

LA semantics:

Q = ecountry · (v ▽ id) · e◦branch (15)

where v = j salary · j◦code · ejob

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Pointwise semantics

Of vector v first:

v [k]

= { definition (10) }

1 (j salary · j◦code · ejob) k

= { matrix multiplication (2) }

〈
∑

i :: (1 j salary i)× (i (j◦code · ejob) k)〉

= { trading rules (7) and (5) }

〈
∑

i : jcode i = ejob k : (1 j salary i)〉

= { pointwise notation conventions }

〈
∑

i : j[i].code = e[k].job : j[i].salary〉

�

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Pointwise semantics

Of the whole query:

c Q b

= { definition (15) ; diagonal v ▽ id }

〈
∑

k :: (c ecountry k)× (k (v ▽ id) k)× (k e◦branch b)〉

⇔ { trading rule (5) }

c Q b = 〈
∑

k : c = ecountry k ∧ b = ebranch k : v [k]〉

Putting both together:

query (c , b) =
∑

k, i :

c = e[k].country ∧ b = e[k].branch ∧ j[i].code = e[k].job :

j[i].salary

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Rest point :-)

Clearly:

• SQL is a path-language

• SQL is pointfree — see
how the surface language
hides the double-cursor k, i
pointwise for-loop.

k i

#e
ecountry

��

#e
v▽idoo B

e◦
branchoo

Quujjjjjjjjjjjjjjjj

C

SQL tries to be as pointfree as natural language is so, compare

“dogs are mammals”

to the (boring!)

〈∀ d : d ∈ Dog : d ∈ Mammal〉

We don’t speak using “cursors”...

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Simplification

LA script (15)

Q = ecountry · (v ▽ id) · e◦branch where v = j salary · j◦code · ejob

can be simplified into

Q = (ecountry
▽ v) · e◦branch

thanks to Khatri-Rao law (14). Note how matrix

ecountry
▽ v 1 2 3 4 5

PT 0 0 0 1100 1000
UK 1000 1000 1333 0 0

nicely combines qualitative (functional) with quantitative
information.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA script for TPC-H query3

query3 =
select

l orderkey , o orderdate, o shippriority ;
sum (l extendedprice ∗ (1− l discount)) as revenue

from
orders, customer , lineitem

where
c mktsegment = ’MACHINERY’

and c custkey = o custkey
and l orderkey = o orderkey
and o orderdate < date ’1995-03-10’

and l shipdate > date ’1995-03-10’

group by
l orderkey , o orderdate, o shippriority

order by
revenue desc , o orderdate;

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Diagram for TPC-H query3

P

K #o

oshippriority

OO

ocustkey

//
oorderkey

oo

oorderdate

��

C

#l

lorderkey

OO

lshipdate

//

lextendedprice

��
ldiscount

��

D #c

ccustkey

OO

cmktsegment

��
1

Machinery

// S

“Big-plan” tabulation again dictated by the group by clause:

Q = K #l
lorderkeyoo #o

Xoo P × D
(oshippriority

▽oshipdate)
◦

oo

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA semantics for TPC-H query3

Data aggregation is performed over a derived vector

revenue = lextendedprice × (!− ldiscount) (16)

where ! : #l → 1 is the unique (constant) function of its type — a
row vector wholly filled with ones.

We move on:

Q = #o

X

{{wwwwwwwww

Y

��

P × D
(oshippriority

▽oshipdate)
◦

oo

K #l
lorderkeyoo #l

revenue▽id
oo

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA semantics for TPC-H query3

As expected, the link Y between the two tables is the join in the
where clause:

#o

Y=(lorderkey)◦·oorderkey

��

P × D
(oshippriority

▽oshipdate)
◦

oo

K #l
lorderkeyoo #l

revenue▽id
oo

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA semantics for TPC-H query3

Moving on, clauses

o_orderdate < date ’1995-03-10’

and l_shipdate > date ’1995-03-10’

convert to vectors

v : #o → 1

u : #l → 1

defined by

v [i] = Jo[i].orderdate < ’1995-03-10’K
u [k] = Jl[k].shipdate > ’1995-03-10’K

recall (9).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA semantics for TPC-H query3

Altogether, thus far:

P × D
(oshippriority

▽oshipdate)
◦

��
#o

oorderkey
��

#o
v▽id

oo

#l

revenue▽id��

K
(lorderkey)◦
oo

#l
lorderkey ��

#l
u▽idoo

K

where v [i] = Jo[i].orderdate < ’1995-03-10’K

and u [k] = Jl[k].shipdate > ’1995-03-10’K

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

LA semantics for TPC-H query3

Finally, clauses

c_mktsegment = ’MACHINERY’ and c_custkey = o_custkey

amount to Boolean path (vector)

z = 1 S
Machinery

◦

oo #c
cmktsegmentoo C

c◦
custkeyoo #o

ocustkeyoo

which counts how many customers exhibit the specified market
segment:

z [k] =
〈
P

i : c[i].custkey = o[k].custkey ∧ c[i].mktsegment = MACHINERY : 1〉

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Query final path

#o

z▽id

��

P × D
(oshippriority

▽oshipdate)
◦

oo

#o

oorderkey

��

#o
v▽id

oo

#l

revenue▽id

��

K
(lorderkey)◦
oo

#l

lorderkey

��

#l
u▽idoo

K

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Simplification of (“water fall”) path

Thanks to LA laws:

Q3 = #o

oorderkey
▽(v×z)

��

P × D
(oshippriority

▽oshipdate)
◦

oo

#l

(lorderkey)▽(revenue×u)

��

K
(lorderkey)◦
oo

K

Notice the same overall pattern: a join inside a tabulation.

Other simplifications possible, likely impacting on performance —
in what sense ?

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Divide and conquer

Block linear algebra enables distributed evaluation of query paths
by “divide & conquer” laws for all operators involved, cf.

[A|B] ·

[

C

D

]

= A · C + B · D (17)

[

A

B

]

◦

= [A◦|B◦] (18)

and

[A|B] ▽ [C |D] = [A ▽ C |B ▽ D] (19)

[A|B]× [C |D] = [A× C |B × D] (20)

which generalize to any finite number of blocks.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Map-reduce

Overall path splits in two parts,

• Workload over table #o: #o

oorderkey
▽(v×z)

��

P × D
(oshippriority

▽oshipdate)
◦

oo

K

• Workload over table #l : #l

(lorderkey)▽(revenue×u)

��

K
(lorderkey)◦
oo

K

With n machines, each table is divided into n slices, each slice
residing into its machine.

Map runs the two workloads on each machine, in parallel.

Reduce joins all machine-contributions together, then performing
the final composition of the 2 paths.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Summary

Recall the X/Open CAE Specification:

“The result of evaluating a query-specification can be
explained in terms of a multi-step algorithm. The order
of [the 7] steps in this algorithm follows the mandatory
order of the clauses (FROM, WHERE, and so on) of the
SELECT statement”

Our evaluation order is clearly different !

It is “demand driven” by the group by clause.

In theory, everything is embarrassingly parallel... but read this
MSc dissertation 8 before getting too excited...

8R. Pontes, Benchmarking a Linear Algebra Approach to OLAP (2015)
.

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Practical side of all this

Future (practical) work:

• Define a DSL for the LA path language

• Mount a map-reduce interpreter for such a DSL running on a
data-distributed environment

• Write a compiler mapping (a subset of) SQL to the DSL

• Enjoy experimenting with the overall toy :-)

In particular,

• Compare LA paths with TPC-H query plans

• Complete the benchmark already carried out.9

9R.Pontes, Benchmarking a Linear Algebra Approach to OLAP (2015).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Theory side of all this

A lot!

• Compare with related work on columnar DB systems

• Parametrize DSL on appropriate semirings for non arithmetic
aggregations (min, max etc)

• Extend semantic coverage as much as possible, keeping the
LA encoding such as e.g. in

t◦B · tB = id

expressing UNIQUE constraints, or integrity constraints
such as in e.g.

pF 6 tK · t
◦

K · pF

(K primary key, F foreign key.)

• Null values ? ...

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Today, as in 1567...

... quien sabe por Algebra, sabe scientificamente 10

10(...) who knows by Algebra knows scientifically — Pedro Nunes, Libro de
Algebra (1567).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Appendix

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

What about queries without group by?

Query:11

select
sum (r a)
from r , s

where r c = s b and
5 < r a < 20 and
40 < r b < 50 and
30 < s a < 40;

Star diagram:

1 #r
ra

oo

rc��

rb // B

C #s
sa //sboo A

Define

u i = 5 < r[i].a < 20

v i = 40 < r[i].b 50

x j = 30 < s[j].a < 40

in the reduction:

1

1 #r

JuK
OO

ra
oo

rc��

JvK // 1

C #s
JxK //sboo 1

11Example taken from D. Abadi et al, The Design (...) Systems (2012).

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Faster, this time

Vector #s
! // 1 models the implicit ‘group by all ’ clause:

1 #r
ra▽u

oo

rc
▽v��

C #s

v

bb

! //sb
▽xoo 1

ρ=v ·!◦

tt (21)

Thanks to (LA)

(M ▽ N)◦ · (P ▽ Q) = (M◦ · P)× (N◦ · Q) (22)

b (v◦ · u) a = v[b]× u[a] (23)

1 (! ·M) a = 〈
∑

b :: b M a〉 (24)

we get the expected output scalar:

ρ = 〈
∑

j , i : u i ∧ v i ∧ r[i].c = s[j].b ∧ x j : r[i].a〉

Motivation Star diagrams Linear algebra Joins and tabulations Divide and conquer Summary

Details

Details about the “hidden” tabulation in (21):

1 #r
ra▽u

oo

rc ▽v

��
C #s

v

SS

! //sb
▽xoo

!
��

1

ρ

vv

t
~~~~

~~
~~

~~

1

t = ! · (v ▽ id) · !◦

⇔ { (14) }

t = (v ▽ !) · !◦

⇔ { ! is the unit of Khatri-Rao }

t = v · !◦

⇔ { definition of ρ }

t = ρ

�


	Motivation
	Star diagrams
	Linear algebra
	Joins and tabulations
	Divide and conquer
	Summary

