'Keep definition, change category: a practical approach to monadic model evolution

Institute of Cybernetics

Tallinn — April 21st, 2016

J.N. OLIVEIRA

INESC TEC & University of Minho

(日) (四) (문) (문) (문) 문

Motivation

t Going relational

Going linear

Kleisli shift

Pairing!

osing Anne

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

References

Motivation

Let us face it: there is a need to **quantify** software (un)**reliability**.

In particular, there is a trend towards *"just good enough"* hardware calling for **measuring** software reliability.

State-based system semantics is evolving towards quantified (e.g. **probabilistic**) models.

One approach is to "stack" **monads** capturing the various semantics aspects involved.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Models become too **complex**.

This talk addresses a particular situation in which such complexity can be trimmed down.

Going **quantitative** does not sacrifice the simplicity of the original (**qualitative**) definitions.

Quantification is kept **implicit** rather than explicit.

The approach is a **monad-monad lifting** strategy.

Can it always be applied? What are the shortcomings?

We shall invest in suitable **categories of matrices** and use linear algebra in the reasoning.

Sloppy arithmetic useful?

Horror!

But there is more...

"Just good enough" h/w

... coming from the land of the Swiss watch:

"We should stop designing perfect circuits"

02.10.13 - Are integrated circuits "too good" for current technological applications? Christian Enz, the new Director of the Institute of Microengineering, backs the idea that perfection is overrated.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Message:

Why **perfection** *if* (*some*) **imperfection** *still meets the standards*?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

S/w for "just good enough" h/w

What about **software** running over "just good enough" hardware? Ready to **take the risk**?

Nonsense to run safety critical software on defective hardware?

Uups! — it seems "it already runs":

medical "IEC 60601-1 [brings] **risk management** into the **design** very first stages of [product development]"

Risk is everywhere — an inevitable (desired?) part of life.

References

P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic questions: (1) What can **go wrong**? (2) How **likely** is it? and (3) What are the **consequences**?

The PRA process

answers these questions by systematically (...) identifying, modeling, and **quantifying** scenarios that can lead to undesired consequences

Recall

"IEC 60601-1 [...] very first stages of [development]"

Kleisli shift

Pairing!

g Annex R

From the very first stage in development

Think of things that can go wrong:

 $\textit{bad} \cup \textit{good}$

How likely?

bad _p◊ good

(1)

where

 $bad_{p} \diamond good = p \times bad + (1 - p) \times good$

for some probability p of bad behaviour, eg. the imperfect action

top (10⁻⁷) ◊ *pop*

leaving a stack unchanged with 10^{-7} probability.

Annex R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Imperfect truth tables

Imperfect **negation** *id* 0.01 *neg*:

	id $_{0.01}\diamond$	neg						
=	$0.01 \times$	False True	Ealse0	1 Lue	$+$ 0.99 \times	False True		Lune
=	False True		Lune 0	+	- (False True	Ealse 0 00.00	Lue 0.99 0	
=	False True		Line).99).01					

Linear algebra of programming

Better than the "anything can happen" relation $id \cup neg$, matrix id po neg carries useful quantitative information.

Linear Algebra required when calculating risk of failure of safety critical s/w.

Linear algebra of programming (LAoP) typed LA, modelling in a pointfree style.

Strategy: mild and pragmatic use of categorial techniques.

Main point — Kleisli categories matter!

Heinrich Kleisli (1930-2011)

Context Going relational Going linear

Kleisli shift

Pairing! Closing

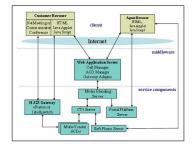
Context

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Faults in CBS systems

Interested in reasoning about the risk of **faults propagating** in component-based software (CBS) systems.

Traditional CBS risk analysis relies on *semantically weak* CBS models, e.g. component call-graphs (Cortellessa and Grassi, 2007).



▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Starting point is a **coalgebraic** semantics for s/w components modeled as monadic Mealy machines (Barbosa and Oliveira, 2006).

 Description
 Context
 Going relational
 Going linear
 Kleisli shift
 Pairing!
 Closing
 Annex
 Reference

 Main
 ideas

 Component
 = Monadic
 Mealy
 machine
 (MMM), that is, an

 F-evolving
 transition
 structure of type:

 $S \times I \rightarrow \mathbb{F}(S \times O)$

where \mathbb{F} is a **monad**.

Method = Elementary (single action) MMM.

CBS design = Algebra of MMM combinators.

Semantics = Coalgebraic, calculational.

To this framework we want to add analysis of

Risk = *Probability of* **faulty** (*catastrophic*) *behaviour*

Mealy machines in various guises

F-transition structure:

 $S \times I \to \mathbb{F}(S \times O)$

Coalgebra:

 $S \to (\mathbb{F}(S \times O))^{I}$

State-monadic:

 $I \to (\mathbb{F}(S \times O))^S$

All versions useful in component algebra.

Kleisli shift

Mealy machines in various guises

F-transition structure:

 $S \times I \to \mathbb{F}(S \times O)$

Coalgebra:

 $S \to (\mathbb{F}(S \times O))^{\prime}$

State-monadic:

 $I \to (\mathbb{F}(S \times O))^S$

All versions useful in component algebra.

Abstracting from internal state *S* and branching effect **F**, machine

 $m: S \times I \rightarrow \mathbb{F}(S \times O)$

can be depicted as I m V Oor as the **arrow** $I \xrightarrow{m} O$.

◆□▶ ◆□▶ ◆ ミト ◆ ミト ・ ミー の へ ()

Example — stack component

From a (**partial**) algebra of finite lists (Haskell syntax)

(partial) function	type
push(s,a) = a:s	push :: $([a], a) ightarrow [a]$
pop = tail	pop :: [a] ightarrow [a]
top = head	top :: [a] ightarrow a
empty $s = (length \ s = 0)$	empty :: $[a] ightarrow \mathbb{B}$

method	type
	$push'::([a],a) o \mathbb{M}\ ([a],1)$
$pop' = (pop_{^{\scriptscriptstyle \Delta}} top \Leftarrow (\neg \cdot empty)) \cdot fst$	$\mathit{pop}' :: ([a], 1) ightarrow \mathbb{M}([a], a)$
$top' = (id \circ top \Leftarrow (\neg \cdot empty)) \cdot fst$	$\mathit{top'} :: ([a], 1) o \mathbb{M} \; ([a], a)$
$empty' = \eta \cdot (id imes empty) \cdot fst$	empty' :: $([a],1) ightarrow \mathbb{M}$ $([a],\mathbb{B})$
where	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example — stack component

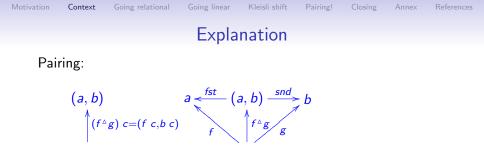
From a (**partial**) algebra of finite lists (Haskell syntax)

(partial) function	type
push(s,a) = a:s	push :: $([a], a) ightarrow [a]$
pop = tail	pop :: [a] ightarrow [a]
top = head	top :: [a] ightarrow a
empty $s = (length \ s = 0)$	empty :: $[a] o \mathbb{B}$

to a collection of (total) methods (MMMs):

method	type
$push' = \eta \cdot (push \circ !)$	$push' :: ([a], a) o \mathbb{M} ([a], 1)$
$pop' = (pop^{\scriptscriptstyle riangle} top \Leftarrow (\neg \! \cdot \! empty)) \! \cdot \! fst$	$\textit{pop}' :: ([a], 1) ightarrow \mathbb{M}([a], a)$
$\textit{top}' = (\textit{id} \land \textit{top} \Leftarrow (\neg \cdot \textit{empty})) \cdot \textit{fst}$	$\mathit{top'} :: ([a], 1) ightarrow \mathbb{M} ([a], a)$
$empty' = \eta \cdot (id {\scriptscriptstyle riangle} empty) \cdot fst$	$empty'::([a],1) ightarrow \mathbb{M}$ $([a],\mathbb{B})$

where...



"Sink" ("bang") function $A \xrightarrow{!} 1$ onto singleton type 1

 \mathbb{M} : Monad with unit η ("success") and zero \bot ("failure") — typically **Maybe**.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

M -totalizer on given pre-condition:

$$\cdot \quad \Leftarrow \quad ::(a \to b) \to (a \to \mathbb{B}) \to a \to \mathbb{M} \ b \\ (f \quad \Leftarrow \quad p \) \ a = \mathbf{if} \ p \ a \ \mathbf{then} \ (\eta \cdot f) \ a \ \mathbf{else} \ \bot$$

$\mathsf{Component} = \sum \mathsf{methods}$

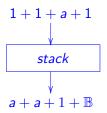
Define

```
stack :: ([a], 1 + 1 + a + 1) \rightarrow \mathbb{M} ([a], a + a + 1 + \mathbb{B})
stack = pop' \oplus top' \oplus push' \oplus empty'
```

to obtain a **compound** M -MM (stack **component**) with 4 methods, where

- input 1 means "DO IT!"
- output 1 means "DONE!"

Notation $m \oplus n$ expresses the "coalesced" **sum** of two state-compatible MMMs (next slide).



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pretty-print of Haskell definition

 $\begin{array}{l} \cdot \oplus \cdot ::(Functor \ \mathbb{F}) \Rightarrow \\ -- \ \text{input machines} \\ ((s,i) \rightarrow \mathbb{F} \ (s,o)) \rightarrow \\ ((s,j) \rightarrow \mathbb{F} \ (s,p)) \rightarrow \\ -- \ \text{output machine} \\ (s,i+j) \rightarrow \mathbb{F} \ (s,o+p) \\ -- \ \text{definition} \\ m_1 \oplus m_2 = (\mathbb{F} \ dr^\circ) \cdot \Delta \cdot (m_1 + m_2) \cdot dr \end{array}$

where dr° is the converse of **isomorphism**

 $\mathsf{dr}::(s,i+j)\to(s,i)+(s,j)$

and $\Delta :: \mathbb{F} a + \mathbb{F} b \to \mathbb{F} (a + b)$ is a kind of "cozip" operator.

Motivation **Context** Going relational Going linear Kleisli shift Pairing! Closing Annex References Machine sums

'Wiring' combinator (at component interface level):

$$m_{\{f \to g\}} = \mathbb{F} (id \times g) \cdot m \cdot (id \times f)$$
(2)

f acts at input level, g at output level, the state is unchanged.

Operator $m_{\{f \to g\}}$ very useful for **component interfacing** — examples in (Barbosa, 2001).

It also enables to define machine sum as a universal construction:

$$k = p \oplus q \quad \Leftrightarrow \quad \left\{ \begin{array}{l} k_{\{i_1 \to id\}} = p_{\{id \to i_1\}} \\ k_{\{i_2 \to id\}} = q_{\{id \to i_2\}} \end{array} \right. \tag{3}$$

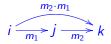
Universal property (3) convenient for decomposing component expressions where \oplus is the outermost combinator.

Forward composition

is central to component communication.

Abstracting from state, it means **composition** in a categorial sense:

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへ⊙



Formal definition of m; n to be discussed shortly.

For suitably typed MMM m_1 , m_2 , n_1 and n_2 , mind the useful exchange law

 $(m_1 \oplus m_2); (n_1 \oplus n_2) = (m_1; n_1) \oplus (m_2; n_2)$ (4)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

expressing two alternative approaches to s/w system construction:

- $\cdot \oplus \cdot$ -first "component-oriented"
- · ; · -first "method-oriented"

NB: For other combinators of the **component algebra** see e.g. (Barbosa, 2001) and (Barbosa and Oliveira, 2006).

Context

osing Annex

References

Simulation (Haskell)

Let \mathbb{M} instantiate to Haskell's Maybe monad:

• Running a **perfect** and **successful** composition:

>(pop'; push') (([1], [2]), ())Just (([], [1, 2]), ())

• Running a **perfect** but **catastrophic** composition:

> (pop' ; push') (([],[2]),()) Nothing

(source stack empty)

Now,

What about imperfect machine communication?

Imperfect components

Risk of pop' behaving like top' with probability 1 - p:

 $pop'' :: \mathbb{P} \to ([a], 1) \to \mathbb{D} (\mathbb{M} ([a], a))$ $pop'' p = pop' \circ top'$

Risk of *push'* not pushing anything, with probability 1 - q:

 $push'' :: \mathbb{P} \to ([a], a) \to \mathbb{D} (\mathbb{M} ([a], 1))$ $push'' q = push'_{q} \diamond !$

Details: $\mathbb{P} = [0, 1]$, \mathbb{D} is the (finite) **distribution** monad and

$$\begin{array}{l} \cdot .\diamond :: \mathbb{P} \to (t \to a) \to (t \to a) \to t \to \mathbb{D} \\ (f_{p}\diamond g) \ x = choose \ p \ (f \ x) \ (g \ x) \end{array}$$

chooses between f and g according to p.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Faulty components

Define

 $m_2 = pop'' \ 0.95$; push'' 0.8

where $\cdot_{;D}$ is a **probabilistic** enrichment of **composition** and run the same simulations for m_2 over the same state ([1], [2]):

```
> m_2 (([1], [2]), ())
Just (([], [1, 2]), ()) 76.0 %
Just (([], [2]), ()) 19.0 %
Just (([1], [1, 2]), ()) 4.0 %
Just (([1], [2]), ()) 1.0 %
```

Total risk of faulty behaviour is 24% (1 - 0.76) structured as:

(a) 1% — both stacks misbehave;
(b) 19% — target stack misbehaves;
(c) 4% — source stack misbehaves.

As expected, the behaviour of

> m₂ (([],[2]),()) Nothing 100.0 %

is 100% catastrophic (popping from an empty stack).

Simulation details:

Using the **PFP library** written in Haskell by Erwig and Kollmannsberger (2006).

Our MMMs have become **probabilistic**, acquiring the general shape

 $S \times I \to \mathbb{D} (\mathbb{F} (S \times O))$

where the additional \mathbb{D} — (finite support) **distribution** monad — captures **imperfect** behaviour (fault propagation).

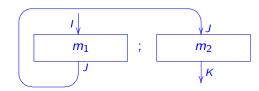
Questions:

• Shall we compose **D** · **F** and work over the **composite** monad?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Or shall we try and find a way of working "as if D wasn't there"?

Let us first see how MMM compose.



is defined by Kleisli composition

 $m_1; m_2 = (\psi m_2) \bullet (\phi m_1)$

of two steps:

- ϕm_1 run m_1 "wrapped" with the state of m_2
- ψm_2 run m_2 "wrapped" with that of m_1 for the output it delivers

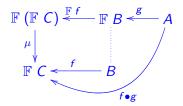
Motivation

ring! Closing

References

Kleisli composition

Let $X \xrightarrow{\eta} \mathbb{F}X \xleftarrow{\mu} \mathbb{F}^2 X$ be a **monad** in diagram



Arrow $f \bullet g$ denotes the so-called **Kleisli composition** of \mathbb{F} -resultric arrows, forming a monoid with η as identity:

$$f \bullet (g \bullet h) = (f \bullet g) \bullet h$$
$$f \bullet \eta = f = \eta \bullet f$$

MMM composition — part I

Given $I \xrightarrow{m_1} J$ build ϕm_1 :

$$\mathbb{F}\left((S \times J) \times Q\right) \xleftarrow{\tau_r} \mathbb{F}\left(S \times J\right) \times Q \xleftarrow{m_1 \times id} (S \times I) \times Q$$

$$\mathbb{F}_{\mathsf{xr}}^{\uparrow} \qquad \qquad \uparrow^{\mathsf{xr}}$$

$$\mathbb{F}\left((S \times Q) \times J\right) \xleftarrow{\phi m_1} (S \times Q) \times I$$

where

- xr: (S × Q) × I → (S × I) × Q is the obvious isomorphism ensuring the compound state and input I
- τ_r: (𝔽 A) × B → 𝔽 (A × B) is the right strength of monad 𝔽, which therefore has to be a strong monad.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Context MMM composition — part II Given $I \xrightarrow{m_2} K$ build ψm_2 : $\mathbb{F} \left(S \times (Q \times K) \right) \stackrel{\tau_1}{\longleftarrow} S \times \mathbb{F} \left(Q \times K \right) \stackrel{id \times m_2}{\longleftarrow} S \times (Q \times J)$ $\mathbb{F}_a^{\uparrow} \qquad \uparrow^a$ $\mathbb{F} \left((S \times Q) \times K \right) \stackrel{d}{\longleftarrow} (S \times Q) \times J$

where

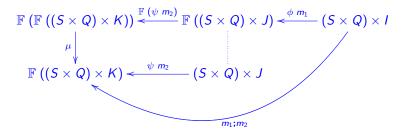
• a: $(A \times B) \times C \rightarrow A \times (B \times C)$ is the obvious isomorphism

 ψm_2

• $\tau_I: (B \times \mathbb{F} A) \to \mathbb{F} (B \times A)$ is the **left** strength of \mathbb{F} .

MMM composition — part III

Finally build m_1 ; $m_2 = (\psi m_2) \bullet (\phi m_1)$:



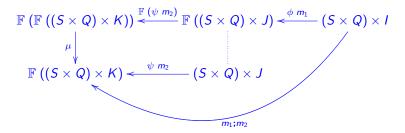
This for perfect \mathbb{F} -monadic machines. What about the imperfect ones?

What is the **impact** of adding **probability-of-fault** to the above construction? Does one need to rebuild the **definition**?

References

MMM composition — part III

Finally build m_1 ; $m_2 = (\psi m_2) \bullet (\phi m_1)$:



This for **perfect** \mathbb{F} -monadic machines. What about the **imperfect** ones?

What is the **impact** of adding **probability-of-fault** to the above construction? Does one need to rebuild the **definition**?

Doubly-monadic machines

Recall Haskell simulations running combinator m_1 ; m_2 for doubly-monadic machines of type

 $(S \times I) \rightarrow \mathbb{D} (\mathbb{M} (S \times O))$

involving the maybe \mathbb{M} and (finite support) distribution \mathbb{D} monads which generalize to

 $(S \times I) \rightarrow \mathbb{G} (\mathbb{F} (S \times O))$

where, following the terminology of Hasuo et al. (2007):

- monad $X \xrightarrow{\eta_{\mathbb{F}}} \mathbb{F} X \xleftarrow{\mu_{\mathbb{F}}} \mathbb{F}^2 X$ caters for transitional effects (how the machine evolves)
- monad $X \xrightarrow{\eta_{\mathbb{G}}} \mathbb{G}_{\mathbb{T}} X \xleftarrow{\mu_{\mathbb{G}}} \mathbb{G}_{\mathbb{T}}^2 X$ specifies the branching type of the system.

Going relational

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Going relational

Doubly-monadic machines

Typical instance:

 $\mathbb{G} = \mathbb{P}$ (powerset) and $\mathbb{F} = \mathbb{M} = (1+)$ ('maybe'), that is, $m: Q \times I \to \mathbb{P} (1 + Q \times J)$

is a reactive, **non-deterministic** *finite state automaton with explicit termination.*

Such machines can be regarded as **binary** relations of (relational) type

 $(Q \times I) \rightarrow (1 + Q \times J)$

and handled directly in ${\bf relational} \ {\bf algebra}.$ (Details in the next slide)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nondeterministic Maybe machines

The **power** transpose adjunction

 $R = [m] \Leftrightarrow \langle \forall b, a :: b R a = b \in m a \rangle$

for trading between \mathbb{P} -functions and binary relations, in a way such that

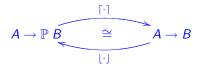
 $[m \bullet n] = [m] \cdot [n]$

where

- $m \bullet n$ Kleisli composition of \mathbb{P} -functions
- $[m] \cdot [n]$ relational composition

 $b(R \cdot S) a \Leftrightarrow \langle \exists c :: b R c \land c S a \rangle$

of the corresponding binary relations.



Composing relational \mathbb{M} -machines

Transition monad on duty is $\mathbb{M} = (1+)$, ie.

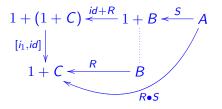
$$X \xrightarrow{i_2} 1 + X \xleftarrow{[i_1, id]} 1 + (1 + X)$$

 $(i_1, i_2 = \text{binary sum injections}).$

Lifting: in the original definition

$$m_1$$
; $m_2 = (\psi m_2) \bullet (\phi m_1)$

run Kleisli composition relationally:



$$R \bullet S = [i_1, id] \cdot (id + R) \cdot S = [i_1, R] \cdot S$$
$$= i_1 \cdot i_1^\circ \cdot S \cup R \cdot i_2^\circ \cdot S$$

nnex Referenc

Composing relational ${\mathbb M}$ -machines

Pointwise: $y(R \bullet S) a$ holds iff

 $(y = *) \land (* S a) \lor \langle \exists c :: (y R c) \land ((i_2 c) S a) \rangle$

where $* = i_1 \perp$

In words:

 $R \bullet S$ doomed to fail if S fails; Otherwise, $R \bullet S$ will fail where R fails. For the same input, $R \bullet S$ may both succeed or fail.

Summary: Nondeterministic \mathbb{M} -machines are \mathbb{M} -**relations** and original (deterministic) definition is "reused" in the relational setting:

 R_1 ; $R_2 = (\psi R_2) \bullet (\phi R_1) = [i_1, \psi R_2] \cdot (\phi R_1)$

Motivation

ext Going relational

Going linear

Kleisli shift

ring! Closi

Annex Refe

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

References

Going linear

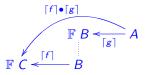
Probabilistic branching (\mathbb{D} instead of \mathbb{P})

Again, instead of working in Set,

$$\mathbb{D} (\mathbb{F} B) \stackrel{g}{\longleftarrow} A$$
$$\mathbb{D} (\mathbb{F} C) \stackrel{f}{\longleftarrow} B$$

we seek to implement $\mathbb F$ -Kleisli-composition in the Kleisli category of $\mathbb D,$ that is

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

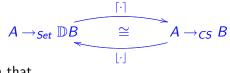


thus "abstracting from" monad \mathbb{D} .

Question: $Kleisli(\mathbb{D}) = ??$

Probabilistic monadic machines

It turns out to be the category of column-stochastic (CS) **matrices**, cf. adjunction



such that

 $M = [f] \quad \Leftrightarrow \quad \langle \forall \ b, a \ :: \ b \ M \ a = (f \ a) \ b \rangle$

where $A \rightarrow_{CS} B$ is the **matrix type** of all matrices with *B*-indexed rows and *A*-indexed columns all adding up to 1 (100%).

Important:

CS represents the Kleisli category of \mathbb{D}

Recall probabilistic negation function

 $f = id_{0.1} \diamond (\neg)$

which corresponds to matrix

 $\begin{bmatrix} f \end{bmatrix} = \begin{matrix} \text{True} & \text{False} \\ \text{False} & \begin{pmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{pmatrix}$

where probabilistic choice is immediate on the matrix side,

 $[f_{p} \diamond g] = p[f] + (1-p)[g]$

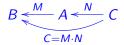
where (+) denotes addition of matrices of the same type.

Typed linear algebra

In general, category of matrices over a semi-ring $(S; +, \times, 0, 1)$:

Going linear

- **Objects** are types (A, B, ...) and **morphisms** $(M : A \rightarrow B)$ are matrices whose columns have finite support.
- Composition:



that is:

 $b(M \cdot N)c = \langle \sum a :: (rMa) \times (aNc) \rangle$

• **Identity**: the diagonal Boolean matrix $id : A \rightarrow A$.

Matrix coproducts

 $(A+B) \rightarrow C \cong (A \rightarrow C) \times (B \rightarrow C)$

where A + B is disjoint union, cf. **universal property**

 $X = [M|N] \quad \Leftrightarrow \quad X \cdot i_1 = M \land X \cdot i_2 = N$

where $[i_1|i_2] = id$.

[M|N] is one of the basic matrix **block** combinators — it puts M and N side by side and is such that

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $[M|N] = M \cdot i_1^\circ + N \cdot i_2^\circ$

as in relation algebra.

Typed linear algebra

Matrix direct sum

$$M \oplus N = \left[\begin{array}{c|c} M & 0 \\ \hline 0 & N \end{array} \right]$$

is an (endo,bi)functor, cf.

 $(id \oplus id) = id$ $(M \oplus N) \cdot (P \oplus Q) = (M \cdot P) \oplus (N \cdot Q)$ $[M|N] \cdot (P \oplus Q) = [M \cdot P|N \cdot Q]$

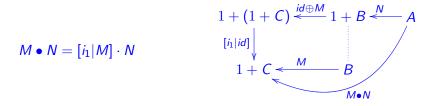
as in relation algebra — etc, etc.

The Maybe monad in the category is therefore given by $\mathbb{M} = (\mathit{id} \oplus \cdot)$

Another "Kleisli shift"

Going linear

As we did for relations representing Kleisli(\mathbb{P}), let us encode \mathbb{M} -Kleisli composition in matrix form:



Thus $M \bullet N = i_1 \cdot i_1^{\circ} \cdot N + M \cdot i_2^{\circ} \cdot N$ leading into the pointwise $y (M \bullet N) a =$ $(y = *) \times (* N a) + \langle \sum b :: (y M b) \times ((i_2 b) N a) \rangle$

- compare with the relational version and example (next slide).

Motivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex Referen

"Kleisli shift" example

 $\begin{array}{l} \text{Probabilistic } \mathbb{M} \ \text{-Kleisli} \\ \text{composition } M \bullet N \text{ of matrices} \\ N : \{a_1, a_2, a_3\} \to 1 + \{c_1, c_2\} \\ \text{and} \\ M : \{c_1, c_2\} \to 1 + \{b_1, b_2\} \ . \end{array}$

Injection $i_1 : 1 \rightarrow 1 + \{b_1, b_2\}$ is the leftmost column vector.

				a1	a2	a3
			*	0.5	0	0
			c1	0.5	1	0.7
	*	c1	c2	0	0	0.3
*	1	0.2	0	0.6	0.2	0.14
b1	0	0	0.6	0	0	0.18
b2	0	0.8	0.4	0.4	0.8	0.68

For instance: for input a_1 there is 60% probability of $M \bullet N$ failing = either N fails (50%) or passes c_1 to M (50%) which fails with 20% probability.

Similarly to relations before, we can think of **probabilistic** \mathbb{M} -monadic Mealy machines as CS matrices which communicate (as matrices) as follows

$$N; M = (\psi M) \bullet (\phi N)$$

$$= [i_1|(id \oplus a^\circ) \cdot \tau_l \cdot (id \otimes M) \cdot x] \cdot \tau_r \cdot (N \otimes id) \cdot xr$$
(5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where

- functions are represented matricially by Dirac distributions;
- relational product becomes matrix Kronecker product $(y,x)(M \otimes N)(b,a) = (yMb) \times (xNa)$

Going relational Going linear

Kleisli shift

Kleisli shift

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Annex Referen

Monad-monad lifting

For the above to make sense for machines of **generic** type $Q \times I \to \mathbb{G} \ (\mathbb{F} \ (Q \times J))$ make sure that

The lifting of monad $\mathbb F$ by monad $\mathbb G$ still is a monad in the Kleisli category of $\mathbb G$.

Recall:

- \mathbb{F} transition monad
- G branching monad

Mind their different roles:

Branching monad "hosts" transition monad.

Monad-monad lifting

In general, given two monads

$$X \xrightarrow{\eta_{\mathbb{G}}} \mathbb{G}X \xleftarrow{\mu_{\mathbb{G}}} \mathbb{G}^{2}X \text{ (the host)}$$
$$X \xrightarrow{\eta_{\mathbb{F}}} \mathbb{F}X \xleftarrow{\mu_{\mathbb{F}}} \mathbb{F}^{2}X \text{ (the guest)}$$

in a category C :

- let C[▷] denote the Kleisli category induced by host G;
- let $B \stackrel{f^{\flat}}{\longleftarrow} A$ be the morphism in \mathbf{C}^{\flat} corresponding to $\mathbb{G}B \stackrel{f}{\longleftarrow} A$ in \mathbf{C} ;

define

$$f^{\flat} \cdot g^{\flat} = (f ullet g)^{\flat} = (\mu_{\mathbb{G}} \cdot \mathbb{G} \ f \cdot g)^{\flat}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monad-monad lifting

For any morphism $B \stackrel{f}{\longleftarrow} A$ in **C** define its lifting to **C**^b by

$$\overline{f} = (\eta_{\mathbb{G}} \cdot f)^{\flat} \tag{6}$$

As in (Hasuo et al., 2007), assume distributive law

 $\lambda: \mathbb{FG} \to \mathbb{GF}$

Lift the **guest** endofunctor \mathbb{F} from **C** to \mathbb{C}^{\flat} by defining $\overline{\mathbb{F}}$ as follows, for $\mathbb{G} \ B \stackrel{f}{\longleftarrow} A$:

$$\overline{\mathbb{F}}(f^{\flat}) = (\lambda \cdot \mathbb{F} f)^{\flat}$$

cf. diagram

$$\mathbb{GF}B \stackrel{\lambda}{\longleftarrow} \mathbb{FG}B \stackrel{\mathbb{F}f}{\longleftarrow} \mathbb{F}A$$

Monad-monad lifting

For $\overline{\mathbb{F}}$ to be a **functor** in \mathbb{C}^{\flat} two conditions must hold (Hasuo et al., 2007):

$$\lambda \cdot \mathbb{F} \eta_{\mathbb{G}} = \eta_{\mathbb{G}} \tag{7}$$

$$\lambda \cdot \mathbb{F} \mu_{\mathbb{G}} = \mu_{\mathbb{G}} \cdot \mathbb{G} \lambda \cdot \lambda \tag{8}$$

We need to find extra conditions for guest $\mathbb F$ to lift to a **monad** in $\mathbf C^\flat$; that is,

$$X \xrightarrow{\overline{\eta_{\mathbb{F}}} = (\eta_{\mathbb{G}} \cdot \eta_{\mathbb{F}})^{\flat}} \overline{\mathbb{F}}X \xrightarrow{\overline{\mu_{\mathbb{F}}} = (\eta_{\mathbb{G}} \cdot \mu_{\mathbb{F}})^{\flat}} \overline{\mathbb{F}}^{2}X$$

should be a monad in \mathbf{C}^{\flat} .

The standard monadic laws, e.g. $\overline{\mu_{\mathbb{F}}} \cdot \overline{\eta_{\mathbb{F}}} = id$, hold via lifting (6) and Kleisli composition laws.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Monad-monad lifting

For the remaining natural laws

$$egin{aligned} & \left(\overline{\mathbb{F}} \; f^{\flat}
ight)\cdot\overline{\eta_{\mathbb{F}}} = \overline{\eta_{\mathbb{F}}}\cdot f^{\flat} \ & \left(\overline{\mathbb{F}} \; f^{\flat}
ight)\cdot\overline{\mu_{\mathbb{F}}} = \overline{\mu_{\mathbb{F}}}\cdot\left(\overline{\mathbb{F}}^2 \; f^{\flat}
ight) \end{aligned}$$

to hold we need two "monad-monad" compatibility conditions:

$$\lambda \cdot \eta_{\mathbb{F}} = \mathbb{G}\eta_{\mathbb{F}}$$
(9)
$$\lambda \cdot \mu_{\mathbb{F}} = \mathbb{G}\mu_{\mathbb{F}} \cdot \lambda \cdot \mathbb{F}\lambda$$
(10)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

that is:

Details in (Oliveira and Miraldo, 2015).

Motivation

kt Going relational

Going linear

Kleisli shift

Pairing!

Closing An

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

References

Pairing!

There is yet another price to pay for the "hosting" process.

Definition of $[m_1]$; $[m_2]$ is **strongly** monadic.

Question:

Do strong monads lift to strong monads?

Recall the types of the two strengths:

 $\tau_{I}: (B \times \mathbb{F} A) \to \mathbb{F} (B \times A)$ $\tau_{r}: (\mathbb{F} A \times B) \to \mathbb{F} (A \times B)$

The basic properties, e.g. $\mathbb{F} \pi_1 \cdot \tau_r = \pi_1$ and $\mathbb{F} a^\circ \cdot \tau_r = \tau_r \cdot (\tau_r \times id) \cdot a^\circ$ are preserved by their liftings (e.g. $\overline{\tau_r}$) by construction.

Motivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex Reference Naturality again

So, what may fail is their naturality,

$$\overline{\tau_{l}} \cdot (N \otimes \overline{\mathbb{F}} M) = \overline{\mathbb{F}} (N \otimes M) \cdot \overline{\tau_{l}}$$
$$\overline{\tau_{r}} \cdot (\overline{\mathbb{F}} M \otimes N) = \overline{\mathbb{F}} (M \otimes N) \cdot \overline{\tau_{r}}$$

where

$$f^{\flat} \otimes g^{\flat} = (\delta \cdot (f \times g))^{\flat}$$
⁽¹¹⁾

and

 $\delta = \tau_r \bullet \tau_l = \tau_l \bullet \tau_r$

denotes the double strength of a commutative monad

Naturality is essential to pointfree proofs!

Motivation

Kleisli shift

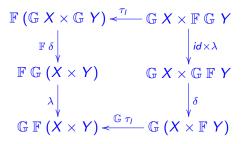
Pairing!

losing Annex I

References

Strong monad lifting

Theorem: Let \mathbb{F} , \mathbb{G} , λ be as before. Further assume \mathbb{F} strong and \mathbb{G} commutative (therefore also strong). Then $\overline{\mathbb{F}}$ is strong in the Kleisli provided the following condition holds



 $\lambda \cdot (\mathbb{F} \ \delta) \cdot \tau_{l} = \mathbb{G} \ \tau_{l} \cdot \delta \cdot (id \times \lambda) \tag{12}$

or the equivalent

 $\lambda \cdot (\mathbb{F} \ \delta) \cdot \tau_r = \mathbb{G} \ \tau_r \cdot \delta \cdot (\lambda \times id) \tag{13}$

(Diagram above depicts (12), that for (13) is similar.)

Strong monad lifting

It can be easily shown that

• \mathbb{P} and \mathbb{D} are commutative

Moreover,

For G = D, the distribution monad, condition (12) holds wrt.
 M (Maybe).

However,

• For $\mathbb{G}=\mathbb{P},$ the powerset monad, (12) does not hold wrt. $\mathbb{M}.$ In fact,

for $\mathbb{G} = \mathbb{P}$, $\delta(s, r) = s \times r$. Let $(x, y) = (\{\}, *)$. Then running the right-hand side of (12), $(\mathbb{P} \tau_l) (\delta(x, \lambda y))$ will yield $\{\}$ while the left-hand side $\lambda (\mathbb{M} \delta(\tau_l(x, y)))$ will yield $\{*\}$.

Motivation	Context	Going relational	Going linear	Kleisli shift	Pairing!	Closing	Annex	References		
Summary										

G	\mathbb{F}	Conditions	$\overline{\mathbb{F}}$	
Monad	Functor	(7) + (8)	Functor	
Wonad	Monad	+ (9) + (10)	Monad	
Commutative monad	Strong monad	+ (12) or (13)	Strong monad	

Jacobs et al. (2015) refer to properties (7,8) as the *Kleisli*-laws and to (9,10) as the *Eilenberg-Moore*-laws, since the latter ensure functor lifting in such categories.

Strong monad lifting

Oliveira and Miraldo (2015) show how anomalies such as above can be **perceived** easily at **Kleisli**-category level, by "**switching**" to **relation** algebra or **linear** algebra, as dictated by the underlying "host" monad.

The same paper shows that, concerning the MMM component algebra, the **powerset anomaly** is not a problem because strength naturality is used in the proofs in a particular context where it always holds — functions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivation

t Going relational

Going linear

Kleisli shift

Pairing!

Closing Ar

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

References

Closing

Need to quantify software (un)reliability in presence of faults.

Need for weighted nondeterminism, e.g. probabilism.

Relation algebra \rightarrow Matrix algebra

Usual strategy:

"Keep category (sets), change definition"

Proposed strategy:

"Keep definition, change category"

Change category

Possible wherever semantic models are structured around a pair (\mathbb{F}, \mathbb{G}) of monads:

Monad	\mathbb{F}	G
Effect	Transition	Branching
Role	Guest	Host
Strategy	Lifted	"Kleislified"

Works nicely for those G for which well-established Kleisli categories are known, for instance (aside):

\mathbb{G}	Kleisli				
\mathbb{P}	Relation algebra				
Vec	Matrix algebra				
\mathbb{D}	Stochastic matrices				
Giry	Stochastic relations				

cf. (Panangaden, 2009) etc.

- LAoP in its infancy really a lot to do!
- Relation to quantum physics cf. remarks by Coecke and Paquette in (Coecke, 2011):

Rel [the category of relations] possesses more 'quantum features' than the category Set of sets and functions [...] The categories FdHilb and Rel moreover admit a categorical matrix calculus.

- **Final** (behavioural) **semantics** of pMMM calls for infinite support distributions.
- Measure theory Kerstan and König (2012) provide an excellent starting point.
- Working with Tarmo Uustalu on the **free semimodule** monad which underlies matrices over **semirings**.

Closing

The monadic "curse"

"Monads [...] come with a curse. The monadic curse is that once someone learns what monads are and how to use them, they lose the ability to explain it to other people"

(Douglas Crockford: Google Tech Talk on how to express monads in JavaScript, 2013)

Douglas Crockford (2013)

Motivation Context Going relational Going linear Kleisli shift

ft Pairing!

Closing Annex

▲ロト ▲母 ト ▲目 ト ▲目 ト ▲ ● ● ● ●

References

Annex

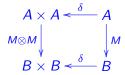
More about naturality that does not lift

Even the simple **diagonal** function $\delta = id \land id$ — that is

 $\delta x = (x, x)$

loses naturality once lifted to matrices.

Diagram



does not commute for every CS matrix $M : A \rightarrow B$.

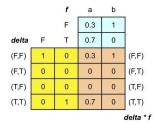
Counter-example in the next slide.

Kleisli shift

More about naturality that does not lift

Given probabilistic f

evaluate $\delta \cdot f$



Then evaluate $(f \otimes f) \cdot \delta$

				delta	а	b	
				(a,a)	1	0	
				(a,b)	0	0	
				(b,a)	0	0	
(f x f)	(a,a)	(a,b)	(b,a)	(b,b)	0	1	
(F,F)	0.09	0.3	0.3	1	0.09	1	
(F,T)	0.21	0	0.7	0	0.21	0	
(T,F)	0.21	0.7	0	0	0.21	0	
(T,T)	0.49	0	0	0	0.49	0	

(f x f) * delta

where $\delta : \{a, b\} \rightarrow \{a, b\} \times \{a, b\}$

where $\delta : \mathbb{B} \to \mathbb{B} \times \mathbb{B}$

Probabilistic pairing

Annex

This happens because the Kleisli-lifting of pairing

 $(f \circ g) x = (f x, g x)$

is a weak-product for column stochastic matrices:

$$X = M \land N \Rightarrow \begin{cases} fst \cdot X = M \\ snd \cdot X = N \end{cases}$$
(14)

ie. (\Leftarrow) is not guaranteed

So $(fst \cdot X) \land (snd \cdot X)$ differs from X in general.

In LA, $M \land N$ is known as the **Khatri-Rao** matrix product. In RA, $R \land S$ is known as the **fork** operator.

_

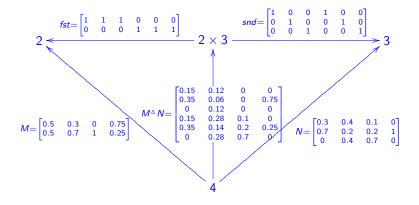
References

Probabilistic pairing

In summary: weak product (14) still grants the cancellation rule,

 $fst \cdot (M \land N) = M \land snd \cdot (M \land N) = N$

cf. e.g.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Annex

Probabilistic pairing

but reconstruction

 $X = (fst \cdot X) \land (snd \cdot X)$

doesn't hold in general, cf. e.g.

 $X: 2 \rightarrow 2 \times 3$ $X = \begin{bmatrix} 0 & 0.4 \\ 0.2 & 0 \\ 0.2 & 0.1 \\ 0.6 & 0.4 \\ 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $(fst \cdot X) \land (snd \cdot X) = \begin{bmatrix} 0.24 & 0.4 \\ 0.08 & 0 \\ 0.08 & 0.1 \\ 0.36 & 0.4 \\ 0.12 & 0 \\ 0.12 & 0.1 \end{bmatrix}$

(X is not recoverable from its projections — Khatri-Rao not surjective).

This is not surprising (cf. RA) but creates difficulties and needs attention.

Motivation

ext Going relational

Going linear

Kleisli shift

Pairing!

losing Annex

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ の Q @ >

References

References

ft Pairing!

losing Annex **F**

References

- L.S. Barbosa. *Components as Coalgebras*. University of Minho, December 2001. Ph. D. thesis.
- L.S. Barbosa and J.N. Oliveira. Transposing Partial Components — an Exercise on Coalgebraic Refinement. *TCS*, 365(1):2–22, 2006.
- B. Coecke, editor. New Structures for Physics. Number 831 in Lecture Notes in Physics. Springer-Verlag, 2011. doi: 10.1007/978-3-642-12821-9.
- V. Cortellessa and V. Grassi. A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In *Component-Based Software Engineering*, volume 4608 of *LNCS*, pages 140–156. 2007.
- M. Erwig and S. Kollmannsberger. Functional pearls: Probabilistic functional programming in Haskell. J. Funct. Program., 16: 21–34, January 2006.
- Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in Computer Science, 3(4):1–36, 2007.

Aotivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex References

- B. Jacobs, A. Silva, and A. Sokolova. Trace semantics via determinization. *JCSS*, 81(5):859–879, 2015.
- H. Kerstan and B. König. Coalgebraic trace semantics for probabilistic transition systems based on measure theory. In *CONCUR 2012*, LNCS, pages 410–424. Springer-Verlag, 2012.
- J.N. Oliveira and V.C. Miraldo. "Keep definition, change category" — a practical approach to state-based system calculi. *JLAMP*, 2015. doi: http://dx.doi.org/10.1016/j.jlamp.2015.11.007. (in press).
- P. Panangaden. *Labelled Markov Processes*. Imperial College Press, 2009.
- M. Stamatelatos and H. Dezfuli. Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners, 2011. NASA/SP-2011-3421, 2nd edition, December 2011.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・