
’Keep definition, change category: a practical
approach to monadic model evolution

Institute of Cybernetics

Tallinn — April 21st, 2016

J.N. Oliveira

INESC TEC & University of Minho



Motivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex References

Motivation
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Summary

Let us face it: there is a need to quantify software
(un)reliability.

In particular, there is a trend towards “just good enough”

hardware calling for measuring software reliability.

State-based system semantics is evolving towards quantified
(e.g. probabilistic) models.

One approach is to “stack” monads capturing the various
semantics aspects involved.

Models become too complex.
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Summary

This talk addresses a particular situation in which such
complexity can be trimmed down.

Going quantitative does not sacrifice the simplicity of the
original (qualitative) definitions.

Quantification is kept implicit rather than explicit.

The approach is a monad-monad lifting strategy.

Can it always be applied? What are the shortcomings?

We shall invest in suitable categories of matrices and use
linear algebra in the reasoning.
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Motivation

Sloppy arithmetic useful?

Horror!

But there is more. . .
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“Just good enough” h/w

. . . coming from the land of the Swiss watch:

Message:

Why perfection if (some) imperfection still meets the
standards?
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S/w for “just good enough” h/w

What about software running over “just good enough” hardware?

Ready to take the risk?

Nonsense to run safety critical software on defective hardware?

Uups! — it seems “it already runs”:

“IEC 60601-1 [brings] risk management into the
very first stages of [product development]”

Risk is everywhere — an inevitable (desired?) part of life.
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P(robabilistic)R(isk)A(nalysis)

NASA/SP-2011-3421 (Stamatelatos and Dezfuli, 2011):

1.2.2 A PRA characterizes risk in terms of three basic
questions: (1) What can go wrong? (2) How likely is
it? and (3) What are the consequences?

The PRA process

answers these questions by systematically (...)
identifying, modeling, and quantifying scenarios that
can lead to undesired consequences

Recall

“IEC 60601-1 [...] very first stages of [development]”
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From the very first stage in development

Think of things that can go wrong:

bad ∪ good

How likely?

bad p⋄ good (1)

where

bad p⋄ good = p × bad + (1 − p) × good

for some probability p of bad behaviour, eg. the imperfect action

top (10−7)⋄ pop

leaving a stack unchanged with 10−7 probability.
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Imperfect truth tables

Imperfect negation id 0.01⋄ neg :

id 0.01⋄ neg
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Linear algebra of programming

Better than the “anything can happen” relation id ∪ neg , matrix
id p⋄ neg carries useful quantitative information.

Linear Algebra required when
calculating risk of failure of safety
critical s/w.

Linear algebra of programming (LAoP)
— typed LA, modelling in a pointfree
style.

Strategy: mild and pragmatic use of
categorial techniques.

Main point — Kleisli categories matter!
Heinrich Kleisli
(1930-2011)
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Context
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Faults in CBS systems

Interested in reasoning about the
risk of faults propagating in
component-based software
(CBS) systems.

Traditional CBS risk analysis
relies on semantically weak CBS
models, e.g. component
call-graphs (Cortellessa and
Grassi, 2007).

Starting point is a coalgebraic semantics for s/w components
modeled as monadic Mealy machines (Barbosa and Oliveira,
2006).
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Main ideas

Component = Monadic Mealy machine (MMM), that is, an
F-evolving transition structure of type:

S × I → F(S × O)

where F is a monad.

Method = Elementary (single action) MMM.

CBS design = Algebra of MMM combinators.

Semantics = Coalgebraic, calculational.

To this framework we want to add analysis of

Risk = Probability of faulty (catastrophic) behaviour
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Mealy machines in various guises

F-transition structure:

S × I → F(S × O)

Coalgebra:

S → (F(S × O))I

State-monadic:

I → (F(S × O))S

All versions useful in
component algebra.

Abstracting from internal
state S and branching effect
F, machine

m : S × I → F(S × O)

can be depicted as

I

��
m

��
O

or as the arrow I
m // O .
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Example — stack component

From a (partial) algebra of finite lists (Haskell syntax)

(partial) function type
push (s, a) = a : s
pop = tail
top = head
empty s = (length s = 0)

push :: ([a ], a) → [a ]
pop :: [a ] → [a ]
top :: [a ] → a
empty :: [a ] → B

to a collection of (total) methods (MMMs):

method type
push′ = η · (push △ !)
pop′ = (pop△top ⇐ (¬·empty) )·fst
top′ = (id △ top ⇐ (¬ · empty) ) · fst
empty ′ = η · (id △ empty) · fst

push′ :: ([a ], a) → M ([a ], 1)
pop′ :: ([a ], 1) → M ([a ], a)
top′ :: ([a ], 1) → M ([a ], a)
empty ′ :: ([a ], 1) → M ([a ],B)

where. . .
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Explanation

Pairing:

(a, b) a (a, b)
fstoo snd // b

c

(f △g) c=(f c,b c)

OO

c

f △g

OO

g

<<zzzzzzzzz
f

bbDDDDDDDDD

“Sink” (“bang”) function A
! // 1 onto singleton type 1

M : Monad with unit η (”success”) and zero ⊥ (”failure”) —
typically Maybe.

M -totalizer on given pre-condition:

· ⇐ · ::(a → b) → (a → B) → a → M b
(f ⇐ p ) a = if p a then (η · f ) a else ⊥
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Component =
∑

methods

Define

stack :: ([a ], 1 + 1 + a + 1) → M ([a ], a + a + 1 + B)
stack = pop′ ⊕ top′ ⊕ push′ ⊕ empty ′

to obtain a compound M -MM
(stack component) with 4
methods, where

• input 1 means “do it!”

• output 1 means “done!”

Notation m ⊕ n expresses the
“coalesced” sum of two
state-compatible MMMs (next
slide).

1 + 1 + a + 1

��

stack

��
a + a + 1 + B
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Machine sums

Pretty-print of Haskell definition

· ⊕ · ::(Functor F) ⇒
-- input machines
((s, i) → F (s, o)) →
((s, j) → F (s, p)) →
-- output machine
(s, i + j) → F (s, o + p)
-- definition

m1 ⊕ m2 = (F dr◦) · ∆ · (m1 + m2) · dr

where dr◦ is the converse of isomorphism

dr :: (s, i + j) → (s, i) + (s, j)

and ∆ :: F a + F b → F (a + b) is a kind of “cozip” operator.
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Machine sums

‘Wiring’ combinator (at component interface level):

m{f →g} = F (id × g) · m · (id × f ) (2)

f acts at input level, g at output level, the state is unchanged.

Operator m{f →g} very useful for component interfacing —
examples in (Barbosa, 2001).

It also enables to define machine sum as a universal construction:

k = p ⊕ q ⇔

{

k{i1→id} = p{id→i1}

k{i2→id} = q{id→i2}
(3)

Universal property (3) convenient for decomposing component
expressions where ⊕ is the outermost combinator.
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Machine (component) composition

Forward composition

i
��

m1

BC j@A

GF ED
j��

; m2

k
��

is central to component communication.

Abstracting from state, it means composition in a categorial
sense:

i m1

//

m2·m1

&&
j

m2

// k
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Exchange law

Formal definition of m ; n to be discussed shortly.

For suitably typed MMM m1 , m2 , n1 and n2 , mind the useful
exchange law

(m1 ⊕ m2) ; (n1 ⊕ n2) = (m1 ; n1) ⊕ (m2 ; n2) (4)

expressing two alternative approaches to s/w system construction:

• · ⊕ · -first — “component-oriented”

• · ; · -first — “method-oriented”

NB: For other combinators of the component algebra see e.g.

(Barbosa, 2001) and (Barbosa and Oliveira, 2006).
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Simulation (Haskell)

Let M instantiate to Haskell’s Maybe monad:

• Running a perfect and successful composition:

> (pop′ ; push′) (([1], [2]), ())
Just (([ ], [1, 2]), ())

• Running a perfect but catastrophic composition:

> (pop′ ; push′) (([ ], [2]), ())
Nothing

(source stack empty)

Now,

What about imperfect machine communication?
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Imperfect components

Risk of pop′ behaving like top′ with probability 1 − p :

pop′′ :: P → ([a ], 1) → D (M ([a ], a))
pop′′ p = pop′

p⋄ top′

Risk of push′ not pushing anything, with probability 1 − q:

push′′ :: P → ([a ], a) → D (M ([a ], 1))
push′′ q = push′ q⋄ !

Details: P = [0, 1], D is the (finite) distribution monad and

· ·⋄ · :: P → (t → a) → (t → a) → t → D a
(f p⋄ g) x = choose p (f x) (g x)

chooses between f and g according to p .
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Faulty components

Define

m2 = pop′′ 0.95 ;D push′′ 0.8

where · ;D · is a probabilistic enrichment of composition and run the
same simulations for m2 over the same state ([1], [2]):

>m2 (([1], [2]), ())
Just (([ ], [1, 2]), ()) 76.0 %

Just (([ ], [2]), ()) 19.0 %
Just (([1], [1, 2]), ()) 4.0 %

Just (([1], [2]), ()) 1.0 %

Total risk of faulty behaviour is 24% (1 − 0.76 ) structured as:

(a) 1% — both stacks misbehave; (b) 19% — target stack misbehaves;

(c) 4% — source stack misbehaves.



Motivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex References

Faulty components

As expected, the behaviour of

>m2 (([ ], [2]), ())
Nothing 100.0 %

is 100% catastrophic (popping from an empty stack).

Simulation details:

Using the PFP library written in Haskell by Erwig and
Kollmannsberger (2006).
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Central topic

Our MMMs have become probabilistic, acquiring the general
shape

S × I → D (F (S × O))

where the additional D — (finite support) distribution monad —
captures imperfect behaviour (fault propagation).

Questions:

• Shall we compose D · F and work over the composite monad?

• Or shall we try and find a way of working “as if D wasn’t
there”?

Let us first see how MMM compose.
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MMM forward composition

Combinator

I
��

m1

BC J@A

GF ED
J��

; m2

K
��

is defined by Kleisli composition

m1 ; m2 = (ψ m2) • (φ m1)

of two steps:

• φ m1 — run m1 “wrapped” with the state of m2

• ψ m2 — run m2 “wrapped” with that of m1 for the output it
delivers
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Kleisli composition

Let X
η // FX F

2X
µoo be a monad in diagram

F (F C )

µ

��

F B
F foo A

goo

f •g

ggF C B
foo

Arrow f • g denotes the so-called Kleisli composition of F

-resultric arrows, forming a monoid with η as identity:

f • (g • h) = (f • g) • h

f • η = f = η • f
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MMM composition — part I

Given I
m1 // J build φ m1 :

F ((S × J) × Q) F (S × J) × Q
τroo (S × I ) × Q

m1×idoo

F ((S × Q) × J)

F xr

OO

(S × Q) × I

xr

OO

φ m1

oo

where

• xr : (S × Q) × I → (S × I ) × Q is the obvious isomorphism
ensuring the compound state and input I

• τr : (F A) × B → F (A × B) is the right strength of monad F,
which therefore has to be a strong monad.
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MMM composition — part II

Given J
m2 // K build ψ m2 :

F (S × (Q × K )) S × F (Q × K )
τloo S × (Q × J)

id×m2oo

F ((S × Q) × K )

F a

OO

(S × Q) × J

a

OO

ψ m2

oo

where

• a : (A × B) × C → A × (B × C ) is the obvious isomorphism

• τl : (B × F A) → F (B × A) is the left strength of F .
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MMM composition — part III

Finally build m1 ; m2 = (ψ m2) • (φ m1) :

F (F ((S × Q) × K ))

µ

��

F ((S × Q) × J)
F (ψ m2)oo (S × Q) × I

φ m1oo

m1;m2

ee
F ((S × Q) × K ) (S × Q) × J

ψ m2oo

This for perfect F -monadic machines. What about the imperfect ones?

What is the impact of adding probability-of-fault to the
above construction? Does one need to rebuild the definition?
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Doubly-monadic machines

Recall Haskell simulations running combinator m1 ;D m2 for
doubly-monadic machines of type

(S × I ) → D (M (S × O))

involving the maybe M and (finite support) distribution D

monads which generalize to

(S × I ) → G (F (S × O))

where, following the terminology of Hasuo et al. (2007):

• monad X
ηF // F X F

2X
µFoo caters for transitional

effects (how the machine evolves)

• monad X
ηG // G X G

2X
µGoo specifies the branching

type of the system.
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Going relational
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Doubly-monadic machines

Typical instance:

G = P (powerset) and F = M = (1+) (‘maybe’), that is,

m : Q × I → P (1 + Q × J)

is a reactive, non-deterministic finite state automaton
with explicit termination.

Such machines can be regarded as binary relations of (relational)
type

(Q × I ) → (1 + Q × J)

and handled directly in relational algebra. (Details in the next
slide)
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Nondeterministic Maybe machines

The power transpose adjunction

R = ⌈m⌉ ⇔ 〈∀ b, a :: b R a = b ∈ m a〉

for trading between P -functions
and binary relations, in a way
such that

⌈m • n⌉ = ⌈m⌉ · ⌈n⌉

A → P B

⌈·⌉

**
∼= A → B

⌊·⌋

jj

where

- m • n — Kleisli composition of P -functions

- ⌈m⌉ · ⌈n⌉ — relational composition

b (R · S) a ⇔ 〈∃ c :: b R c ∧ c S a〉

of the corresponding binary relations.
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Composing relational M -machines

Transition monad on duty is M = (1+) , ie.

X
i2 // 1 + X 1 + (1 + X )

[i1,id ]oo

(i1 , i2 = binary sum injections).

Lifting: in the original
definition

m1 ; m2 = (ψ m2) • (φ m1)

run Kleisli composition
relationally:

R • S = [i1, id ] · (id + R) · S = [i1,R] · S

= i1 · i
◦
1 · S ∪ R · i◦2 · S

1 + (1 + C )

[i1,id ]

��

1 + B
id+Roo A

Soo

R•S

hh1 + C B
Roo
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Composing relational M -machines

Pointwise: y (R • S) a holds iff

(y = ∗) ∧ (∗ S a) ∨ 〈∃ c :: (y R c) ∧ ((i2 c) S a)〉

where ∗ = i1 ⊥

In words:

R • S doomed to fail if S fails;
Otherwise, R • S will fail where R fails.
For the same input, R • S may both succeed or fail.

Summary: Nondeterministic M -machines are M -relations and
original (deterministic) definition is “reused” in the relational
setting:

R1 ; R2 = (ψ R2) • (φ R1) = [i1, ψ R2] · (φ R1)
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Going linear
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Probabilistic branching (D instead of P )

Again, instead of working in Set,

D (F B) A
goo

D (F C ) B
foo

we seek to implement F -Kleisli-composition in the Kleisli category of D,
that is

F B A
⌈g⌉

oo

⌈f ⌉•⌈g⌉

��
F C B

⌈f ⌉oo

thus “abstracting from” monad D.

Question: Kleisli(D) = ??
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Probabilistic monadic machines

It turns out to be the category of column-stochastic (CS)
matrices, cf. adjunction

A →Set DB

⌈·⌉
++

∼= A →CS B

⌊·⌋

kk

such that

M = ⌈f ⌉ ⇔ 〈∀ b, a :: bM a = (f a) b〉

where A →CS B is the matrix type of all matrices with B-indexed
rows and A-indexed columns all adding up to 1 (100% ).

Important:

CS represents the Kleisli category of D
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Probabilism versus matrix algebra

Recall probabilistic negation function

f = id 0.1⋄ (¬)

which corresponds to matrix

⌈f ⌉ =
True False

True
False

(

0.1 0.9
0.9 0.1

)

where probabilistic choice is immediate on the matrix side,

⌈f p⋄ g⌉ = p ⌈f ⌉ + (1 − p) ⌈g⌉

where (+) denotes addition of matrices of the same type.
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Typed linear algebra

In general, category of matrices over a semi-ring (S; +,×, 0, 1):

• Objects are types (A , B , ...) and morphisms (M : A → B )
are matrices whose columns have finite support.

• Composition:

B A
Moo C

Noo

C=M·N

gg

that is:

b (M · N)c = 〈
∑

a :: (r M a) × (aN c)〉

• Identity: the diagonal Boolean matrix id : A → A .
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Typed linear algebra

Matrix coproducts

(A + B) → C ∼= (A → C ) × (B → C )

where A + B is disjoint union, cf. universal property

X = [M|N] ⇔ X · i1 = M ∧ X · i2 = N

where [i1|i2] = id .

[M|N] is one of the basic matrix block combinators — it puts M
and N side by side and is such that

[M|N] = M · i◦1 + N · i◦2

as in relation algebra.
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Typed linear algebra

Matrix direct sum

M ⊕ N =

[

M 0

0 N

]

is an (endo,bi)functor, cf.

(id ⊕ id) = id

(M ⊕ N) · (P ⊕ Q) = (M · P) ⊕ (N · Q)

[M|N] · (P ⊕ Q) = [M · P|N · Q]

as in relation algebra — etc, etc.

The Maybe monad in the category is therefore given by
M = (id ⊕ ·)
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Another “Kleisli shift”

As we did for relations representing Kleisli(P), let us encode M

-Kleisli composition in matrix form:

M • N = [i1|M] · N

1 + (1 + C )

[i1|id ]

��

1 + B
id⊕Moo A

Noo

M•N

hh1 + C B
Moo

Thus M • N = i1 · i
◦
1 · N + M · i◦2 · N leading into the pointwise

y (M • N) a =
(y = ∗) × (∗ N a) + 〈

∑

b :: (y M b) × ((i2 b) N a)〉

— compare with the relational version and example (next slide).
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“Kleisli shift” example

Probabilistic M -Kleisli
composition M •N of matrices
N : {a1, a2, a3} → 1 + {c1, c2}
and
M : {c1, c2} → 1 + {b1, b2} .

Injection i1 : 1 → 1 + {b1, b2}
is the leftmost column vector.

For instance: for input a1 there is 60% probability of M • N failing
= either N fails (50% ) or passes c1 to M (50% ) which fails with
20% probability.
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Probabilistic MMM (=pMMM) as matrices

Similarly to relations before, we can think of probabilistic M

-monadic Mealy machines as CS matrices which communicate (as
matrices) as follows

N ; M = (ψ M) • (φ N) (5)

= [i1|(id ⊕ a◦) · τl · (id ⊗ M) · xl] · τr · (N ⊗ id) · xr

where

• functions are represented matricially by Dirac distributions;

• relational product becomes matrix Kronecker product

(y , x)(M ⊗ N)(b, a) = (yMb) × (xNa)
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Kleisli shift
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Monad-monad lifting

For the above to make sense for machines of generic type
Q × I → G (F (Q × J)) make sure that

The lifting of monad F by monad G still is a monad in
the Kleisli category of G .

Recall:

• F — transition monad

• G — branching monad

Mind their different roles:

Branching monad “hosts” transition monad.
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Monad-monad lifting

In general, given two monads

X
ηG // GX G

2X
µGoo (the host)

X
ηF // FX F

2X
µFoo (the guest)

in a category C :

• let C♭ denote the Kleisli category induced by host G;

• let B A
f ♭

oo be the morphism in C♭ corresponding to

GB A
foo in C ;

• define

f ♭ · g ♭ = (f • g)♭ = (µG · G f · g)♭
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Monad-monad lifting

For any morphism B A
foo in C define its lifting to C♭ by

f = (ηG · f )♭ (6)

As in (Hasuo et al., 2007), assume distributive law

λ : FG → GF

Lift the guest endofunctor F from C to C♭ by defining F as

follows, for G B A
foo :

F(f ♭) = (λ · F f )♭

cf. diagram

GFB FGB
λoo F A

F foo



Motivation Context Going relational Going linear Kleisli shift Pairing! Closing Annex References

Monad-monad lifting

For F to be a functor in C♭ two conditions must hold (Hasuo
et al., 2007):

λ · F ηG = ηG (7)

λ · F µG = µG · Gλ · λ (8)

We need to find extra conditions for guest F to lift to a monad in
C♭ ; that is,

X
ηF=(ηG·ηF)♭

//
FX F

2
X

µF=(ηG·µF)♭

oo

should be a monad in C♭ .

The standard monadic laws, e.g. µF · ηF = id , hold via lifting (6)
and Kleisli composition laws.
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Monad-monad lifting

For the remaining natural laws

(F f ♭) · ηF = ηF · f ♭

(F f ♭) · µF = µF · (F
2

f ♭)

to hold we need two “monad-monad” compatibility conditions:

λ · ηF = GηF (9)

λ · µF = GµF · λ · Fλ (10)

that is:

GX
ηF //

GηF ##GG
GG

GG
G FGX

λ
��

F
2(GX )

µFoo

Fλ
��

GFX G(F2X )
GµF

oo FGFX
λ

oo

Details in (Oliveira and Miraldo, 2015).
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Pairing!
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Not yet done!

There is yet another price to pay for the “hosting” process.

Definition of ⌈m1⌉ ; ⌈m2⌉ is strongly monadic.

Question:

Do strong monads lift to strong monads?

Recall the types of the two strengths:

τl : (B × F A) → F (B × A)
τr : (F A × B) → F (A × B)

The basic properties, e.g. F π1 · τr = π1 and
F a◦ · τr = τr · (τr × id) · a◦ are preserved by their liftings (e.g. τr )
by construction.
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Naturality again

So, what may fail is their naturality,

τl · (N ⊗ F M) = F (N ⊗ M) · τl

τr · (F M ⊗ N) = F (M ⊗ N) · τr

where

f ♭ ⊗ g ♭ = (δ · (f × g))♭ (11)

and

δ = τr • τl = τl • τr

denotes the double strength of a commutative monad

Naturality is essential to pointfree proofs!
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Strong monad lifting

Theorem: Let F, G, λ
be as before. Further
assume F strong and G

commutative (therefore
also strong). Then F is
strong in the Kleisli
provided the following
condition holds

F (G X × G Y )

F δ
��

G X × F G Y
τloo

id×λ

��
F G (X × Y )

λ
��

G X × G F Y

δ
��

G F (X × Y ) G (X × F Y )
G τloo

λ · (F δ) · τl = G τl · δ · (id × λ) (12)

or the equivalent

λ · (F δ) · τr = G τr · δ · (λ× id) (13)

(Diagram above depicts (12), that for (13) is similar.)
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Strong monad lifting

It can be easily shown that

• P and D are commutative

Moreover,

• For G = D, the distribution monad, condition (12) holds wrt.
M (Maybe).

However,

• For G = P, the powerset monad, (12) does not hold wrt. M.

In fact,

for G = P, δ (s, r) = s × r . Let (x , y) = ({ }, ∗). Then
running the right-hand side of (12), (P τl) (δ (x , λ y))
will yield { } while the left-hand side λ (M δ (τl (x , y)))
will yield {∗}.
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Summary

G F Conditions F

Monad
Functor (7) + (8) Functor

Monad + (9) + (10) Monad

Commutative
monad

Strong monad + (12) or (13) Strong monad

Jacobs et al. (2015) refer to properties (7,8) as the Kleisli-laws and
to (9,10) as the Eilenberg-Moore-laws, since the latter ensure
functor lifting in such categories.
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Strong monad lifting

Oliveira and Miraldo (2015) show how anomalies such as above
can be perceived easily at Kleisli-category level, by “switching”
to relation algebra or linear algebra, as dictated by the underlying
“host” monad.

The same paper shows that, concerning the MMM component
algebra, the powerset anomaly is not a problem because strength
naturality is used in the proofs in a particular context where it
always holds — functions.
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Closing
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Research proposal

Need to quantify software (un)reliability in presence of faults.

Need for weighted nondeterminism, e.g. probabilism.

Relation algebra → Matrix algebra

Usual strategy:

“Keep category (sets), change definition”

Proposed strategy:

“Keep definition, change category”
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Change category

Possible wherever semantic models are structured around a pair
(F,G) of monads:

Monad F G

Effect Transition Branching
Role Guest Host

Strategy Lifted “Kleislified”

Works nicely for those G

for which well-established
Kleisli categories are
known, for instance
(aside):

G Kleisli

P Relation algebra
Vec Matrix algebra
D Stochastic matrices

Giry Stochastic relations

cf. (Panangaden, 2009) etc.
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Future work

• LAoP in its infancy — really a lot to do!

• Relation to quantum physics — cf. remarks by Coecke and
Paquette in (Coecke, 2011):

Rel [the category of relations] possesses more ’quantum
features’ than the category Set of sets and functions [...]
The categories FdHilb and Rel moreover admit a
categorical matrix calculus.

• Final (behavioural) semantics of pMMM calls for infinite
support distributions.

• Measure theory — Kerstan and König (2012) provide an
excellent starting point.

• Working with Tarmo Uustalu on the free semimodule monad
which underlies matrices over semirings.
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The monadic “curse”

“Monads [...] come with a
curse. The monadic curse is
that once someone learns
what monads are and how to
use them, they lose the ability
to explain it to other people”

(Douglas Crockford: Google
Tech Talk on how to express
monads in JavaScript, 2013)

Douglas Crockford (2013)
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Annex
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More about naturality that does not lift

Even the simple diagonal function δ = id △ id — that is

δ x = (x , x)

loses naturality once lifted to matrices.

Diagram

A × A

M⊗M

��

A
δoo

M

��
B × B B

δoo

does not commute for every CS matrix M : A → B .

Counter-example in the next slide.
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More about naturality that does not lift

Given probabilistic f

evaluate δ · f

where δ : B → B × B

Then evaluate (f ⊗ f ) · δ

where δ : {a, b} → {a, b} × {a, b}
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Probabilistic pairing

This happens because the Kleisli-lifting of pairing

(f △ g) x = (f x , g x)

is a weak-product for column stochastic matrices:

X = M △ N ⇒

{

fst · X = M
snd · X = N

(14)

ie. (⇐) is not guaranteed

So (fst · X ) △ (snd · X ) differs from X in general.

In LA, M △ N is known as the Khatri-Rao matrix product.
In RA, R △ S is known as the fork operator.
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Probabilistic pairing

In summary: weak product (14) still grants the cancellation rule,

fst · (M △ N) = M ∧ snd · (M △ N) = N

cf. e.g.

2 2 × 3

fst=

»

1 1 1 0 0 0
0 0 0 1 1 1

–

oo
snd=

"

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

#

// 3

4

M△N=

2

6

6

6

6

4

0.15 0.12 0 0
0.35 0.06 0 0.75

0 0.12 0 0
0.15 0.28 0.1 0
0.35 0.14 0.2 0.25

0 0.28 0.7 0

3

7

7

7

7

5

OO

N=

"

0.3 0.4 0.1 0
0.7 0.2 0.2 1
0 0.4 0.7 0

#

==zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

M=

»

0.5 0.3 0 0.75
0.5 0.7 1 0.25

–

aaDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
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Probabilistic pairing

... but reconstruction

X = (fst · X ) △ (snd · X )

doesn’t hold in general, cf. e.g.

X : 2 → 2 × 3

X =

















0 0.4
0.2 0
0.2 0.1
0.6 0.4
0 0
0 0.1

















(fst · X ) △ (snd · X ) =

















0.24 0.4
0.08 0
0.08 0.1
0.36 0.4
0.12 0
0.12 0.1

















(X is not recoverable from its projections — Khatri-Rao not surjective).

This is not surprising (cf. RA) but creates difficulties and needs attention.
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